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1. INTRODUCTION

Hempel [4] introduced the concept of distance of a Heegaard splitting by using curve
complex, and showed that there exist arbitrarily high distance Heegaard splittings for
closed 3-manifolds by using a construction of Kobayashi [8]. Abrams and Schleimer [1]
gave a sharper estimation for the distance of the Heegaard splitting given in [4] by using the
result of Masur and Minsky [9], and Evans [3] gave a combinatorial method to construct
Heegaard splittings of high distance.

On the other hand, the above concept and results have been extended to bridge split-
tings for links in closed 3-manifolds (for definitions, see subsection 2.3), and have been
studied by several authors. For example, Saito [11] showed that for any closed 3-manifold
admitting a Heegaard splitting of genus one, there is a knot in the manifold with $a(1,1)-$
bridge splitting of arbitrary high distance. Recently, Blair, Tomova and Yoshizawa [2]
showed that for given integers $b,$ $c,$ $g$ , and $n$ , there exists a manifold $M$ containing a
$c$-component link $L$ so that $(M, L)$ admits $a(g, b)$-bridge splitting of distance at least $n.$

Moreover, Ichihara and Saito [7] showed that for any given closed orientable 3-manifold
$M$ with a Heegaard surface of genus $g$ , and for any positive integers $b$ and $n$ , there exists
a knot $K$ in $M$ which admits $a(g, b)$ -bridge splitting of distance greater than $n.$

In [6], we showed that there exists a Heegaard splitting of a closed orientable 3-manifold
with distance exactly $n$ for each positive integer $n$ . To prove this, we gave a method to
extend a geodesic in the curve complex of a closed orientable surface to a geodesic with
given length, and $co$nstructed a concrete example (for details, see [6, Section 4]).

In this paper, we apply the idea of [6, Section 4] to construct a geodesic of any given
length in $\mathfrak{h}he$ curve complex of a twice-punctured torus, and show the following.

Theorem 1.1. For any integer $n>0$ , there eansts $a(1,1)$ -bridge splitting with distance
exactly $n.$

2. DEFINITIONS AND NOTATIONS

2.1. Curve complexes. Let $S$ be an orientable surface with genus $g,$
$b$ boundary com-

ponents and $p$ punctures. $A$ simple closed curve in $S$ is essential if it does not bound
a disk or a once-punctured disk in $S$ and is not parallel to a component of $\partial S$ . An arc
properly embedded in $S$ is essential if it does not co-bound a disk in $S$ together with an
arc on $\partial S$ . We say that $S$ is sporadic if $g=0,$ $b+p\leq 4$ or $g=1,$ $b+p\leq 1.$

Except in sporadic cases, the curve complex $C(S)$ is defined as follows: each vertex of
$C(S)$ is the isotopy class of an essential simple closed curve on $S$ , and a collection of $k+1$

vertices forms a $k$-simplex of $C(S)$ if they can be realized by disjoint curves in $S$ . In
sporadic cases, we need to modify the definition of the curve complex slightly, as follows.
We assume that $S$ is a torus, a torus with one boundary component, or a sphere with
4 boundary components since, otherwise, there are no essential simple closed curves in
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$S$ . When $S$ is a torus or a torus with one boundary component (resp. a sphere with 4
boundary components), a collection of $k+1$ vertices forms a $k$-simplex of $C(S)$ if they
can be realized by curves in $S$ which mutually intersect exactly once (resp. twice). The
arc-and-curve complex $\mathcal{A}C(S)$ is defined similarly, as follows: each vertex of $\mathcal{A}C(S)$ is the
isotopy class of an essential properly embedded arc or an essential simple closed curve on
$S$ , and a collection of $k+1$ vertices forms a $k$-simplex of $\mathcal{A}C(S)$ if they can be realized
by disjoint arcs or simple closed curves in $S.$

