(1,1)-BRIDGE SPLITTINGS WITH DISTANCE EXECTLY n

AYAKO IDO, YEONHEE JANG AND TSUYOSHI KOBAYASHI

1. INTRODUCTION

Hempel [4] introduced the concept of *distance* of a Heegaard splitting by using curve complex, and showed that there exist arbitrarily high distance Heegaard splittings for closed 3-manifolds by using a construction of Kobayashi [8]. Abrams and Schleimer [1] gave a sharper estimation for the distance of the Heegaard splitting given in [4] by using the result of Masur and Minsky [9], and Evans [3] gave a combinatorial method to construct Heegaard splittings of high distance.

On the other hand, the above concept and results have been extended to *bridge splittings* for links in closed 3-manifolds (for definitions, see subsection 2.3), and have been studied by several authors. For example, Saito [11] showed that for any closed 3-manifold admitting a Heegaard splitting of genus one, there is a knot in the manifold with a (1, 1)-*bridge splitting* of arbitrary high distance. Recently, Blair, Tomova and Yoshizawa [2] showed that for given integers b, c, g, and n, there exists a manifold M containing a c-component link L so that (M, L) admits a (g, b)-bridge splitting of distance at least n. Moreover, Ichihara and Saito [7] showed that for any given closed orientable 3-manifold M with a Heegaard surface of genus g, and for any positive integers b and n, there exists a knot K in M which admits a (g, b)-bridge splitting of distance greater than n.

In [6], we showed that there exists a Heegaard splitting of a closed orientable 3-manifold with distance exactly n for each positive integer n. To prove this, we gave a method to extend a geodesic in the curve complex of a closed orientable surface to a geodesic with given length, and constructed a concrete example (for details, see [6, Section 4]).

In this paper, we apply the idea of [6, Section 4] to construct a geodesic of any given length in the curve complex of a twice-punctured torus, and show the following.

Theorem 1.1. For any integer n > 0, there exists a (1,1)-bridge splitting with distance exactly n.

2. Definitions and notations

2.1. Curve complexes. Let S be an orientable surface with genus g, b boundary components and p punctures. A simple closed curve in S is essential if it does not bound a disk or a once-punctured disk in S and is not parallel to a component of ∂S . An arc properly embedded in S is essential if it does not co-bound a disk in S together with an arc on ∂S . We say that S is sporadic if $g = 0, b + p \le 4$ or $g = 1, b + p \le 1$.

Except in sporadic cases, the curve complex $\mathcal{C}(S)$ is defined as follows: each vertex of $\mathcal{C}(S)$ is the isotopy class of an essential simple closed curve on S, and a collection of k+1 vertices forms a k-simplex of $\mathcal{C}(S)$ if they can be realized by disjoint curves in S. In sporadic cases, we need to modify the definition of the curve complex slightly, as follows. We assume that S is a torus, a torus with one boundary component, or a sphere with 4 boundary components since, otherwise, there are no essential simple closed curves in

S. When S is a torus or a torus with one boundary component (resp. a sphere with 4 boundary components), a collection of k + 1 vertices forms a k-simplex of $\mathcal{C}(S)$ if they can be realized by curves in S which mutually intersect exactly once (resp. twice). The *arc-and-curve complex* $\mathcal{AC}(S)$ is defined similarly, as follows: each vertex of $\mathcal{AC}(S)$ is the isotopy class of an essential properly embedded arc or an essential simple closed curve on S, and a collection of k + 1 vertices forms a k-simplex of $\mathcal{AC}(S)$ if they can be realized by disjoint arcs or simple closed curves in S.

