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(1,1)-BRIDGE SPLITTINGS WITH DISTANCE EXECTLY n

AYAKO IDO, YEONHEE JANG AND TSUYOSHI KOBAYASHI

1. INTRODUCTION

Hempel [4] introduced the concept of distance of a Heegaard splitting by using curve
complex, and showed that there exist arbitrarily high distance Heegaard splittings for
closed 3-manifolds by using a construction of Kobayashi [8]. Abrams and Schleimer [1]
gave a sharper estimation for the distance of the Heegaard splitting given in [4] by using the
result of Masur and Minsky [9], and Evans [3] gave a combinatorial method to construct
Heegaard splittings of high distance.

On the other hand, the above concept and results have been extended to bridge split-
tings for links in closed 3-manifolds (for definitions, see subsection 2.3), and have been
studied by several authors. For example, Saito [11] showed that for any closed 3-manifold
admitting a Heegaard splitting of genus one, there is a knot in the manifold with a (1, 1)-
bridge splitting of arbitrary high distance. Recently, Blair, Tomova and Yoshizawa [2]
showed that for given integers b, ¢, g, and n, there exists a manifold M containing a
c-component link L so that (M, L) admits a (g, b)-bridge splitting of distance at least n.
Moreover, Ichihara and Saito [7] showed that for any given closed orientable 3-manifold
M with a Heegaard surface of genus g, and for any positive integers b and n, there exists
a knot K in M which admits a (g, b)-bridge splitting of distance greater than n.

In [6], we showed that there exists a Heegaard splitting of a closed orientable 3-manifold
with distance exactly n for each positive integer n. To prove this, we gave a method to
extend a geodesic in the curve complex of a closed orientable surface to a geodesic with
given length, and constructed a concrete example (for details, see [6, Section 4]).

In this paper, we apply the idea of [6, Section 4] to construct a geodesic of any given
length in the curve complex of a twice-punctured torus, and show the following.

Theorem 1.1. For any integer n > 0, there exists a (1,1)-bridge splitting with distance
ezxactly n.

2. DEFINITIONS AND NOTATIONS

2.1. Curve complexes. Let S be an orientable surface with genus g, b boundary com-
ponents and p punctures. A simple closed curve in S is essential if it does not bound
a disk or a once-punctured disk in S and is not parallel to a component of 3S. An arc
properly embedded in S is essential if it does not co-bound a disk in S together with an
arc on 9S. We say that S is sporadicif g=0,b+p<4org=1b+p< 1.

Except in sporadic cases, the curve complex C(S) is defined as follows: each vertex of
C(S) is the isotopy class of an essential simple closed curve on S, and a collection of k + 1
vertices forms a k-simplex of C(S) if they can be realized by disjoint curves in S. In
sporadic cases, we need to modify the definition of the curve complex slightly, as follows.
We assume that S is a torus, a torus with one boundary component, or a sphere with
4 boundary components since, otherwise, there are no essential simple closed curves in



S. When § is a torus or a torus with one boundary component (resp. a sphere with 4
boundary components), a collection of k + 1 vertices forms a k-simplex of C(S) if they
can be realized by curves in § which mutually intersect exactly once (resp. twice). The
arc-and-curve complex AC(S) is defined similarly, as follows: each vertex of AC(S) is the
isotopy class of an essential properly embedded arc or an essential simple closed curve on
S, and a collection of k + 1 vertices forms a k-simplex of AC(S) if they can be realized
by disjoint arcs or simple closed curves in S. :

We can define the distance between two vertices in the curve complex C(S) to be the
minimal number of 1-simplexes of a simplicial path in C(S) joining the two vertices. We
denote by de(sy(z,y), or ds(x,y) in brief, the distance in C(S) between the vertices z and
y. For subsets X and Y of the vertices of C(S), we define diamg(X,Y) = diamgs(X UY).
Similarly, we can define the distance dac(sy(z,y) and diam 4cs)(X,Y). We denote by
[av, @1, ..., an] the path in C(S) with vertices ay, a1, ..., a, such that a; Na;; =0 (@ =
0,1,...,n—1). We call a path [ao, a1, . . .,an] a geodesic if n = dy(ag, an).

2.2. Subsurface projections. Let P(Y') denote the power set of a set Y. Suppose that
X is an essential subsurface of S that contains an essential simple closed curve. We call the
composition my o 74 of maps 74 : C°(S) — P(AC’(X)) and 7y : P(AC(X)) — P(CO(X))
a subsurface projection if they satisfy the following (see Figure 1): for a vertex «, take
a representative « so that |o N X| is minimal, where | - | is the number of connected
components. Then

o m4(a) is the set of all isotopy classes of the components of & N X,

o mo({a1,...,,}) is the union for all ¢ = 1,...,n of the set of all isotopy classes of
the components of ON(o; UHX) which are essential in X, where N(a; UdX) is a
regular neighborhood of «; UdX in X.