We can define the distance between two vertices in the curve complex $C(S)$ to be the
minimal number of 1-simplexes of a simplicial path in $C(S)$ joining the two vertices. We
denote by $d_{C(S)}(x, y)$ , or $d_{S}(x, y)$ in brief, the distance in $C(S)$ between the vertices $x$ and
$y$ . For subsets $X$ and $Y$ of the vertices of $C(S)$ , we define diam$s(X, Y)=$ diam$s(X\cup Y)$ .
Similarly, we can define the distance $d_{\mathcal{A}C(S)}(x, y)$ and $diam_{\mathcal{A}C(S)}(X, Y)$ . We denote by
$[a_{0}, a_{1}, \ldots, a_{n}]$ the path in $C(S)$ with vertices $a_{0},$ $a_{1},$

$\ldots,$
$a_{n}$ such that $a_{i}\cap a_{i+1}=\emptyset(i=$

$0,1,$
$\ldots,$ $n-1)$ . We call a path $[a_{0}, a_{1}, \ldots, a_{n}]$ a geodesic if $n=d_{s}(a_{0}, a_{n})$ .

2.2. Subsurface projections. Let $\mathcal{P}(Y)$ denote the power set of a set $Y$ . Suppose that
$X$ is an essential subsurface of $S$ that contains an essential simple closed curve. We call the
composition $\pi_{0}\circ\pi_{A}$ of maps $\pi_{A}$ : $C^{0}(S)arrow \mathcal{P}(\mathcal{A}C^{0}(X))$ and $\pi_{0}$ : $\mathcal{P}(\mathcal{A}C^{0}(X))arrow \mathcal{P}(C^{0}(X))$

a subsurface projection if they satisfy the following (see Figure 1): for a vertex $\alpha$ , take
a representative $\alpha$ so that $|\alpha\cap X|$ is minimal, where $|$ $|$ is the number of connected
components. Then. $\pi_{A}(\alpha)$ is the set of all isotopy classes of the components of $\alpha\cap X,$

$\bullet$ $\pi_{0}(\{\alpha_{1}, \ldots, \alpha_{n}\})$ is the union for all $i=1,$ $\ldots n\rangle$ of the set of all isotopy classes of
the components of $\partial N(\alpha_{i}\cup\partial X)$ which are essential in $X$ , where $N(\alpha_{i}\cup\partial X)$ is a
regular neighborhood of $\alpha_{i}\cup\partial X$ in $X.$

FIGURE 1

2.3. $(g, b)$-bridge splittings. Let $H$ be a genus-g $(\geq 0)$ handlebody. We say that a set
of $n$ arcs $\{t_{1}, \ldots, t_{n}\}$ properly embedded in $H$ is a set of trivial $\eta$ arc.s if $t_{1}\cup\cdots\cup t_{n}$ is
parallel to $\partial H$ . Let $H$ be a handlebody and $\tau=\{t_{1}, \ldots, t_{n}\}$ a set of trivial $n$ arcs in $H.$

Then $\tau$ can be isotoped in $H$ so that the projection from $\partial H\cross[O, 1)$ to $[0,1)$ has exactly
one critical point in each $t_{i}.$

It is well known that every closed orientable 3-manifold $M$ has a genus-g Heegaard
splitting for some $g(\geq 0)$ , i.e., $M=V_{1} \bigcup_{P}V_{2}$ , where $V_{1}$ and $V_{2}$ are genus-g handlebodies
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such that $M=V_{1}\cup V_{2}$ and $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}=P$ . Let $L$ be a link in $M$ . We say
that $(V_{1}, \tau_{1})\bigcup_{P}(V_{2}, \tau_{2})$ is $a(g, b)$ -bridge splitting $(or (g, b)$ -splitting for short) for the pair
$(M, L)$ if $P$ separates $(M, L)$ into two components $(V_{1}, \tau_{1})$ and $(V_{2}, \tau_{2})$ where $\tau_{1}=L\cap V_{1}$

$($ resp. $\tau_{2}=L\cap V_{2})$ is a set of trivial $b$ arcs in $A$ (resp. $B$ ). Then we say that $P$ is a
$(g, b)$ -bridge surface (or a bndge surface for short). It is known that each $(M, L)$ has a
$(g, b)$-bridge splitting for some $g$ and $b$ . (For a detailed discussion, see [5, Lemma 2.1]).