We can define the *distance* between two vertices in the curve complex $\mathcal{C}(S)$ to be the minimal number of 1-simplexes of a simplicial path in $\mathcal{C}(S)$ joining the two vertices. We denote by $d_{\mathcal{C}(S)}(x, y)$, or $d_S(x, y)$ in brief, the distance in $\mathcal{C}(S)$ between the vertices x and y. For subsets X and Y of the vertices of $\mathcal{C}(S)$, we define diam_S $(X, Y) = \text{diam}_S(X \cup Y)$. Similarly, we can define the distance $d_{\mathcal{AC}(S)}(x, y)$ and $\text{diam}_{\mathcal{AC}(S)}(X, Y)$. We denote by $[a_0, a_1, \ldots, a_n]$ the path in $\mathcal{C}(S)$ with vertices a_0, a_1, \ldots, a_n such that $a_i \cap a_{i+1} = \emptyset$ $(i = 0, 1, \ldots, n-1)$. We call a path $[a_0, a_1, \ldots, a_n]$ a geodesic if $n = d_s(a_0, a_n)$.

2.2. Subsurface projections. Let $\mathcal{P}(Y)$ denote the power set of a set Y. Suppose that X is an essential subsurface of S that contains an essential simple closed curve. We call the composition $\pi_0 \circ \pi_A$ of maps $\pi_A : \mathcal{C}^0(S) \to \mathcal{P}(\mathcal{AC}^0(X))$ and $\pi_0 : \mathcal{P}(\mathcal{AC}^0(X)) \to \mathcal{P}(\mathcal{C}^0(X))$ a subsurface projection if they satisfy the following (see Figure 1): for a vertex α , take a representative α so that $|\alpha \cap X|$ is minimal, where $|\cdot|$ is the number of connected components. Then

- $\pi_A(\alpha)$ is the set of all isotopy classes of the components of $\alpha \cap X$,
- $\pi_0(\{\alpha_1,\ldots,\alpha_n\})$ is the union for all $i=1,\ldots,n$ of the set of all isotopy classes of the components of $\partial N(\alpha_i \cup \partial X)$ which are essential in X, where $N(\alpha_i \cup \partial X)$ is a regular neighborhood of $\alpha_i \cup \partial X$ in X.

FIGURE 1

2.3. (g, b)-bridge splittings. Let H be a genus- $g(\geq 0)$ handlebody. We say that a set of $n \operatorname{arcs} \{t_1, ..., t_n\}$ properly embedded in H is a set of trivial $n \operatorname{arcs}$ if $t_1 \cup \cdots \cup t_n$ is parallel to ∂H . Let H be a handlebody and $\tau = \{t_1, ..., t_n\}$ a set of trivial $n \operatorname{arcs}$ in H. Then τ can be isotoped in H so that the projection from $\partial H \times [0, 1)$ to [0, 1) has exactly one critical point in each t_i .

It is well known that every closed orientable 3-manifold M has a genus-g Heegaard splitting for some $g(\geq 0)$, i.e., $M = V_1 \cup_P V_2$, where V_1 and V_2 are genus-g handlebodies

such that $M = V_1 \cup V_2$ and $V_1 \cap V_2 = \partial V_1 = \partial V_2 = P$. Let L be a link in M. We say that $(V_1, \tau_1) \cup_P (V_2, \tau_2)$ is a (g, b)-bridge splitting (or (g, b)-splitting for short) for the pair (M, L) if P separates (M, L) into two components (V_1, τ_1) and (V_2, τ_2) where $\tau_1 = L \cap V_1$ (resp. $\tau_2 = L \cap V_2$) is a set of trivial b arcs in A (resp. B). Then we say that P is a (g, b)-bridge surface (or a bridge surface for short). It is known that each (M, L) has a (g, b)-bridge splitting for some g and b. (For a detailed discussion, see [5, Lemma 2.1]).

For i = 1 or 2, $\mathcal{D}(V_i)$ denotes the subset of $\mathcal{C}^0(\partial V_i - \tau_i)$ consisting of the vertices with representatives bounding disks in $V_i - \tau_i$. Then the *(Hempel) distance* of $(V_1, \tau_1) \cup_P (V_2, \tau_2)$ is defined by $d_{P'}(\mathcal{D}(V_1), \mathcal{D}(V_2))$, where $P' = \partial V_1 - \tau_1 = \partial V_2 - \tau_2$.

3. EXTENDING GEODESICS

Let F be a twice-punctured torus. The following two propositions can be shown by using arguments in the proof of [6, Propositions 4.1 and 4.4].

