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Abstract

In this note, we prove that weakly complete wave fronts with one principal
curvature a constant $c$ in the hyperbohc -space is either a totally umbilical
sphere or umbilic free, if $|c|>1$ . Moreover, we derive their orientability.

1 Introduction

By the Hartman-Nirenberg theorem, complete flat surfaces in the Euclidean -space
$R^{3}$ are cylinders over a complete planar regular curve (cf. [2]). This fact implies
that such surfaces are trivial. On the other hand, if we admit some singularities,
there exist many nontrivial examples of flat surfaces. Murata-Umehara investigated
global properties of flat surfaces with admissible singularities called flat fronts and
then proved the following (for precise definitions, see Section 2).

Fact 1.1 ([5]). $A$ complete flat front in the Euclidean 3-space whose singular point
set is non-empty has no umbilics, is orientable and $co$ -orientable. Moreover, if its
ends are embedded, there exist at least four singular points other than cuspidal edges.

This estimate is sharp (see FIGURE 1),

Figure 1: $A$ complete flat front in $R^{3}$ which has four singular points other than
cuspidal edges.

We here remark that a flat surface is considered to be a surface such that one
of the principal curvatures is identically zero. In the case of nonzero constant,
Shiohama and Takagi $[6|$ showed that a complete surface one of whose principal
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curvatures is a nonzero constant is either totally umbilical or umbilic-free. The
latter case, such a surface is a tube of a complete regular curve in $R^{3}$ (i.e., a channel
surface). In [4], the author investigated wave fronts such that one of the principal
curvatures is a nonzero constant (cf. Definition 3.1) and proved the foll\’Owing.

Fact 1.2 ([4]). $A$ weakly complete wave front in the Euclidean 3-space such that one
of the principal curvatures is a nonzero constant has no umbilics and is orientable.

Although wave fronts with one principal curvature a nonzero constant are co-
orientable by definition (cf. Remark3.2), there exists $co$ -orientable and non-orientable
ones (see FIGURE 2).

Figure 2: $A$ non-orientable wave front with one principal curvature a nonzero con-
stant in $R^{3}.$

In the case of non-flat space forms, Aledc Galvez [1] investigated (immersed)
surfaces with one principal curvature a constant $c$ in the hyperbolic 3-space $H^{3}$ . In
particular, they proved that a complete surface one of whose principal curvatures
is a constant $c$ is either totally umbilical or umbilic-free, if $|c|>1[1$ , Theorem
1.1]. Moreover, they showed that, if $|c|\leq 1$ , such a result does not hold. That is,
if $|c|\leq 1$ , they exhibited examples of non-totally-umbilical complete surfaces one
of whose principal curvatures is a constant $c$ whose umbilic point set is not empty
[1, Example 2.1, Example 2.2]. While their examples are given by the first and
second fundamental forms, Izumiya-Saji-Takahashi gave an explicit description of,

such examples in the case of $|c|=1$ [ $3$ , Example 5.7].
In this paper, we give a generalization of Aledo-G\’alvez’s Theorem [1, Theorem

1.1] as follows (cf. Theorem 3.7 and Theorem 3.8).

Theorem 1.3. $A$ weakly complete wave front in the hyperbolic 3-space such that
one of the principal curvatures is a constant $c$ satisfying $|c|>1$ has no umbilics and
is orientable.

This theorem is a direct conclusion of Theorem 3.7 and Theorem 3.8. In the case
of $|c|\leq 1$ , such a result does not hold (see [1, Example 2.1, Example 2.2]).

This paper is organized as follows. In Section 2, we review fundamental proper-
ties of wave fronts in $H^{3}$ . Then, in Section 3, we define wave fronts one of whose
principal curvatures is a constant and give a proof of Theorem 1.3.
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2 Preliminaries: wave fronts in $H^{3}$

In this section, we review fundamental properties of wave fronts in the hyperbolic
3-space $H^{3}$ . Here, we regard $H^{3}$ as

$H^{3}=\{x=(xu, x_{1}, x_{2}, x_{3})\in R_{1}^{4} ; \langle x, x\rangle=-1, x_{0}>0\},$

where $R_{1}^{4}$ is the Lorentz-Minkowski 4-space with the inner product

$\langle x, x\rangle=-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, x=(x_{0}, x_{1}, x_{2},x_{3})\in R_{1}^{4}.$

If we denote by $S_{1}^{3}$ the de Sitter 3-space $S_{1}^{3}=\{x\in R_{1}^{4};\langle x, x\rangle=1\}$ , the unit
tangent bundle $1{}_{1}H^{3}$ of $H^{3}$ is given by