FIGURE 1

2.3. (g,b)-bridge splittings. Let H be a genus-g(> 0) handlebody. We say that a set
of n arcs {ti,...,t,} properly embedded in H is a set of trivial n arcs if t; U ---Ut,, is
parallel to 0H. Let H be a handlebody and 7 = {t;,...,t,} a set of trivial n arcs in H.
Then 7 can be isotoped in H so that the projection from 6H x [0,1) to [0, 1) has exactly
one critical point in each ;.

It is well known that every closed orientable 3-manifold M has a genus-g Heegaard
splitting for some g(> 0), i.e., M = V; Up Vi, where V; and V; are genus-¢ handlebodies
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such that M = ViUV, and ViNV, =0V, =0V, = P. Let L be a link in M. We say
that (Vi,71) Up (Vo, 72) is a (g, b)-bridge splitting (or (g, b)-splitting for short) for the pair
(M, L) if P separates (M, L) into two components (Vi, ;) and (V,, 73) where 7y = LNV
(resp. 7o = LNV,) is a set of trivial b arcs in A (resp. B ). Then we say that P is a
(g,b)-bridge surface (or a bridge surface for short). It is known that each (M, L) has a
(g, b)-bridge splitting for some g and b. (For a detailed discussion, see [5, Lemma 2.1]).

For i = 1 or 2, D(V;) denotes the subset of C°(8V; — 7;) consisting of the vertices with
representatives boundlng disks in V; —7;. Then the (Hempel) distance of (Vi,7)Up(Va, 1)
is defined by dp/(D(V1), D(V2)), where P' =0V, — 11 = 0Va — 7.

3. EXTENDING GEODESICS

Let F' be a twice-punctured torus. The following two propositions can be shown by
using arguments in the proof of [6, Propositions 4.1 and 4.4].

Proposition 3.1 (cf. [6, Proposition 4.1)). For an integer n(> 4), let [y, a1, ..., ay] be
a path in C(F') satisfying the following. '
(H1) [ag, ..., an—] and [@n_2, n-1, ] are geodesics in C(F),
(H2) diamy, ,(7x,_;(n—_1), Tx,_;(@,)) > 4n, where X,,_ is the component of CI(F \
N(an—2)) that contains an essential simple closed curve.
Then [ap, a1, . .., ax] is a geodesic in C(F).

Proposition 3.2 (cf. [6, Proposition 4.4]). For an integer n(> 3), let [a, oy, ..., ] be
a path in C(F') satisfying the following.
(H1) [ao, ..., 0n-2] and [@n_2, @n_1, x| are geodesics in C(F),
(H2’) diamx,_,(7x, (), Tx,_,(0tn)) > 2n, where X,_o is the component of CI(F \
N(w,_2)) that contains an essential simple closed curve.
Then (oo, a1, . .., ] is a geodesic in C(F).

By using Propositions 3.1 and 3.2, we construct a geodesic [ag, a1, ..., &, in C(F), i.e.,
dr(wg, o) = n, for a positive integer .

3.1. A construction of a concrete example: the case when n is even. We first
assume that n is even. Let «ay, a be essential non-separating simple closed curves on F
which intersect transversely in one point, and let a; be an essential simple closed curve
on S which is disjoint from ap U ap. Let Xy = CI(F \ N(ay)). Note that [ag, a1, as)
is a geodesic of length two in C(F'). Choose a homeomorphism f; : F' — F such that
f2(N(a)) = N(oy) and that diamx, (7x, (o), 7x,(f2(@w))) > 4n. This is possible by [9,
Proposition 4.6]. Let as = fo(ay) and a4 = fo(ap). Note that [, as, o) is a geodesic of
length two in C(F') and « intersects a4 transversely in one point.

FIGURE 2



We repeat this process to construct a path [ag, ay, . . ., a,] inductively as follows. Sup-
pose that we have constructed a path |ag, a1, ..., a;] with |o;_s N a;| = 1 for each even
i(< n). Then let X; = CI(F \ N(w;)). Choose a homeomorphism f; : F — F such that

(1) diamyx, (7x, (i—2), mx,(fi(ci-2))) > 4n.
Then we let ;11 = fi(i1) and w40 = fi(au_2). Note that [, i1, i) is a geodesic
of length two in C(F), and we have obtained a path [ay, a1, ..., a;ys] With |o; Nagyol = 1.