For $i=1$ or 2, $\mathcal{D}(V_{i})$ denotes the subset of $C^{0}(\partial V_{i}-\tau_{i})$ consisting of the vertices with
representatives bounding disks in $V_{i}-\tau_{i}$ . Then the (Hempel) distance of $(V_{1}, \tau_{1})\bigcup_{P}(V_{2}, \tau_{2})$

is defined by $d_{P’}(\mathcal{D}(V_{1}), \mathcal{D}(V_{2}))$ , where $P’=\partial V_{1}-\tau_{1}=\partial V_{2}-\tau_{2}.$

3. EXTENDING GEODESICS

Let $F$ be a twice-punctured torus. The following two propositions can be shown by
using arguments in the proof of [6, Propositions 4.1 and 4.4].

Proposition 3.1 (cf. [6, Proposition 4.1]). For an integer $r\iota(\geq 4)$ , let $[\alpha_{U}, \alpha_{1}, \ldots, \alpha_{n}]$ be
a path in $C(F)$ satisfying the following.

(Hl) $[\alpha_{0}, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_{n}]$ are geodesics in $C(F)$ ,
(H2) $diam_{X_{n-2}}(\pi_{X_{n-2}}(\alpha_{n-4}), \pi_{X_{n-2}}(\alpha_{n}))\geq 4n$ , where $X_{n-2}w$ the component of Cl $(F\backslash$

$N(\alpha_{n-2}))$ that contains an essential simple closed curve.
Then $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}]$ is a geodesic in $C(F)$ .
Proposition 3.2 (cf. [6, Proposition 4.4]). For an integer $n(\geq 3)$ , let $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}]$ be
a path in $C(F)$ satisfying the following.

(Hl) $[\alpha_{0}, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_{n}]$ are geodesics in $C(F)$ ,
(H2’) $diam_{X_{n-2}}(\pi_{X_{n-2}}(\alpha_{0}), \pi_{X_{n-2}}(\alpha_{n}))>2n$ , wheoe $X_{n-2}$ is the component of Cl $(F\backslash$

$N(\alpha_{n-2}))$ that contains an essential simple closed curve.
Then $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}]$ is a geodesic in $C(F)$ .

By using Propositions 3.1 and 3.2, we construct a geodesic $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}]$ in $C(F)$ , i.e.,
$d_{F}(\alpha_{0}, \alpha_{n})=\prime r\iota$ , for a positive integer $n.$

3.1. $A$ construction of a concrete example: the case when $n$ is even. We first
assume that $\prime n$ is even. Let $\alpha_{U},$ $\alpha_{2}$ be essential non-separating simple closed curves on $F$

which intersect transversely in one point, and let $\alpha_{1}$ be an essential simple closed curve
on $S$ which is disjoint from $\alpha_{0}\cup\alpha_{2}$ . Let $X_{2}=$ Cl $(F\backslash N(\alpha_{2}))$ . Note that $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$

is a geodesic of length two in $C(F)$ . Choose a homeomorphism $f_{2}$ : $Farrow F$ such that
$f_{2}(N(\alpha_{2}))=N(\alpha_{2})$ and that $diam_{X_{2}}(\pi_{X_{2}}(\alpha_{0}), \pi_{X_{2}}(f_{2}(\alpha_{0})))\geq 4r\iota$ . This is possible by [9,
Proposition 4.6]. Let $\alpha_{3}=f_{2}(\alpha_{1})$ and $\alpha_{4}=f_{2}(\alpha_{0})$ . Note that $[\alpha_{2}, \alpha_{3}, \alpha_{4}]$ is a geodesic of
length two in $C(F)$ and $\alpha_{2}$ intersects $\alpha_{4}$ transversely in one point.

