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1 Introduction
Aim of this report is to discuss the following simple problem:

Problem 1.1. Let

$F(x, y)=Ax^{4}+Bx^{3}y+Cx^{2}y^{2}+Dxy^{3}+Ey^{4}$ (1)

be a homogeneous polynomial with real value coefficients $A,$ $B,$ $C,$ $D,$ $E$ . Obtain a con-
dition to count the real solutions $[x:y]$ with $f(x, y)=0$ in the real projective space $\mathbb{R}P$

and determine their multiplicities.

We explain the back ground. In [4] we are studying asymptotic directions of spacelike
surface $in^{i}$ de Sitter space. The asymptotic directions are defined as the kemel directions
of the second fundamental form of spacelike surfaces with respect to some special normals,
which we call bi-normal directions. The bi-normal directions are given as the solutions of
the following trigonometric equation at most two degree:

$\triangle(\theta)=\sum_{i,j\geq 0,i+j\leq 2}c_{i,j}\cos^{i}\theta\sin^{j}\theta=0$
where $c_{i,j}$ is real coefficient (2)

We obtain the equation (1) to solve the equation (2).
Aim of our study [4] is to classify the second fundamental forms on the spacelike

surfaces. The multiplicity of asymptotic directions give important information to classify
the surfaces with high co-dimension.

Let $f(x)=F(x, 1)$ and denote the degree of $f(x)$ by $\deg f(x)$ , then $\deg f(x)\leq 4$ and
the multiplicity of the solution $[ : y]=[1 : 0]$ of $F(x, y)=0$ equals to $4-\deg f(x)$ . It is
sufficient to discuss the equations $f(x)=0$ for each case $\deg f(x)=0,1,2,3,4$ , especially
an argument for the case of cubic and quartic equations is interesting.

We remark that the algorithm to obtain the real solutions for $f(x)=0$ of general
degree without multiple solutions is known as the Strum’s theorem. Even if there are
some multiple solutions in $f(x)=0$, we may generalize the above algorithm by eliminating
multiple factors of $f(x)$ from the greatest common divisor of $f(x)$ and its derivative $f’(x)$ .
(see Thomas [3]) On the other hand, the classifications of cubic and quartic equation by
their parameters are discussed in [2]
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Some readers may think that it is not significant to discuss the condition for the
multiplicity of solutions of the equation $f(x)=0$ . However, the argument on the equations
bears some interesting observations from an aspect of singularity theory. For example,
the discriminant of cubic equation $x^{3}+dx+e=0$ is given by 4$d^{3}+27c^{2}$ . and its null set is
a cusp curve. We also consider the case of quartic equations. Observing Figure.1, a shape
of the null set of its discriminant looks like a swallowtail, but they are not homeomorphic.

Figure 1: Swallowtail and null set of the discriminant

We argue the discriminants for homogeneous equation $F(x, y)=0$ to determine the
multiplicity of solutions. This argument may gives us an complete condition to know the
solutions of the trigonometric equation 2.

We organize this report as follows. In \S 3 we review the quadratic case as a simple
example to make readers to understand the aim of this report. And then we discuss the
cubic case in \S 4 and quartic case in \S 5. We use the classification of quartic equation in
[2], and draw the picture of the discriminants. The classification of the quartic equation
is written by three parameters $G,$ $H,$ $I$ . Next, we discuss the discriminant $D_{q,1}^{*},$ $I^{*},$ $J$ for
the homogeneous equation $F(x, y)=0$ . Our attempt is not smart, however we expect
that the discriminants helps us to observe the bifurcation of types of equations.