$\prime 1{}_{1}H^{3}=\{(p, v)\in H^{3}\cross S_{1}^{3};\langle p, v\rangle=0\}.$

Let $M^{2}$ be a smooth 2-manifold and $f$ : $M^{2}arrow H^{3}$ be a smooth map. We call $f$

a frontal, if for any point $p\in M^{2}$ , there exists a neighborhood $U$ of $p$ and a smooth
map $\nu$ : $Uarrow S_{1}^{3}$ such that

$\langle df_{p}(v), \nu(p)\rangle=0$

holds for all $v\in l_{p}M^{2}$ . Then, $\nu$ is said to be the unit normal vector field of the
frontal $f$ . If $\nu$ is well-defined on $M^{2},$ $f$ is called $co$ -orientable. $\cdot$ Moreover, $f$ is
orientable if $M^{2}$ is orientable. $A$ point $p\in M^{2}$ is said to be a singular (resp. regular)
point if rank$(df)_{p}<2$ (resp. rank$(df)_{p}=2$). As in the introduction, we call the
frontal $f$ wave front, if the map

$L:=(f, \nu):Uarrow 1{}_{1}H^{3}$

is an immersion. The map $L$ is called the Legendrian lift of $f.$

Lemma 2.1 ([5, Lemma 1.1]). Let $M^{2}$ be a smooth 2-manifold and $f:M^{2}arrow H^{3}$

be a $co$-orientable wave front. If $p\in M$ is a singular point of $f$ , then there exist a
real number $\delta>0$ such that $p$ is a regular point of the pamllel front $f_{\delta}$ $:=(\cosh\delta)f+$

$(\sinh\delta)\nu.$

For a $c(\succ$orientable wave front $f$ : $M^{2}arrow H^{3}$ , take $p\in M^{2}$ arbitrary. By Lemma
2.1, there exist a neighborhood $U$ and a real number $\delta$ such that $f_{\delta}$ is immersion
on $U$ . Then, a point $p\in M^{2}$ is called umbilic of $f$ if $p$ is umbilic point of $f_{\delta}$ . By
definition, umbilic points are common in its parallel family.

Lemma 2.2. Let $M^{2}$ be a smooth 2-manifold, $f$ : $M^{2}arrow H^{3}$ be a $co$ -orientable
wave front and $p\in M^{2}$ be a singular point of $f.$ $\prime 1’hen,$ $p$ is umbilic if and only if
rank$(df)_{p}=0$ holds.

Lemma 2.2 is an analogue of [4, Lemma 2.2].

Lemma 2.3 ([5, Lemma 1.3]). Let $M^{2}$ be a smooth 2-manifold, $f$ : $M^{2}arrow H^{3}$ be a
$co$ -orientable wave front and $\nu$ be a unit normal vector field of $f$ . For a non-umbilic
point $p\in M^{2}$ , there exist a local coordinate system $(U;u, v)$ centered at $p$ such that
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$f_{u}$ and $\nu_{u}$ (resp. $f_{v}$ and $\nu_{v}$) are linearly independent on U. In particular, the pair
$\{f_{u}, \nu_{u}\}$ $(resp. \{f_{v}, \nu_{v}\})$ does not vanishes at the same time and

$\langle f_{u}, f_{v}\rangle=\langle f_{u}, \nu_{v}\rangle=\langle f_{v}, \nu_{u}\rangle=0$

holds.

Such a coordinate system is called principal curvature line.

Definition 2.4 (cf. [5, Definition 1.5]), Let $M^{2}$ be a smooth 2-manifold and $f$ :
$M^{2}arrow H^{3}$ be a co-orientable wave front. $A$ direction $v\in l_{p}M^{2}$ is called a principal
direction of $f$ if $df(v)$ and $d\nu(v)$ are linearly dependent. Moreover, for an open
interval $1\subseteqq R$ , a curve $\sigma(t)$ : $1arrow M^{2}$ is called a principal curvature line if $\sigma’(t)$

gives a principal direction for all $t\in l.$

On a principal curvature line coordinate neighborhood, every coordinate curve
gives a principal curvature line.

