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Wave fronts with one principal curvature a constant in
the hyperbolic three-space

Atsufumi Honda

Abstract

In this note, we prove that weakly complete wave fronts with one principal
curvature a constant ¢ in the hyperbolic 3-space is either a totally umbilical
sphere or umbilic free, if [¢| > 1. Moreover, we derive their orientability.

1 Introduction

By the Hartman-Nirenberg theorem, complete flat surfaces in the Euclidean 3-space
R? are cylinders over a complete planar regular curve (cf. [2]). This fact implies
that such surfaces are trivial. On the other hand, if we admit some singularities,
there exist many nontrivial examples of flat surfaces. Murata-Umehara investigated
global properties of flat surfaces with admissible singularities called flat fronts and
then proved the following (for precise definitions, see Section 2). -

Fact 1.1 ([5]). A complete flat front in the Buclidean 3-space whose singular point‘
set is non-empty has no umbilics, is or‘ientable and co-orientable. Moreover, if its
ends are embedded, there exist at least four singular points other than cuspidal edges.

This estimate is sharp (see FIGURE 1).

Figure 1: A complete flat front in R*® which has four singular points other than
cuspidal edges. ‘

We here remark that a flat surface is considered to be a surface such that one
of the principal curvatures is identically zero. In the case of nonzero constant,
Shiohama and Takagi [6] showed that a complete surface one of whose principal



curvatures is a monzero constant is either totally umbilical or umbilic-free. The
latter case, such a surface is a tube of a complete regular curve in R3 (i.e., a channel
surface). In [4], the author investigated wave fronts such that one of the principal
curvatures is a nonzero constant (cf. Definition 3.1) and proved the following.

Fact 1.2 ([4]). A weakly complete wave front in the Euclidean 3-space such that one
of the principal curvatures is a nonzero constant has no umbilics and is orientable.

Although wave fronts with one priﬂcipal curvature a nonzero constant are co-
orientable by definition (cf. Remark 3.2), there ezists co-orientable and non-orientable
ones (see FIGURE 2).

Figure 2: A non-orientable wave front with one principal curvature a nonzero con-
stant in R3.

In the case of non-flat space forms, Aledo-Gélvez [1] investigated (immersed)
surfaces with one principal curvature a constant ¢ in the hyperbolic 3-space H3. In
particular, they proved that a complete surface one of whose principal curvatures
is a constant c is either totally umbilical or umbilic-free, if |c| > 1 [1, Theorem
1.1]. Moreover, they showed that, if |¢| < 1, such a result does not hold. That is,
if |¢| < 1, they exhibited examples of non-totally-umbilical complete surfaces one
of whose principal curvatures is a constant ¢ whose umbilic point set is not empty
[1, Example 2.1, Example 2.2]. While their examples are given by the first and
second fundamental forms, Izumiya-Saji-Takahashi gave an explicit description of.
such examples in the case of |c| =1 [3, Example 5.7].

In this paper, we give a generalization of Aledo-Gélvez’s Theorem [1, Theorem
1.1] as follows (cf. Theorem 3.7 and Theorem 3.8). '

Theorem 1.3. A weakly complete wave front in the hyperbolic 3-space such that
one of the principal curvatures is a constant ¢ satisfying |c| > 1 has no umbilics and
s orientable.

This theorem is a direct conclusion of Theorem 3.7 and Theorem 3.8. In the case
of |¢| < 1, such a result does not hold (see [1, Example 2.1, Example 2.2]).

This paper is organized as follows. In Section 2, we review fundamental proper-
ties of wave fronts in H3. Then, in Section 3, we define wave fronts one of whose
principal curvatures is a constant and give a proof of Theorem 1.3.
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2 Preliminaries : wave fronts in H*

In this section, we review fundamental properties of wave fronts in the hyperbolic
3-space H®. Here, we regard H® as

H3 :{:c = (zy,x1,Z2,x3) € R‘ll; (x,2) = —1, 2y > O} ,
where R‘% is the Lorentz-Minkowski 4-space with the inner product
(x,x) = —x2 + 2? + 22 + 23, x = (z0,x1,T2,23) € R,