FIGURE 2
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We repeat this process to construct a path $[a_{0}, a_{1}, \ldots, a_{n}]$ inductively as follows. Sup-
pose that we have constructed a path $[a_{0}, a_{1)}\ldots, a_{i}]$ with $|\alpha_{i-2}\cap\alpha_{i}|=1$ for each even
$i(<n)$ . Then let $X_{i}=$ Cl $(F\backslash N(\alpha_{i}))$ . Choose a homeomorphism $f_{i}$ : $Farrow F$ such that
$f_{i}(N(\alpha_{i}))=N(\alpha_{i})$ and that

(1) $diam_{X_{i}}(\pi_{X_{i}}(\alpha_{i-2}), \pi_{X_{i}}(f_{i}(\alpha_{i-2})))\geq 4/r\iota.$

Then we let $\alpha_{i+1}=f_{i}(\alpha_{i-1})$ and $\alpha_{i+2}=f_{i}(\alpha_{i-2})$ . Note that $[\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic
of length two in $C(F)$ , and we have obtained a path $[a_{0}, a_{1)}\ldots, a_{i+2}]$ with $|\alpha_{i}\cap\alpha_{i+2}|=1.$

Claim 3.3. For each $k\in\{2,4, \ldots, n\}$ , the path $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}]$ constructed above $w$ a
geodesic in $C(F)$ .

Proof. We prove the claim by mathematical induction on $k$ . It is clear that $[\alpha_{U}, \alpha_{1}, \alpha_{2}]$ is
a geodesic in $C(F)$ . Hence, Claim 3.1 holds for $k=2$ . Assume that $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}]$ is a
geodesic in $C(F)$ for some $k\in\{2,4, \ldots, n-2\}$ . We note that $[\alpha_{k}, \alpha_{k+1}, \alpha_{k+2}]$ is a geodesic
in $C(F)$ . Furthermore, by the inequality (1), we have $diam_{X_{k}}(\pi_{X_{k}}(\alpha_{k-2}), \pi_{X_{k}}(\alpha_{k+2}))\geq$

$4n>4k$ . Hence, by Proposition 3.1, the path $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k+2}]$ is a geodesic in $C(F)$ ,
which shows that Claim 3.3 holds for $k+2$ . This completes the proof of Claim 3.3. $\square$

3.2. $A$ construction of a concrete example: the case when $n$ is odd. Suppose
that $n$ is odd. Let $\alpha_{2},$ $\alpha_{3}$ be essential non-separating simple closed curves on $F$ which are
mutually disjoint. Let $x$ be an essential simple closed curve which intersects $\alpha_{2}$ and $\alpha_{3}$

transversely in one point, respectively. Choose an essential simple closed curve $y_{1}$ on $F$

that is disjoint from $\alpha_{2}$ and $x$ . Let $X_{2}=$ Cl$(F\backslash N(\alpha_{2}))$ . By [10, Proposition 4.6], there
exists homeomorphism $f$ : $Farrow F$ such that $f_{2}(N(\alpha_{2}))=N(\alpha_{2})$ and that
(2) $diam_{X_{2}}(\pi_{X_{2}}(\alpha_{3}), \pi_{X_{2}}(f_{2}(x)))>2n.$

Let $\alpha_{0}=f_{2}(x)$ and $\alpha_{1}=f_{2}(y_{1})$ . Note that $\alpha_{0}\cap\alpha_{1}=\emptyset,$ $\alpha_{1}\cap\alpha_{2}=\emptyset$ and $\alpha_{0}$ intersects
$\alpha_{2}$ transversely in one point, which implies that $[\alpha_{0}, \alpha_{1}, \alpha_{2}]$ is a geodesic in $C(F)$ . On
the other hand, choose an essential simple closed curve $y_{2}$ on $F$ that is disjoint from $\alpha_{3}$

and $x$ . Let $X_{3}=$ Cl$(F\backslash N(\alpha_{3}))$ . By [10, Proposition 4.6], there exists a homeomorphism
$f_{3}$ : $Farrow F$ such that $f_{3}(N(\alpha_{3}))=N(\alpha_{3})$ and that
(3) $diam_{X_{3}}(\pi_{X_{3}}(\alpha_{0}), \pi_{X_{3}}(f_{3}(x)))>2n.$