For $j=1,2$ , let $\Lambda_{j}$ : $M^{2}arrow P^{1}(R)$ be the principal curvature map of a wave
front $f$ (for a precise definition, see [5, Section 1]). In particular, if $(U;u, v)$ is a
principal curvature line coordinate system, $\Lambda_{j}|_{U}$ : $Uarrow P^{1}(R)(j=1,2)$ coincide
with the smooth maps

$\Lambda_{1}=[-\nu_{u}:f_{u}], \Lambda_{2}=[-\nu_{v}:f_{v}],$

respectively. Here, where $[-\nu_{u}:f_{u}]$ and $[-\nu_{v} : f_{v}]$ mean the proportional ratio of
$\{-\nu_{u}, f_{u}\}$ and $\{-\nu_{v}, f_{v}\}$ respectively as elements of the real projective line $P^{1}(R)$ .
Proposition 2.5 ([5, Lemma 1.7]). Let $f:M^{2}arrow H^{3}$ be a $co$-orientable wave front
and $\Lambda_{1},$ $\Lambda_{2}$ be the principal curvature maps of $f$ . Then, a point $p\in M^{2}$ is umbilic
if and only if $\Lambda_{1}(p)=\Lambda_{2}(p)$ holds. On the other hand, $p\in M^{2}$ is a singular point
if and only if either $\Lambda_{1}(p)=[1;0]$ or $\Lambda_{2}(p)=[1:0]$ holds.

At the end of this section, we recall the weakly completeness of wave fronts as
follows. Let $f$ : $M^{2}arrow H^{3}$ be a wave front and $\nu$ be $a$ (locally defined) unit normal
vector field of $f$ . Then the symmetric covariant 2-tensor

$ds_{\#}^{2};=\langle df, df\rangle+\langle d\nu, d\nu\rangle$

gives a Riemannian metric on $M^{2}$ which is called a lift metric of $f$ . The lift metric
is a pull-back metric of the Sasakian metric of the unit tangent bundle $1{}_{1}H^{3}$ of $H^{3}$

through the Legendrian lift $L=(f, \nu)$ of $f$ . The lift metric $ds_{\neq}^{2}$ is independent of a
choice of $\nu.$

Definition 2.6. $A$ wave front is called weakly complete if its lift metric gives a complete
Riemannian metric.

3 Wave fronts one of whose principal curvatures is a
nonzero constant

In this section, we give a definition of wave fronts one of whose principal curvatures
is a nonzero constant. Then, we give a proof of Theorem 1.3 by showing Theorem
3.7 and Theorem 3.8.
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3.1 Definitions
Let $M^{2}$ be a smooth 2-manifold. Consider a co-orientable front $f$ : $M^{2}arrow H^{3}$ such
that for some real numbers $a,$ $b\in R(a^{2}+b^{2}\neq 0),$ $f$ satisfies

(3.1) rank$(a(d\nu)_{p}+b(df)_{p})<2$

for any $p\in M^{2}$ , where $\nu$ : $M^{2}arrow S_{1}^{3}$ is the unit normal vector field of $f$ . If
$a\neq 0,$ $b=0$ , then $f$ is called an extrinsically flat front, and if $a=0,$ $b\neq 0$ , then all
the points of $M^{2}$ are singular.

From now on, we consider the case $a\neq 0,$ $b\neq 0$ . Setting $c=b/a,$ $(3.1)$ turns
out to be

(3.2) rank$((d\nu)_{p}+c(df)_{p})<2$

for any $p\in M^{2}.$

Definition 3.1. Let $c$ be a real number, $f:M^{2}arrow H^{3}$ be a co-orientable front and
$\nu$ : $M^{2}arrow S_{1}^{3}$ be the unit normal vector field of $f$ . Then, $f$ is called one of whose
principal curvatures is a constant $c$ if $f$ satisfies (3.2).

Remark 3.2 (Non-co-orientable case). Consider a non-co-orientable wave front sat-
isfying (3.2). Changing $\nu to-\nu$ , we have that such a wave front satisfis both of

(3.3) rank$((d\nu)_{p}+c(df)_{p})<2$ and rank$((d\nu)_{p}-c(df)_{p})<2,$

for any $p\in M^{2}.$ $(3.3)$ implies that such a wave front must be isoparametric (i.e., both
of the principal curvatures are constant), and hence has no singular points. Since
isoparametric surfaces must be orientable, a wave front satisfying (3.3) must be c$O$-

orientable. This is a contradiction. Therefore, we have that wave fronts satisfying
(3.2) must be $co$-orientable.

3.2 Proof of Theorem 1.3

From now on, we denote by $u_{f}$ the umbilic point set of a wave front $f$ : $M^{2}arrow H^{3}.$

Lemma 3.3 and Lemma 3.4 can be proved in the similar way as [4, Lemma 3.5] and
[4, Lemma 3.6], respectively.