If we denote by S} the de Sitter 3-space S} = {x € R}; (z,x) = 1}, the unit
tangent bundle 11 H3 of H3 is given by

11 H? = {(p,v) € H? x S3; ~0}.

Let M? be a smooth 2-manifold and f : M2 — H? be a smooth map. We call f
a frontal, if for any point p € M?, there exists a neighborhood U of p and a smooth
map v : U — S% such that
(dfp(v)’ l/(p)) =0

holds for all v € 1,M 2. Then, v is said to be the unit normal vector field of the
frontal f. If v is well-defined on M?, f is called co-orientable. -Moreover, f is
orientable if M? is orientable. A point p € M? is said to be a singular (resp. regular)
point if rank(df), < 2 (resp. rank(df), = 2). As in the introduction, we call the
frontal f wave front, if the map

=(f,v): U —11H®
is an immersion. The map L is called the Legendrian lift of f.

Lemma 2.1 ([5, Lemma 1.1]). Let M? be a smooth 2-manifold and f : M? — H?
be a co-orientable wave front. If p € M? is a singular point of f, then there erist a
real number 6 > 0 such that p is a regular point of the parallel front f5 := (coshd)f+
(sinhd)v.

For a co-orientable wave front f : M? — H3, take p € M? arbitrary. By Lemma
2.1, there exist a neighborhood U and a real number § such that fs5 is immersion
on U. Then, a point p € M? is called umbilic of f if p is umbilic point of f5. By
definition, umbilic points are common in its parallel family.

-Lemma 2.2. Let M? be a smooth 2-manifold, f : M? — H3 be a co-orientable
wave front and p € M? be a singular point of f. Then, p is umbilic if and only if
rank(df ), = 0 holds.

Lemma 2.2 is an analogue of [4, Lemma 2. 2]

Lemma 2.3 ([5, Lemma 1.3]). Let M? be a smooth 2- mamfold f:M? S H®bea
co-orientable wave front and v be a unit normal vector field of f. For a non-umbilic
point p € M?, there exist a local coordinate system (U;u,v) centered at p such that



fu and vy (resp. f, and v,) are linearly independent on U. In particular, the pair
{fusvu} (resp. {fv,vn}) does not vanishes at the same time and

<fwfv> = <fquv> = <fvqu> =0
holds.

Such a coordinate system is called principal curvature line.

Definition 2.4 (cf. [5, Definition 1.5]). Let M? be a smooth 2-manifold and f :
M? — H?3 be a co-orientable wave front. A direction v € 1, M? is called a principal
direction of f if df(v) and dv(v) are linearly dependent. Moreover, for an open
interval 1 € R, a curve o(t) : I — M? is called a principal curvature line if o'(t)
gives a principal direction for all ¢t € 1.

On a principal curvature line coordinate neighborhood, every coordinate curve
gives a principal curvature line.

For j = 1,2, let Aj : M? — PY(R) be the principal curvature map of a wave
front f (for a precise definition, see [5, Section 1]). In particular, if (U;u,v) is a
principal curvature line coordinate system, A;|y : U — PY(R) (5 = 1,2) coincide
with the smooth maps

.Al — [_Vu : fu], AQ = [—Vv : fv]a

respectively. Here, where [—v, : f,] and [~v, : f,] mean the proportional ratio of
{—wu, fu} and {—vy, fu} respectively as elements of the real projective line P!(R).
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Proposition 2.5 ([5, Lemma 1.7]). Let f : M2 — H? be a co-orientable wave front

and A1, Ay be the principal curvature maps of f. Then, a point p € M? is umbilic
if and only if A1(p) = Aa(p) holds. On the other hand, p € M? is a singular point
if and only if either Ai(p) = [1:0] or As(p) = [1 : 0] holds.

At the end of this section, we recall the weakly completeness of wave fronts as
follows. Let f: M? — H3 be a wave front and v be a (locally defined) unit normal
vector field of f. T'hen the symmetric covariant 2-tensor

ds%, == (df, df) + (dv,dv)

gives a Riemannian metric on M? which is called a lift metric of f. The lift metric
is a pull-back metric of the Sasakian metric of the unit tangent bundle 7} H® of H3
through the Legendrian lift L = (f,v) of f. The lift metric alsféﬁ is independent of a
- choice of v.