Let $\alpha_{4}=f_{3}(y_{2})$ and $\alpha_{6}=f_{3}(x)$ . Note that $\alpha_{3}\cap\alpha_{4}=\emptyset,$ $\alpha_{4}\cap\alpha_{5}=\emptyset$ and $\alpha_{3}$ intersects $\alpha_{5}$

transversely in one point, which implies that $[\alpha_{3}, \alpha_{4}, \alpha_{5}]$ is a geodesic in $C(F)$ .

FIGURE 3

Claim 3.4. The path $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}]$ constructed above is a geodesic in $C(F)$ ,
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Proof. By Proposition 3.2 together with the inequality (2), the path $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}]$ is a
geodesic. By Proposition 3.2 again together with the inequality (3), we see that the path
$[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{5}]$ is also a geodesic in $C(F)$ . $\square$

We extend the above geodesic $[\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}]$ as follows. Suppose that we have
constructed a path $[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}]$ for an odd integer $i$ with $5\leq i<n$ . Let $X_{i}=$ Cl $(F\backslash$

$N(\alpha_{i}))$ . Then there exists a homeomorphism $f_{i}$ : $Farrow F$ such that $f_{i}(N(\alpha_{i}))=N(\alpha_{i})$

and that $diam_{X_{i}}(\pi_{X_{i}}(\alpha_{i-2}), \pi_{X_{t}}(f_{i}(\alpha_{i-2})))\geq 4n$ . Let $\alpha_{i+1}=f_{i}(\alpha_{i-1})$ and $\alpha_{i+2}=f_{i}(\alpha_{i-2})$ .
Note that $[\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic in $C(F)$ and that $\alpha_{i}$ intersects $\alpha_{i+2}$ transversely
in one point. By Proposition 3.1, the path $[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i+2}]$ is a geodesic in $C(F)$ . We
repeat this process until we obtain a geodesic $[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}]$ of length $n$ . Note that $\alpha_{n-2}$

intersects $\alpha_{n}$ transversely in one point.

4. PROOF OF THEOREM 1.1

Basically we mimic the proof of [6, Theorem 1.1]. For $i=1,2$ , let $V_{i}$ be a solid torus
and $t_{i}$ a trivial arc properly embedded in $V_{i}$ . The following assertion is proved by Saito
[11, Proposition 3.8].

Assertion 4.1. Let $D_{i}$ be an essential disk in $V_{i}-t_{i}$ as in Figure 4. Then any non-
separating essential $dwk$ in $V_{i}-t_{i}$ is isotopic to $D_{i}$ and any sepamting essential disk in
$V_{i}-t_{i}$ can be $u\sigma$ otoped to be disjoint from $D_{i}.$

FIGURE 4

Let $P=\partial V_{1}$ . Then starting with a geodesic $[\alpha_{0}(=\partial D_{1}), \alpha_{1}, \alpha_{2}]$ in $C(P-t_{1})$ with
$|\alpha_{0}\cap\alpha_{2}|=1$ , we construct a geodesic $[\alpha_{U}, \alpha_{1}, \ldots, \alpha_{n+2}]$ with $|\alpha_{n}\cap\alpha_{n+2}|=1$ as in
Subsections 3.1 and 3.2. We glue $\partial V_{1}$ and $\partial V_{2}$ by a homeomorphism $h:\partial V_{1}arrow\partial V_{2}$ such
that $h(\partial t_{1})=\partial t_{2}$ and $h(\alpha_{n+2})=\partial D_{2}$ . Then the argument in the proof of [6, Theorem
1.1], together with Assertion 4.1, enables us to show that the distance of the (1,1)-bridge
splitting $(V_{1}, t_{1}) \bigcup_{P}(V_{2}, t_{2})$ is exactly $n.$
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