Lemma 3.3. Let $f$ : $M^{2}arrow H^{3}$ be a wave front one of whose principal curvatures
is a constant $c$ . If $p\in M^{2}$ is a umbilic point of $f$ , the $f$ is regular at $p.$

Lemma 3.4. Let $f$ : $M^{2}arrow H^{3}$ be a wave front one of whose principal curvature
is a constant $c$ and $q\in M^{2}\backslash \mathcal{U}_{f}$ be a non-umbilic point of $f$ . Then there exists a
curvatureline coordinate system $(U;u, v)$ around $q$ such that

$\bullet$ $u$ -curves are curvature line of $\Lambda_{1:}v$ -curves are curvature line of $\Lambda_{2}\equiv[c:1],$

$\bullet|f_{v}|\equiv 1.$

$\bullet v_{u}+cf_{u}\neq 0,$ $\nu_{v}+cf_{v}=0,$ $f_{vv}=f+c\nu$

hold on $U$ , where $0=(0,0,0,0)$ .
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A regular curve in $H^{3}$ is called a planar circle, if its curvature function is a
constant greater than 1 and its torsion function is identically zero. For a planar
circle $\hat{\sigma}=\hat{\sigma}(t)$ , there exist a point $p\in H^{3}$ such that dist $H^{3}(p,\hat{\sigma}(t))$ is a constant
for all $t$ , where dist $H^{3}$

$(., \cdot)$ is the distance function of $H^{3}$ . We call $p$ the center of $\hat{\sigma}.$

Lemma 3.5 and Lemma 3.6 can be proved in the similar way as [4, Lemma 3.7] and
[4, Lemma 3.8], respectively.

Lemma 3.5. Let $f$ : $M^{2}arrow H^{3}$ be a wave front one of whose principal curvature
is a constant $c$ and $\sigma(t)$ : $R\supseteqq Iarrow M^{2}$ be a principal curvatureline of $\Lambda_{2}\equiv c$

parametrized by arc-length passing through a non-umbilic point $q\in M^{2}\backslash \mathcal{U}_{f}$ . If
$|c|>1,\hat{\sigma}(t);=fo\sigma(t)$ is a planar circle in $H^{3}$ whose curvature is $c$ and there exist
real constants $a,$ $b\in R$ such that $\Lambda_{1}$ is given by

(3.4) $\Lambda_{1}(\sigma(t))=[1+c(c^{2}-1)(a\cos(\sqrt{c^{2}-1}t)+b\sin(\sqrt{c^{2}-1}t))$ :

$c+(c^{2}-1)(a\cos(\sqrt{c^{2}-1}t)+b\sin(\sqrt{c^{2}-1}t))]$

on $\sigma(t)$ . Furthermore, $\sigma(1)$ and $\mathcal{U}_{f}$ has no intersection.

Lemma 3.6. Let $f$ : $M^{2}arrow H^{3}$ be a wave front one of whose principal curvature
is a constant $c$ with $|c|>1$ and $(U;u, v)$ be a curvatureline coordinate system as in
Lemma 3.4 around a non-umbilic point $q\in M^{2}\backslash \mathcal{U}_{f}$ . Then, the map $C:Uarrow H^{3}$

defined by

$C(u, v)= \frac{1}{\sqrt{c^{2}-1}}(cf(u, v)+\nu(u, v))$

is independent of $v$ and is a regular curve $C=\gamma(u)$ in $H^{3}$ . Moreover, if we set
$\sigma_{u0,v0}(t)$ : $R\supseteqq/arrow M^{2}$ as the curvatureline- of $\Lambda_{2}$ such that $\sigma_{u0,v0}(0)=(u_{0}, v_{0})\in U,$

the center of the planar circle $\hat{\sigma}_{u_{0},v_{0}}$ $:=fo\sigma_{u_{0},v_{0}}$ is $\gamma(uo)$ and the image of $\hat{\sigma}_{u_{0},v_{0}}$ is
included in the normal plane $\gamma’(u_{0})^{\perp}.$

Theorem 3.7. Let $c$ be a constant satisfying $|c|>1$ and $f$ : $M^{2}arrow H^{3}$ be a wave
front one of whose principal curvature is $c$ . If $f$ is weakly complete, $f$ is totally
umbilic or umbilic-free. In the latter case, $f$ is described as
(3.5)

$f(u, v)= \frac{1}{\sqrt{c^{2}-1}}(-c\gamma(u)+\cos(\sqrt{c^{2}-1}t)e_{1}(u)+\sin(\sqrt{c^{2}-1}t)e_{2}(u))$ ,

where $(u, v)\in R\cross S^{1},$ $S^{1}=R/2\pi Z,$ $\gamma(u)$ is a complete regular curve in $H^{3}$ and
$\{e_{1}, e_{2}\}$ is $a$ orthonormal frame of the normal bundle of $\gamma.$

