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On discriminants of the homogeneous polynomial
at most four degree-

Masaki Kasedou !

Department of Mathematics, Hokkaido University

1 Introduction

Aim of this report is to discuss the following simple problem:

Problem 1.1. Let
F(z,y) = Az* + Bz®y + Cz*y* + Dzy® + Ey* (1)

be a homogeneous polynomial with real value coefficients A, B,C, D, E. Obtain a con- -
dition to count the real solutions [z : y] with f(x,y) = 0 in the real projective space RP
and determine their multiplicities.

We explain the back ground. In [4] we are studying asymptotic directions of spacelike
surface in' de Sitter space. The asymptotic directions are defined as the kernel directions
of the second fundamental form of spacelike surfaces with respect to some special normals,
which we call bi-normal directions. The bi-normal directions are given as the solutions of
the following trigonometric equation at most two degree:

A(f) = Z ¢ijcos'0sin? @ =0 - where ¢; ; is real coefficient (2)

4,520, i+7<2

We obtain the equation (1) to solve the equation (2).

Aim of our study [4] is to classify the second fundamental forms on the spacelike
surfaces. The multiplicity of asymptotic directions give important information to classify
the surfaces with high co-dimension.

Let f(x) = F(x,1) and denote the degree of f(x) by deg f(x), then deg f(x) < 4 and
the multiplicity of the solution [z : y] = [1: 0] of F(z,y) = 0 equals to 4 — deg f(x). It is
sufficient to discuss the equations f(x) = 0 for each case deg f(z) = 0, 1,2, 3,4, especially
an argument for the case of cubic and quartic equations is interesting.

We remark that the algorithm to obtain the real solutions for f(z) = 0 of general
degree without multiple solutions is known as the Strum’s theorem. Even if there are
some multiple solutions in f(z) = 0, we may generalize the above algorithm by eliminating
multiple factors of f(x) from the greatest common divisor of f(x) and its derivative f'(z).

~ (see Thomas [3]) On the other hand, the classifications of cubic and quartic equation by
their parameters are discussed in [2]

1This work was supported by the JSPS International Training Program(ITP).
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Some readers may think that it is not significant to discuss the condition for the
multiplicity of solutions of the equation f(x) = 0. However, the argument on the equations
bears some interesting observations from an aspect of singularity theory. For example,
the discriminant of cubic equation z* +dz +e = 0 is given by 4d*+27¢. and its null set is
a cusp curve. We also consider the case of quartic equations. Observing Figure.1, a shape
of the null set of its discriminant looks like a swallowtail, but they are not homeomorphic.

Figure 1: Swallowtail and null set, of the discriminant

We argue the discriminants for homogeneous equation F(x,y) = 0 to determine the
multiplicity of solutions. This argument may gives us an complete condition to know the
solutions of the trigonometric equation 2.

We organize this report as follows. In §3 we review the quadratic case as a simple
example to make readers to understand the aim of this report. And then we discuss the
cubic case in §4 and quartic case in §5. We use the classification of quartic equation in
[2], and draw the picture of the discriminants. The classification of the quartic equation
is written by three parameters G, H,I. Next, we discuss the discriminant D, I*, J for
the homogeneous equation F(x,y) = 0. Our attempt is not smart, however we expect
that the discriminants helps us to observe the bifurcation of types of equations.

2 Preliminary

We define some notations of the polynomial. Let f(x) be a polynomial with degree n.
We say that f(x) or f(z) =01is (2my+---+2my, by + - - -+ £,)-type if 2(mq +---+my) +
f; + -+ ¢s = n and the imaginary solutions of f(z) are o; £ fiv/—1 (i = 1,..., k) with
multiplicity m; and real solutions v; (5 = 1,..., s) with multiplicity £;. So f(z) is written
by

fl@) = ((z—a)? + )™ - ((z — aw)® + B)™ (= 1) -~ (2 — )"
If we consider the quadratic case, there are three types: (0,2), (0,141) and (2,0).