2 Preliminary
We define some notations of the polynomial. Let $f(x)$ be a polynomial with degree $n.$

We say that $f(x)$ or $f(x)=0$ is $(2m_{1}+\cdots+2m_{k}, \ell_{1}+\cdots+\ell_{s})$-type if $2(m_{i}+\cdots+m_{k})+$

$\ell_{1}+\cdots+\ell_{s}=r\iota$ and the imaginary solutions of $f(x)$ are $\alpha_{i}\pm\beta_{i}\sqrt{-1}(i=1, \ldots, k)$ with
multiplicity $m_{i}$ and real solutions $\gamma_{j}(j=1, \ldots, s)$ with multiplicity $\ell_{j}$ . So $f(x)$ is written
by

$f(x)=((x-\alpha_{1})^{2}+\beta_{1}^{2})^{m1}\cdots((x-\alpha_{k})^{2}+\beta_{k}^{2})^{m}k(x-\gamma_{1})^{\ell_{1}}\cdots(x-\gamma_{s})^{\ell_{s}}$

If we consider the quadratic case, there are three types: (0,2), $(0,1+1)$ and (2,0).
Let $F(x, y),$ $G(x, y)$ be homogeneous polynomials of real solutions at most four degree,

We say that the type of $F$ and $G$ are equivalent if the number of the complex solutions
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for $F(x, y)=0,$ $G(x, y)=0$ and their multiplicities coincide. In this case there are 10
types of homogeneous polynomials (see Table 1)

Table 1: Types of homogeneous polynomial $F(x, y))$ where $(x_{i},$ $b_{i},$ $c_{i}$ are the real values
with $c_{i}\neq 0$ and $(a_{i}, b_{i})\neq(0,0)$ for all $i.$

Let $m$ be a positive integer and $F(x, y)$ be a homogeneous polynomial of degree $m$ . We
denote $f(x)=F(x, 1)$ and $k=\deg f(x)-m$ . We say that $f(x)$ is $(2m_{1}+,$ $\cdots+2m_{s},$ $m_{1}+$

. . . $+m_{s}’+\underline{k})$-type if $f(x)$ is $(2m_{1}+, \cdots+2rr\iota_{s}, rr\iota_{1}+\cdots+\prime/r\iota_{s}’)$ -type.
We also review an important tool to consider the equation $f(x)=0$. The discriminant

$D$ is given as the resultant of $f(x)$ and its derivative $f’(x)$ , which gives us a condition for
the existence of the multiple solutions.

3 Quadratic case: Equations of at most two degree
We now review the case $m=2$ . Let $f(x)=Cx^{2}+Dx+E$ a polynomial $a\grave{t}$ most degree.
This argument is related to the conjugate class of the symmetric matrices $Sym(2, \mathbb{R})$ , and
pencils of quadratic forms. (See Br\"ocker [1])

Suppose that $\deg f=2$ (equivalently $C\neq 0$ ), then we may classify types of solutions
for $f(x)=0$ by using the discriminant $D_{quadratic}=-D^{2}+4CE$ . If $D_{quadratic}$ is positive,
negative or equal to zero, then type of $f(x)=0$ is (2,0), $(0,1+1),$ $(0,2)$ respectively. We
may also consider the case $\deg f=1$ and $\deg f=0$ . (see the following Table3.) If $E=0$
then all real values are solutions of $f(x)=0$. In this case, we say that $f(x)$ is $\# S^{1}$ -type
for convenience.

Table 2: Types of $f(x)=Cx^{2}+Dx+E=0$ ( $*$ means that we do not care the value.)

If $\deg f$ is less than two we should be careful when we classify the types of $f(x)=0$
by using the discriminant $D_{quadrati_{\mathcal{C}}}$ . Fortunately, the discriminant works well when we
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Figure 2: Classification of $F(x, y)=Cx^{2}+Dxy+Ey^{2}=0$

consider the types of homogeneous polynomial. Let $F(x, y)=Cx^{2}+Dxy+Ey^{2}$ , then we
may determine the types of the solutions for $F(x, y)=0$ by using the same discriminant
$D_{quadratic}=-D^{2}+4CE$ except for $\# S^{1}$-case, and this classification does not depend on
the degree of the polynomial $f(x)=F(x, 1)$ . (See Table 3)

Table 3: Table of types of $F(x, y)=Cx^{2}+Dxy+Ey^{2}=0$

The null set of the discriminant consists of a cone $\{(C, D, E)|D^{2}= CE\}$ , which
tangents to a $C$-axis and an $E$-axis. We may observe that the cone separates the solutions
types of the equations.

Finally, we consider the following question:

Question 3.1. Let $F(x, y)=0$ be a homogeneous polynomial of degree $m\geq 3$ . Can
we classify the types of $F(x, y)=0$ by using some discriminant polynomials without the
condition for $\deg f$?