Proof. Assume that $f$ is not totally umbilic. First of all, we shall prove that the
curvatureline of $\Lambda_{2}\equiv c$ passing through the non-umbilic point $p\in M^{2}\backslash \mathcal{U}_{f}$ is defined
on $S^{1}$ . Let $(U;u, v)$ be a curvatureline coordinate system around $p$ as in Lemma
3.4. Then each curvatureline of $\Lambda_{2}$ is given by the $v$-curves on $U$ . The lift metric
$ds_{\#}^{2}$ of $f$ is given by

$ds_{\#}^{2}=\langle df, df\rangle+\langle dv, d\nu\rangle=(\langle f_{u}, f_{u}\rangle+\langle\nu_{u}, \nu_{u}\rangle)du^{2}+(1+c^{2})dv^{2}$
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on $U$ . In particular, each $v$-curve is a geodesic of $ds_{\neq}^{2}$ , and hence it is defined on $R$

since $f$ is weakly complete. Since the image of each curvatureline of $\Lambda_{2}$ is a planar
circle, the domain of each curvatureline is $S^{1}.$

Suppose that the umbilic point set $u_{f}$ of $f$ is not empty. Take an umbilic point
$q\in\partial \mathcal{U}_{f}$ . Then there exists a sequence $\{p_{n}\}\subseteqq M^{2}\backslash \mathcal{U}_{f}$ such that $\lim_{narrow\infty}p_{n}=q.$

For each $p_{n}$ , let $\sigma_{n}$ be the curvatureline of $\Lambda_{2}$ passing through $p_{n}$ . By Lemma 3.5,
$\hat{\sigma}_{n};=fo\sigma_{n}$ is a planar circle of a constant curvature $c$ . Therefore, there exists a
subsequence $\{n_{k}\}$ such that $\hat{\sigma}_{q}=\lim_{karrow\infty}\hat{\sigma}_{n_{k}}$ is also a planar circle of a constant
curvature $c$ . Every point on the inverse image $\sigma_{q}$ of $\hat{\sigma}_{q}$ through $f$ is umbilic by
Lemma 3.5.

On the other hand, by Lemma 3.5, For each $\sigma_{n}k=\sigma_{n}k(v)$ , there exist $v_{k}$ such
that $\Lambda_{1}(\sigma_{n_{k}}(v_{k}))=[1 : c]$ . If we take the limit ae $karrow\infty$ , we have $\sigma_{q}=\lim_{karrow\infty}\sigma_{n_{k}}.$

Therefore, by the continuity of the principal curvature map $\Lambda_{1}$ , there exists a point
on $\sigma_{q}$ such that $\Lambda_{1}=[1:c]\neq[c;1]=\Lambda_{2}$ , which is a contradiction. Thus we have
$\mathcal{U}_{f}=\emptyset.$ $\square$

Theorem 3.8. Let $f$ : $M^{2}arrow H^{3}$ be a wave front one of whose principal curvature
is a constant $c$ with $|c|>1$ . If $f$ is weakly complete, $f$ is orientable.

Proof. If $f$ is totally umbilic, $f$ is orientable. Thus we assume that $f$ is not totally
umbilic. Then, by Theorem 3.7, $f$ is represented as in (3.5). Take an orthonormal
frame $e_{1},$ $e_{2}$ of $\gamma$ such that $\{\gamma’(u), e_{1}(u), e_{2}(u)\}$ is a positively oriented orthogonal
frame. Setting $e_{0};=e_{1}\cross e_{2}$ , we have

$\gamma’(u)=\varphi(u)e_{0}(u) , (\varphi(u)=\sqrt{\langle\gamma’(u),\gamma’(u)\rangle})$ .

If $f$ is not orientable, there exist real numbers $u_{0},$ $L$ such that $\gamma(u+L)=\gamma(u)$ holds
for each $u\in R$ and

$e_{1}(u_{0}+L)\cross e_{2}(u_{0}+L)=-e_{1}(u_{0})\cross e_{2}(u_{0})$

holds. Since $e0(u0+L)=-e_{0}(uo)$ , we have

$\gamma’(u_{0}+L)=\varphi(u_{0}+L)e_{0}(u_{0}+L)=-\varphi(u_{0})e_{0}(u_{0})=-\gamma’(u_{0})$ ,

which contradicts to $\gamma’(u_{0}+L)=\gamma’(u_{0})$ . $\square$

Theorem 3.7 and Theorem 3.8 imply Theorem 1.3.
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