Proposition 3.1 (cf. [6, Proposition 4.1]). For an integer $n \geq 4$, let $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ be a path in C(F) satisfying the following.

- (H1) $[\alpha_0, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_n]$ are geodesics in $\mathcal{C}(F)$,
- (H2) diam_{X_{n-2}}($\pi_{X_{n-2}}(\alpha_{n-4}), \pi_{X_{n-2}}(\alpha_n)$) $\geq 4n$, where X_{n-2} is the component of Cl($F \setminus N(\alpha_{n-2})$) that contains an essential simple closed curve.

Then $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ is a geodesic in $\mathcal{C}(F)$.

Proposition 3.2 (cf. [6, Proposition 4.4]). For an integer $n \geq 3$, let $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ be a path in C(F) satisfying the following.

- (H1) $[\alpha_0, \ldots, \alpha_{n-2}]$ and $[\alpha_{n-2}, \alpha_{n-1}, \alpha_n]$ are geodesics in $\mathcal{C}(F)$,
- (H2') diam_{X_{n-2}}($\pi_{X_{n-2}}(\alpha_0), \pi_{X_{n-2}}(\alpha_n)$) > 2n, where X_{n-2} is the component of Cl($F \setminus N(\alpha_{n-2})$) that contains an essential simple closed curve.

Then $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ is a geodesic in $\mathcal{C}(F)$.

By using Propositions 3.1 and 3.2, we construct a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_n]$ in C(F), i.e., $d_F(\alpha_0, \alpha_n) = n$, for a positive integer n.

3.1. A construction of a concrete example: the case when n is even. We first assume that n is even. Let α_0 , α_2 be essential non-separating simple closed curves on Fwhich intersect transversely in one point, and let α_1 be an essential simple closed curve on S which is disjoint from $\alpha_0 \cup \alpha_2$. Let $X_2 = \operatorname{Cl}(F \setminus N(\alpha_2))$. Note that $[\alpha_0, \alpha_1, \alpha_2]$ is a geodesic of length two in $\mathcal{C}(F)$. Choose a homeomorphism $f_2 : F \to F$ such that $f_2(N(\alpha_2)) = N(\alpha_2)$ and that $\operatorname{diam}_{X_2}(\pi_{X_2}(\alpha_0), \pi_{X_2}(f_2(\alpha_0))) \geq 4n$. This is possible by [9, Proposition 4.6]. Let $\alpha_3 = f_2(\alpha_1)$ and $\alpha_4 = f_2(\alpha_0)$. Note that $[\alpha_2, \alpha_3, \alpha_4]$ is a geodesic of length two in $\mathcal{C}(F)$ and α_2 intersects α_4 transversely in one point.

FIGURE 2

We repeat this process to construct a path $[a_0, a_1, \ldots, a_n]$ inductively as follows. Suppose that we have constructed a path $[a_0, a_1, \ldots, a_i]$ with $|\alpha_{i-2} \cap \alpha_i| = 1$ for each even i(< n). Then let $X_i = \operatorname{Cl}(F \setminus N(\alpha_i))$. Choose a homeomorphism $f_i : F \to F$ such that $f_i(N(\alpha_i)) = N(\alpha_i)$ and that

(1)
$$\operatorname{diam}_{X_{i}}(\pi_{X_{i}}(\alpha_{i-2}), \pi_{X_{i}}(f_{i}(\alpha_{i-2}))) \geq 4n.$$

Then we let $\alpha_{i+1} = f_i(\alpha_{i-1})$ and $\alpha_{i+2} = f_i(\alpha_{i-2})$. Note that $[\alpha_i, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic of length two in $\mathcal{C}(F)$, and we have obtained a path $[a_0, a_1, \ldots, a_{i+2}]$ with $|\alpha_i \cap \alpha_{i+2}| = 1$.

Claim 3.3. For each $k \in \{2, 4, ..., n\}$, the path $[\alpha_0, \alpha_1, ..., \alpha_k]$ constructed above is a geodesic in C(F).