Claim 3.3. For each k € {2,4,...,n}, the path [, 1, ..., constructed above is a
geodesic in C(F'). ,

Proof. We prove the claim by mathematical induction on k. It is clear that [«, e, ay) is
a geodesic in C(F). Hence, Claim 3.1 holds for k = 2. Assume that [ay, o, ..., ) is a
geodesic in C(F') for some k € {2,4,...,n—2}. We note that o, axr1, 0k40] is a geodesic
in C(F). Furthermore, by the inequality (1), we have diamx, (7x, (ox_2), Tx, (k+2)) >
4n > 4k. Hence, by Proposition 3.1, the path [wg,«y,. .., k9] is a geodesic in C(F),
which shows that Claim 3.3 holds for & + 2. This completes the proof of Claim 3.3. [

3.2. A construction of a concrete example: the case when 7 is odd. Suppose
that n is odd. Let ay, oy be essential non-separating simple closed curves on F' which are
mutually disjoint. Let  be an essential simple closed curve which intersects ay and as
transversely in one point, respectively. Choose an essential simple closed curve y; on F
that is disjoint from «; and . Let X; = CI(F \ N(az)). By [10, Proposition 4.6], there
exists homeomorphism f, : F' — F such that fy(N (o)) = N(o) and that

(2) diamx, (mx,(as), 7x, (f2(x))) > 2n.

Let ap = fo(x) and oy = fo(y1). Note that agNeaey =0, ay Ny = B and « intersects
w, transversely in one point, which implies that [y, a1, ] is a geodesic in C (F). On
the other hand, choose an essential simple closed curve y, on F that is disjoint from a3
and z. Let X3 = CI(F'\ N(ag)). By [10, Proposition 4.6], there exists a homeomorphism
f3 : F'— F such that f3(N{a3)) = N(«ws) and that

(3) diame(WXs(a0)7 WXs(f?»(‘L))) > 2n.

Let ay = fs(y2) and a5 = f3(x). Note that as Ny = 0, cy Ny = @ and a3 intersects as
transversely in one point, which implies that [a3, cu, a5] is a geodesic in C(F).

FIGURE 3

Claim 3.4. The path [, vy, . .., 5] constructed above is a geodesic in C(F).
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Proof. By Proposition 3.2 together with the inequality (2), the path [ag, a1, s, 03] is a
geodesic. By Proposition 3.2 again together with the inequality (3), we see that the path
[ag, @1, . . ., ] is also a geodesic in C(F). _ O

We extend the above geodesic [, a1, g, a3, a4, a5 as follows. Suppose that we have
constructed a path [ag, @y, ..., ;] for an odd integer ¢ with 5 < i < n. Let X; = CI(F'\
N(;)). Then there exists a homeomorphism f; : F — F such that fi(N(a)) = N(o)
and that diamy, (mx,(@i—2), 7x,(fi(@i—2))) > 4n. Let a;q = fi(ai—1) and a2 = fi(au-2).
Note that [, i1, @iy2] is a geodesic in C(F') and that «; intersects «o transversely
in one point. By Proposition 3.1, the path [ai, ay, ..., 2] is a geodesic in C(F). We
repeat this process until we obtain a geodesic [a1, ag, . .., @y of length n. Note that a,,—2
intersects a,, transversely in one point.

4. PROOF OF THEOREM 1.1

Basically we mimic the proof of [6, Theorem 1.1]. For i = 1,2, let V; be a solid torus
and ¢t; a trivial arc properly embedded in V;. The following assertion is proved by Saito
[11, Proposition 3.8].

Assertion 4.1. Let D; be an essential disk in V; — t; as in Figure 4. Then any non-
separating essential disk in V; — t; is isotopic to D; and any separating essential disk in
Vi — t; can be isotoped to be disjoint from D;.

Di >

FIGURE 4

Let P = OV;. Then starting with a geodesic (= 0D;), a4, @] in C(P — t;) with
lay N ay| = 1, we construct a geodesic [ay, @1, ..., Qny2] With | N nya| = 1 as in
Subsections 3.1 and 3.2. We glue 8V; and 9V, by a homeomorphism h : 8V; — 0V; such
that h(0t;) = Ot and h(an,2) = dD;. Then the argument in the proof of [6, Theorem
1.1], together with Assertion 4.1, enables us to show that the distance of the (1,1)-bridge
splitting (V1,t1) Up (Vo, t2) is exactly n. ‘
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