Definition 2.6. A wave front is called weakly complete if its lift metric gives a complete
Riemannian metric.

3 Wave fronts one of whose principal curvatures is a
nonzero constant

In this section, we give a definition of wave fronts one of whose principal curvatures
is a nonzero constant. Then, we give a proof of Theorem 1.3 by showing Theorem
3.7 and Theorem 3.8.
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3.1 Definitions

Let M? be a smooth 2-manifold. Consider a co-orientable front f : M2 — H3 such
that for some real numbers a, b € R (a? + b # 0), f satisfies

(3.1) - rank(a (dv)p + b (df)p) < 2

for any p € M2, where v : M? — S} is the unit normal vector field of f. If
a# 0,b=0, then f is called an extrinsically flat front, and if a = 0, b # 0, then all
the points of M? are singular. :

From now on, we consider the case a # 0, b # 0. Setting ¢ = b/a, (3.1) turns
out to be

(3.2) rank((dv), + ¢ (df)p) < 2

* for any p € M2

Definition 3.1. Let ¢ be a real number, f : M2 — H?3 be a co-orientable front and
v:M? S*;’ be the unit normal vector field of f. Then, f is called one of whose
principal curvatures is a constant c if f satisfies (3.2).

Remark 3.2 (Non-co-orientable case). Consider a non-co-orientable wave front sat-
isfying (3.2). Changing v to —v, we have that such a wave front satisfis both of

(3.3) rank((dv), + c(df)p) <2 and  rank((dv), — c(df),) < 2,

for any p € M?. (3.3) implies that such a wave front must be isoparametric (i.e., both
of the principal curvatures are constant), and hence has no singular points. Since
isoparametric surfaces must be orientable, a wave front satisfying (3.3) must be co-
orientable. This is a contradiction. Therefore, we have that wave fronts satisfying
(3.2) must be co-orientable.

3.2 Proof of Theorem 1.3

From now on, we denote by Uy the umbilic point set of a wave front f : M? — H3.
Lemma 3.3 and Lemma 3.4 can be proved in the similar way as .[4, Lemma 3.5] and
[4, Lemma 3.6], respectively.

Lemma 3.3. Let f : M? — H3 be a wave front one of whose principal curvatures
is a constant c. If p € M? is a umbilic point of f, the f is reqular at p. '

Lemma 3.4. Let f : M? — H3 be a wave front one of whose principal curvature
is a constant ¢ and ¢ € M? \ Uy be a non-umbilic point of f. Then there exists a
curvatureline coordinate system (U;u,v) around q such that

o u-curves are curvature line of A1, v-curves are curvature line of Ag = [c: 1],
o |ful =1
e vytcfu#0, wmtcfu=0, fu=Ff+cv

hold on U, where 0 = (0,0,0,0).



A regular curve in H® is called a planar circle, if its curvature function is a
constant greater than 1 and its torsion function is identically zero. For a planar
circle & = 6(t), there exist a point p € H? such that distys(p,5(t)) is a constant
for all ¢, where distgs(-, -) is the distance function of H3. We call p the center of 4.
Lemma 3.5 and Lemma 3.6 can be proved in the similar way as [4, Lemma 3.7] and
[4, Lemma 3.8], respectively.

Lemma 3.5. Let f : M? — H® be a wave front one of whose principal curvature
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is a constant ¢ and o(t) : R 2 I — M? be a principal curvatureline of Ay = ¢

parametrized by arc-length passing through a non-umbilic point ¢ € M? \Us. If
lc| > 1, 6(t) := foo(t) is a planar circle in H® whose curvature is ¢ and there exist
real constants a,b € R such that Aq is given by

(3.4) Al(o(t)):[l—l—c(c2—1) (acos( c2—1t)+bsin( c2—1t)):

C+(02_1)(acos( cz—lt)+bsin( 02—175))]

on o(t). Furthermore, o(1) and Uz has no intersection.