Proof. We prove the claim by mathematical induction on k. It is clear that $[\alpha_0, \alpha_1, \alpha_2]$ is a geodesic in $\mathcal{C}(F)$. Hence, Claim 3.1 holds for k = 2. Assume that $[\alpha_0, \alpha_1, \ldots, \alpha_k]$ is a geodesic in $\mathcal{C}(F)$ for some $k \in \{2, 4, \ldots, n-2\}$. We note that $[\alpha_k, \alpha_{k+1}, \alpha_{k+2}]$ is a geodesic in $\mathcal{C}(F)$. Furthermore, by the inequality (1), we have diam_{Xk} $(\pi_{X_k}(\alpha_{k-2}), \pi_{X_k}(\alpha_{k+2})) \geq$ 4n > 4k. Hence, by Proposition 3.1, the path $[\alpha_0, \alpha_1, \ldots, \alpha_{k+2}]$ is a geodesic in $\mathcal{C}(F)$, which shows that Claim 3.3 holds for k + 2. This completes the proof of Claim 3.3. \Box

3.2. A construction of a concrete example: the case when n is odd. Suppose that n is odd. Let α_2 , α_3 be essential non-separating simple closed curves on F which are mutually disjoint. Let x be an essential simple closed curve which intersects α_2 and α_3 transversely in one point, respectively. Choose an essential simple closed curve y_1 on Fthat is disjoint from α_2 and x. Let $X_2 = \operatorname{Cl}(F \setminus N(\alpha_2))$. By [10, Proposition 4.6], there exists homeomorphism $f_2: F \to F$ such that $f_2(N(\alpha_2)) = N(\alpha_2)$ and that

(2)
$$\operatorname{diam}_{X_2}(\pi_{X_2}(\alpha_3), \pi_{X_2}(f_2(x))) > 2n.$$

Let $\alpha_0 = f_2(x)$ and $\alpha_1 = f_2(y_1)$. Note that $\alpha_0 \cap \alpha_1 = \emptyset$, $\alpha_1 \cap \alpha_2 = \emptyset$ and α_0 intersects α_2 transversely in one point, which implies that $[\alpha_0, \alpha_1, \alpha_2]$ is a geodesic in $\mathcal{C}(F)$. On the other hand, choose an essential simple closed curve y_2 on F that is disjoint from α_3 and x. Let $X_3 = \operatorname{Cl}(F \setminus N(\alpha_3))$. By [10, Proposition 4.6], there exists a homeomorphism $f_3: F \to F$ such that $f_3(N(\alpha_3)) = N(\alpha_3)$ and that

(3)
$$\operatorname{diam}_{X_3}(\pi_{X_3}(\alpha_0), \pi_{X_3}(f_3(x))) > 2n.$$

Let $\alpha_4 = f_3(y_2)$ and $\alpha_5 = f_3(x)$. Note that $\alpha_3 \cap \alpha_4 = \emptyset$, $\alpha_4 \cap \alpha_5 = \emptyset$ and α_3 intersects α_5 transversely in one point, which implies that $[\alpha_3, \alpha_4, \alpha_5]$ is a geodesic in $\mathcal{C}(F)$.

FIGURE 3

Claim 3.4. The path $[\alpha_0, \alpha_1, \ldots, \alpha_5]$ constructed above is a geodesic in C(F).

Proof. By Proposition 3.2 together with the inequality (2), the path $[\alpha_0, \alpha_1, \alpha_2, \alpha_3]$ is a geodesic. By Proposition 3.2 again together with the inequality (3), we see that the path $[\alpha_0, \alpha_1, \ldots, \alpha_5]$ is also a geodesic in C(F).