Let F(z,y), G(z,y) be homogeneous polynomials of real solutions at most four degree,
We say that the type of F' and G are equivalent if the number of the complex solutions:



for F(z,y) = 0, G(z,y) = 0 and their multiplicities coincide. In this case there are 10
types of homogeneous polynomials (see Table 1)
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type ) form of F(z,y) type . form of F(z,y)
(0,4) +(a17 - b1y)* (0,3+1) t(a1z — b1y)3(asx — boy)
0,2+2) (a1z — biy)?(azz — boy)? (0,2+1+1) | f(a1z — biy)?(azz — b2y)(azsz; b3y)
(0,14+1+141) +(a1z —bry) - (asz — bay) (4,0) i((a1x~b1y)z + c2y?)
(2+2,0) (a1 —b19)? + Ay (azz — bay)? + c3y?) (2,2) +((ar1z —biy)Z+c2 z)(agz — boy)?
(2,147 +((a1z — b1y)? + cjy”)(a2z — bay)(asz — bay) fst F(z, y) =0

Table 1: Types of homogeneous polynomial F(z, y)\l where a;, b;, ¢; are the real values
with ¢; # 0 and (a;, b;) # (0, 0) for all 4.

Let m be a positive integer and F'(z,y) be a homogeneous polynomial of degree m. We
denote f( ) = F(z,1) and k = deg f(z) — m. We say that f(2) is (2my+,- - -+ 2ms, mq +

-+l + k)-type if f(x) is (2my+, - -+ + 2mg, g + - - - 4 m!)-type.

We also review an important tool to consider the equation f(z) = 0. The discriminant
D is given as the resultant of f(z) and its derivative f/(z), which gives us a condition for
the existence of the multiple solutions.

3 Quadratic case: Equations of at most two degree

We now review the case m = 2. Let f(x) = Cz? + Dz + E a polynomial at most degree.
This argument is related to the conjugate class of the symmetric matrices Sym(2, R), and
pencils of quadratic forms. (See Brocker [1])

Suppose that deg f = 2 (equivalently C # 0), then we may classify types of solutions
for f(z) = 0 by using the discriminant D guadratic = —D? + 4CE. If D quadratic iS positive,
negative or equal to zero, then type of f(z) = 0 is (2,0), (0,141), (0,2) respectively. We
may also consider the case deg f = 1 and deg f = 0. (see the following Table3.) If £ = 0
then all real values are solutions of f(z) = 0 In this case, we say that f(z) is §S-type
for convenience.

No. | type | Dyuadric (C,D,E) degf
W @0 | + - 2
@) 101+ | = | C#0 2
(3) | (0,2) 0 C#0 2
(2) ] (0,14+1) — C=0,(C,D,E)#0| 1
)] (02) 0 |C=0(CDE)# 0
(4) 1 5! 0 0 0

Table 2: Types of f(xz) = Cz* + Dz + E = 0 (» means that we do not care the value.)

If deg f is less than two we should be careful when we classify the types of f(z) =0
by using the discriminant D ya4ratic- Fortunately, the discriminant works well when we
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Figure 2: Classification of F(x,y) = Cz*+ Dy + Ey? =0

consider the types of homogeneous polynomial. Let F'(z,y) = Cz?+ Dzy+ Ey?, then we
may determine the types of the solutions for F(z,y) = 0 by using the same discriminant
D guadratic = —D? + ACE except for §S'-case, and this classification does not depend on
the degree of the polynomial f(z) = F(x,1). (See Table 3)

No.| type | D | (E,F,G) | position of (EF,G)
() | (20 |+ * inside of a cone
2) 1 (0,1+41) | = | E#O outside of a cone
3y (02) [0 E#0 on a cone

(4) | ¢S? 0 0 origin

Table 3: Table of types of F(z,y) = Cx?+ Dzy + Ey* =0

The null set of the discriminant consists of a cone {(C,D, E) | D* = CE}, which
tangents to a C-axis and an E-axis. We may observe that the cone separates the solutions
types of the equations.

Finally, we consider the following question:

Question 3.1. Let F(z,y) = 0 be a homogeneous polynomial of degree m > 3. Can
we classify the types of F(x,y) = 0 by using some discriminant polynomials without the
condition for deg f?

The answer of the above question in cubic case is positive, we discuss it in the next
section.