Lemma 3.6. Let f : M? — H® be a wave front one of whose principal curvature
is a constant c with |c| > 1 and (U;u,v) be a curvatureline coordinate system as in
Lemma 3.4 around a non-umbilic point ¢ € M? \Uys. Then, the map C : U — H3
defined by

C(u,v) = (c f(u,v) + v(u,v))

ct—1
is independent of v and is a regular curve C = ~(u) in H3. Moreover, if we set
Tuowo(t) - R 2 J — M? as the curvatureline of Ay such that 04 4,(0) = (ug,v) € U,

the center of the planar circle 6y, vy = f 0 0yg v, 18 ¥(uo) and the image of 6 Gug,vy 18
included in the normal plane ' (up)= .

Theorem 3.7. Let ¢ be a constant satisfying |c| > 1 and f : M? — H3 be a wave
front one of whose principal curvature is c. If f is weakly complete, f is totally
umbilic or umbilic-free. In the latter case, f is described as

(3.5) | |
flu,v) = \/CQL——T (——cy(u) -+ cos < c?— 1t) e;(u) + sin (\/ c? — 1t) eg(u)> ,

where (u,v) € Rx S, S' = R/27Z, v(u) is a complete regular curve in H3 and
{e1, ey} is a orthonormal frame of the normal bundle of .

Proof. Assume that f is not totally umbilic. First of all, we shall prove that the
curvatureline of Ay = ¢ passing through the non-umbilic point p € M 2\Uf is defined
on S'. Let (U;u,v) be a curvatureline coordinate system around p as in Lemma
3.4. Then each curvatureline of Ay is given by the v-curves on U. The lift metric
dsféé of f is given by

ds# (df,df) + (dv,dv) = ((Fu, fu) + (Vu, v0))du? + (14 c*)dv?
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~on U. In particular, each v-curve is a geodesic of dsi, and hence it is defined on R
since f is weakly complete. Since the image of each curvatureline of Ay is a planar
circle, the domain of each curvatureline is S*. ‘

Suppose that the umbilic point set U of f is not empty. Take an umbilic point
q € OUs. Then there exists a sequence {p,} & M?\ Uy such that lim,_,copn = q.
For each p,, let o, be the curvatureline of Ay passing through p,. By Lemma 3.5,
6n = f o o, is a planar circle of a constant curvature c. Therefore, there exists a
subsequence {ny} such that &, = lims_,o0 6n, is also a planar circle of a constant
curvature c. Every point on the inverse image o, of &, through f is umbilic by
Lemma 3.5.

On the other hand, by Lemma 3.5, For each o, = 0,,(v), there exist v such
that Ai(on, (vk)) = (1 : ¢|. If we take the limit as k — oo, we have 04 = lim_, o, o, -
Therefore, by the continuity of the principal curvature map Ai, there exists a point
on o4 such that A; = [1: ¢] # [c: 1] = Ay, which is a contradiction. Thus we have
Uy = 0. O

Theorem 3.8. Let f : M? — H3 be a wave front one of whose principal curvature
is a constant c with |c| > 1. If f is weakly complete, f is orientable.

Proof. If f is totally umbilic, f is orientable. Thus we assume that f is not totally
umbilic. Then, by Theorem 3.7, f is represented as in (3.5). Take an orthonormal
frame ey, ey of y such that {y/(u),e;(u), ez(u)} is a positively oriented orthogonal
frame. Setting ey := e; x ey, we have

V(w) = pweo(w), () = VW, 7).

If f is not orientable, there exist real numbers ug, L such that y(u+ L) = «(u) holds
for each u € R and

ei1(up + L) x ea(ug + L) = —ey(uy) x ex(ug)
holds. Since eg(ug + L) = —ep(up), we have
7' (uo + L) = ¢(uo + L) eo(uo + L) = —p(uo) eo(uo) = —'(uo),
which contradicts to v/ (ug + L) = +'(uo). O

Theorem 3.7 and I'heorem 3.8 imply I'heorem 1.3.
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