We extend the above geodesic $[\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5]$ as follows. Suppose that we have constructed a path $[\alpha_0, \alpha_1, \ldots, \alpha_i]$ for an odd integer *i* with $5 \leq i < n$. Let $X_i = \operatorname{Cl}(F \setminus N(\alpha_i))$. Then there exists a homeomorphism $f_i : F \to F$ such that $f_i(N(\alpha_i)) = N(\alpha_i)$ and that diam_{X_i} $(\pi_{X_i}(\alpha_{i-2}), \pi_{X_i}(f_i(\alpha_{i-2}))) \geq 4n$. Let $\alpha_{i+1} = f_i(\alpha_{i-1})$ and $\alpha_{i+2} = f_i(\alpha_{i-2})$. Note that $[\alpha_i, \alpha_{i+1}, \alpha_{i+2}]$ is a geodesic in $\mathcal{C}(F)$ and that α_i intersects α_{i+2} transversely in one point. By Proposition 3.1, the path $[\alpha_1, \alpha_2, \ldots, \alpha_{i+2}]$ is a geodesic in $\mathcal{C}(F)$. We repeat this process until we obtain a geodesic $[\alpha_1, \alpha_2, \ldots, \alpha_n]$ of length *n*. Note that α_{n-2} intersects α_n transversely in one point.

4. Proof of Theorem 1.1

Basically we mimic the proof of [6, Theorem 1.1]. For i = 1, 2, let V_i be a solid torus and t_i a trivial arc properly embedded in V_i . The following assertion is proved by Saito [11, Proposition 3.8].

Assertion 4.1. Let D_i be an essential disk in $V_i - t_i$ as in Figure 4. Then any nonseparating essential disk in $V_i - t_i$ is isotopic to D_i and any separating essential disk in $V_i - t_i$ can be isotoped to be disjoint from D_i .

FIGURE 4

Let $P = \partial V_1$. Then starting with a geodesic $[\alpha_0(=\partial D_1), \alpha_1, \alpha_2]$ in $\mathcal{C}(P - t_1)$ with $|\alpha_0 \cap \alpha_2| = 1$, we construct a geodesic $[\alpha_0, \alpha_1, \ldots, \alpha_{n+2}]$ with $|\alpha_n \cap \alpha_{n+2}| = 1$ as in Subsections 3.1 and 3.2. We glue ∂V_1 and ∂V_2 by a homeomorphism $h : \partial V_1 \to \partial V_2$ such that $h(\partial t_1) = \partial t_2$ and $h(\alpha_{n+2}) = \partial D_2$. Then the argument in the proof of [6, Theorem 1.1], together with Assertion 4.1, enables us to show that the distance of the (1,1)-bridge splitting $(V_1, t_1) \cup_P (V_2, t_2)$ is exactly n.

References

- [1] A. Abrams and S. Schleimer, Distances of Heegaard splittings, Geom. Topology 9 (2005) 95-119.
- [2] R. Blair, M. Tomova and M. Yoshizawa, High distance bridge surfaces, preprint. arXiv:1203.4294.
- [3] T. Evans, High distance Heegaard splittings of 3-manifolds, Topology and its Applications, 153 (14) (2006), 2631-2647.
- [4] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631-657.
- [5] C. Hayashi and K. Shimokawa, Thin position of a pair (3-manifold, 1-submanifold), Pacific J. Math. 197 (2001), no. 2, 301-324.
- [6] A. Ido, Y. Jang and T. Kobayashi, *Heegaard splittings of distance exactly n*, preprint, arXiv:1210.7627.

- [7] K. Ichihara, T. Saito, Knots with arbitrary high distance bridge decompositions, preprint, arXiv:1209.0097v2.
- [8] T. Kobayashi, Heights of simple loops and pseudo-anosov homeomorphisms, Contemporary Math. 78 (1988), 327-338.
- [9] H. Masur and Y. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138(1):103-149, 1999.
- [10] H. Masur and Y. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., 10(4):902-974, 2000. arXiv:math.GT/9807150.
- [11] T. Saito, Genus one 1-bridge knots as viewed from the curve complex, Osaka J. Math. 41 (2004), no. 2, 427-454.

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY *E-mail address*: eaa.ido@cc.nara-wu.ac.jp

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY *E-mail address:* yeonheejang@cc.nara-wu.ac.jp

DEPARTMENT OF MATHEMATICS, NARA WOMEN'S UNIVERSITY *E-mail address:* tsuyoshi@cc.nara-wu.ac.jp