4 Cubic case: Equations of at most three degree

In this section we discuss the case of cubic case. If the degree of f is more than two, we
may need to introduce the other ”discriminant” of the equation f(z) = 0. For example,
two polynomials fi(z) = (z — x1)® and fa(x) = (z — z1)*(z — 22) with two distinct real



numbers x1, 7 are different types, However, both of the discriminants of f;, f2 are equal
to zero. Therefore, we need another discriminant to the cubic case, which we call a second
discriminant. ’

4.1 Discriminants for the cubic equation f(z) =0

Let f(z) = Bx® + Ca?+ Dz + E = 0. The case when deg f < 3 is already discussed as
above. We assume that B # 0 (equivalently deg f = 3) to apply the classification for the
cubic equation. The discriminants of the equation f(z) = 0 is

4 2 1
Dewiey = B'E*+ (C°E+ BD?) — 3BCDE — C*D*. - (3)

Dcubic,? = 3BD_02 (4)

By computation, D1 |B—o= —%—:—(D2 —4CF) = %?—unadm. The second discriminant
D ypic,2 is used to determine whether there are triple solution for f(z) = 0 or not. We
remark that the Dy 2 can be replaced to other polynomials. The classification for the
cubic equation f(z) = 0 is given as follows:

(1) B # 0 and Deupic,1 < 0 iff the equation type of f(x) = 0 is (0,14141)-type.

(2) B # 0 and Deypic,1 > 0 if and orily if the equation type is (2,1)-type. |

(3) B #0, Depic,i = 0 and Doypic2 # 0 if and only if the equation type is (0,2+1)-‘type.
(4) B #0, Deypic,y = 0 and Deypie2 = 0 if and only if the equation type is (0,3)-type.

We have the following list of classification for f(z) = Bz®+ Cz?+ Dz + E = 0, although
we may eliminate some cases.
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No. type B Dcubic,l C2unad'ratic D eubic,2 C D E | degf
(1) | (0,1+1+1) | #0 — * * * * * 3
(2) (2,1) 70 + * * * * * 3
3) | (0241 [Z0] 0 = 0 FEF ¥ 3
(4) (0,3) #0 0 * 0 * * * 3
G) [O1+1+D ] 0 | = —D.. ¥ Z0] * | * | 2
(6) (271) 0 + - Dc,l * 7é 0 * * 2
D 024D [0 [ 0 =D., |BD=C'Z0[Z0] ¥ | ¥ | 2
(8) (0,2+1) 0 0 =D BD—-C?=0] 0 [#0] * 1
©® 1 (03 [0 0 —D.. 0 00 [Z0] 0
1) 857 [0 0 =D, 0 0] 00 0

Table 4: Table of types on f(z) = Bx® 4+ C2?+ Dz + E = 0.
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4.2 Second discriminant for the homogeneous case F(z,y) =0

We now consider the types for the homogeneous polynomial F(x,y) = Bx® + Cz?%y +
Dzxy? + Ey®. When we try to use the above table for f(z) = 0 to the homogeneous case,
we may find a problem with (0,2+1) and (0,3) case: the necessity and sufficient condition
of the discriminants D ypic, 1, Deusic2 for the case (3) and the case (7) listed above agree, but
the case (8) does not agree with the condition D uic2 # 0. To obtain a new discriminant
polynomial instead of D upic,2, We use the following remark.

Remark 4.1. Let f/(z) := z"f(1/z) be an inverted polynomial of the polynomial f(z)
admitting the case # = 0. Then the types of f(x) =0 and f/(x) = 0 coincide.

The above remark implies an idea that the discriminants should be symmetric under the
inversion of variable . So that the candidate of the discriminant should be an invariant
under the change B,E and C,D. We may easily check that the discriminant D, is
symmetric. Inverting Deypic2 = 3BD—C?, we have the inversion (Deypic,2)iny = 3CE—D?2.
Therefore, we obtain a candidate of a new second discriminant for the homogeneous
polynomial F(z,y) = 0:

new 2 = (3BD—C*+(3CE - D?). (5)

We now show that the discriminants Deypic,1, Dipic » Work well to classify the types of
the homogeneous polynomials F(z,y) = 0. If Deypic,1 # 0, we may distinguish (0,1+1+1)-
case and (2,1)-case from the other. If D.y; = 0, we have the following lemma:

Lemma 4.2. Let F(z,y) = Bz® + Cx%y + Dxy® + Ey® and polynomials Deypi,1 and
D, o are defined as above. Suppose that Deupic,y = 0 then we have:

(1) F(x,y) = 0is (0,2+1)-type if and only if Dy , # 0.

(2) F(z,y) = 0is (0,3)-type if and only if D23 , = 0 and (B,C, D, E) # 0. (#5"-type
corresponds to (B,C, D; E) = 0.) :

Proof. By assumption, it is sufficient to check the following.

If f(x) =0is(0,2+ 1)-type, then without loss of generality, we may write f(z,y) =
(az — By)*(vz — by) with [o: B] # [y : 8] € RP'. By computation, D32 , = —(o* +
B2)(ad — By)? #0.

If f(x) = 0is (0,3)-type, then without loss of generality we may write f(x,y) =
(az — By)®, then obtain D2, , = 0. O

We finally conclude the list for types of F(z,y) = 0, by using two discriminants
D1 = B*E*+A(C*E+BD?)—2BCDE—%C*D? and D = (3BD—C?)+(3CE-D?).



No. type D.1 | D23 | (B,C,D,E) | possibility of degf
O [0+ | — | * 20 3or 2
(2) (2,1) + * #0 3 or 2
3 @211 [ 0 | £20 | +£0 3, 2or 1
@ 03 0 0 20 3 or 0
G it 0 0 0 0
Table 5: Types on F(z,y) = Bx® + Cz*y + Dxy® + Ey* = 0

5 Quartic case

5.1 Classification of quartic equation f(x)=0

The classification for the types of solutions in the quartic equation case are also argued
some researchers before. In this report, we will use the classification in [2]. Let A, B,C, D
and F be real number with A # 0 and f(z) = Az*+ B2® +Cx?+ Dz + E, then all quartic
equations are simplified to the following form:

f(z) = 2"+ 6Hz* + 4Gz + (I = 3H*) = 0 (6)
where [ = % B % + %5’ G :,21% - 5795 + %‘and H‘: % - %?A%. The discriminant of
f(x) =0 is written by D, = I® — 27(HI — 4H® — G*)2.

No. Type Condition
1) (0,4) I=G=H=0
(2) (0,3+1) 1 =G?+4H® =0except for G=H =0
(3) (271""1) Uq,l <0
@) | (0,141+1+1) | 1>0,D,1>0,H< —%
(5) (2+42,0) 1>0, Dg1>0, H>-2L
(6) | (0,2+1+1) 1>0,D,1=0,H< —ii{;
_ _ T

(7) (0>2+2) 1>0, Uq,l - Q’ H T T3
(8) (2,2) I>0,D,:=0,H> —% except for case (9)
© ] (49 1>0,(H,6) = (;%£,0)

In this case we have D, ; = 0 automatically -

Table 6: Table of types on f(z) = z* + 6Hz?> 4+ 4Gz + (I —3H*) =0

We draw a picture of null set of the discriminant D, ; in Figure 1 and Figure 3. We
observe that (0,4)-type consists of a curve around (2+2,0)-type domain, we call the curve
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a (0,4)-filament. We review that the (0,4)-type means that there are multiple imaginary

solutions of f(z) = 0. Since the (0,4)-filament belongs to null set of D, ;, we have the
following remark.
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(0, 3+1) cusp G (0, 1+1+1+1) domain
curve H / '
0, 4) point | I 4 I>O;’
j / @, 1+1)
domain

i2, 1+1)
idomain

(0. 2+2) 4, 0
Crossing gyrve i
(fi lament) |

(0. 2+1+1)
curve

Figure 3: discriminant of the quartic equations

Remark 5.1. Set germ'of null set of D,; at the origin is not homeomorphic to the
cuspidal edge. This claim also holds on the parameter space (b,c,d,e) for the quartic
equation f(z) =2* + bz + cz?+dr+e=0.

5.2 Aspects from the invariants

We now switch to argue the homogeneous polynomial and argue the invariants for the
quartic equations. Let

A(9) = Z cijcos' fsin? § = 0
4,520, i+j<2

be a nontrivial trigonometric equation, by replacing (sin 8, cos §) with (2zy/(z*+y?), (y*—
r%) /(z?+y*%)) and multiplying (z* +y*)?, we have a homogeneous polynomial of degree at
most four F(xz,y) = Azt+ Bzdy+Cxy?+ Dxy®+ Ey* with real parameters A4, B,C, D, E.
Suppose that (A, B,C, D, E) # 0, then we have at most four solutions [z : y] for the
equation F(z,y) = 0 on the projective complex space CP'. Let S = {Q €-GL(2,R) |
det @ = £1} be a subgroup of general linear group, an action @ € S to the homogeneous
equation F'(x,y) = 0 is defined by

Q.F(z,y) = F(ax + by, cx + dy), where Q = ( Z Z ) €S.

- The action @ € S does not change solution type of the equation F(z,y) = 0. We have
two invariants /* and K* under the action of Q € §:

1
I"=12AE-3BD+C? K= 5 (T2ACE - 27AD? — 21B*E 4+ 9BCD — 2C®).

Let

Dy, =3 - K*?
be the discriminant of F(z,y) = 0. When A # 0, the coefficients I, H, G are written
by the coefficients A, B, C, D, E of quartic equation f(z) = F(x,1) = 0. We may write
I* = 12421, K* = 216 A3(HI — 4H® — G?) and D}, = 1234°D,,.

a1l =



Remark 5.2. Let F(z,y) be a homogeneous polynomial and we denote F,(z,y) =
F(y,z) and Fy(x,y) = F(x,y + sz) for real parameter s, then the solution type of
Finu(z,y) = 0 and Fy(x,y) = 0 are the same as the solution type of F/(x,y) = 0. Moreover,
the degree of Fi(1,z), Fs(z,1) is equal to four for almost all s in R.

We denote a candidate of the discriminant:
(JA] + |ENVT* _ (AC+CE) _ B+ D?
12 6 16

It is not a polynomial, perhaps we may have some other discriminants, but we do not
argue the existence problem here.

J:

Proposition 5.3. Let (A, B,C, D, E) # 0 and F(i, y) = 0 be a homogeneous polynomial
of degree four and J is defined as above, then

(1) If the solution type of F(x,y) = 0 are (0,3+1), (0,14+1+1+1), (0,2+1+1) then J < 0.
(2) If the solution type of F(x,y) =0 are (2+2,0), (2,2), (4,0) then J > 0.

(3) If the solution type of F(x,y) = 0 are (0,4), (0,2+2) then J = 0.

Therefore the sign of J is also an invariant under the actions on S except for (2,1+1)
case, and we may discriminate the solution type of F'(x,y) = 0 the as follows:

No. Type. ’ Condition
1) (0,4) 1"=0,D:,=0,J=0,(A,B,C,D,E) 20
@) (0,3+1) [F=0,D5,=0,J <0
(3) (2,14+1) D; <0
4) - (0,14+1+1+41) I*>0,D;,>0,J<0
(5) (2+2,0) I*>0,D;,>0,J>0
(6) (0,24+1+1) 1*>0,D;,=0,J<0
@ (0,2+2) F>0,D5,=0,J=0
(8) (2,2) I">0,D;,=0,J >0 except for (9) case
©) (4,0 [*>70, D5, =0, >0,
A0, (H,G) = (VI/(2/3),0)
(10) | #S1-type (F'(x,y) = 0) (A,B,C,D,E)=0

Table 7: Table of types on F(z,y) = Az* + Bx®y + Cxy? + Dxy® + Ey* =0

Therefore, the sufficient and necessity condition that F(z,y) > 0 (or < 0) for all
element [z :y] in RP'is [* >0, D}, > 0and J > 0.
6 Acknowledgment

Although this argument is ancient, I received advices and comments by some participants
in the work shop. I appreciate their hospitality.



58

References

[1] TH. Brocker, Differentiable Germs and Catastrophes, London Math. Soc. Lecture
note series 17, Cambridge Univ. Press.

(2] J. P. Dalton, On the Graphical Discrimination of the Cubic and of the Quartic, The
Mathematical Gazette Vol.17 No.224 (1933), 189-196.

[3] J. M. Thomas, Strum’s Theorem for Multiple Roots, National Mathematics Maga-
zine, Vol.8, No.15, (1941), 391-394.

[4] M. Kasedou, A. C. Nabarro and M. A. S. Ruas, Second order geometry of spacelike
surfaces in de Sitter 5-space, in preparation,

Masaki Kasedou,

Department of Mathematics, Hokkaido University,
Sapporo 060-0810, Japan.

e-mail: kasedou@math.sci.hokudai.ac.jp