The answer of the above question in cubic case is positive, we discuss it in the next
section.

4 Cubic case: Equations of at most three degree

In this section we discuss the case of cubic case. If the degree of $f$ is more than two, we
may need to introduce the other “discriminant” of the equation $f(x)=0$ . For example,
two polynomials $f_{1}(x)=(x-x_{1})^{3}$ and $f_{2}(x)=(x-x_{1})^{2}(x-x_{2})$ with two distinct real
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numbers $x_{1},$ $x_{2}$ are different types, However, both of the discriminants of $f_{1},$ $f_{2}$ are equal
to zero. Therefore, we need another discriminant to the cubic case, which we call a second
discnminant.

4.1 Discriminants for the cubic equation $f(x)=0$

Let $f(x)=Bx^{3}+Cx^{2}+Dx+E=0$ . The case when $\deg f<3$ is already discussed as
above. We assume that $B\neq 0$ (equivalently $\deg f=3$ ) to apply the classification for the
cubic equation. The discriminants of the equation $f(x)=0$ is

$D_{cubic,1} = B^{2}E^{2}+ \frac{4}{27}(C^{3}E+BD^{3})-\frac{2}{3}BCDE-\frac{1}{27}C^{2}D^{2}$ . (3)

$D_{cubic,2} = 3BD-C^{2}$ (4)

By computation, $D_{cubic,1}|_{B=0}=- \frac{c^{2}}{27}(D^{2}-4CE)=\frac{c^{2}}{27}D_{quadric}$ . The second discriminant
$D_{cubic,2}$ is used to determine whether there are triple solution for $f(x)=0$ or not. We
remark that the $D_{cubic,2}$ can be replaced to other polynomials. The classification for the
cubic equation $f(x)=0$ is given as follows:

(1) $B\neq 0$ and $D_{cubic,1}<0$ iff the equation type of $f(x)=0$ is $(0,1+1+1)$-type.

(2) $B\neq 0$ and $D_{cubic,1}>0$ if and only if the equation type is (2,1)-type.

(3) $B\neq 0,$ $D_{cu}\iota_{nc,1}=0$ and $D_{cubic,2}\neq 0$ if and only if the equation type is $(0,2+1)$-type.

(4) $B\neq 0,$ $D_{culnc_{\rangle}1}=0$ and $D_{cutnc,2}=0$ if and only lf the equation type is (0,3)-type.

We have the following list of classification for $f(x)=Bx^{3}+Cx^{2}+Dx+E=0$ , although
we may eliminate some cases.

Table 4: Table of types on $f(x)=Bx^{3}+Cx^{2}+Dx+E=0.$
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4.2 Second discriminant for the homogeneous case $F(x, y)=0$

We now consider the types for the homogeneous polynomial $F(x, y)=Bx^{3}+Cx^{2}y+$
$Dxy^{2}+Ey^{3}$ . When we try to use the above table for $f(x)=0$ to the homogeneous case,
we may find a problem with $(0,2+1)$ and (0,3) case: the necessity and sufficient condition
of the discriminants $D_{cubc,1},$ $D_{cubc,2}$ for the case (3) and the case (7) listed above agree, but
the case (8) does not agree with the condition $D_{cubic,2}\neq 0$ . To obtain a new discriminant
polynomial instead of $D_{cubc,2}$ , we use the following remark.

Remark 4.1. Let $f^{I}(x)$ $:=x^{n}f(1/x)$ be an inverted polynomial of the polynomial $f(x)$

admitting the case $x=0$ . Then the types of $f(x)=0$ and $f^{I}(x)=0$ coincide.

The above remark implies an idea that the dwcnminants should be symmetric under the
inversion of vanable $x$ . So that the candidate of the discriminant should be an invariant
under the change B, $E$ and C,D. We may easily check that the discriminant $D_{cubic1}$ is
symmetric. Inverting $D_{cubc,2}=3BD-C^{2}$ , we have the inversion $(D_{cubc,2})_{inv}=3CE-D^{2}.$

Therefore, we obtain a candidate of a new second discriminant for the homogeneous
polynomial $F(x, y)=0$:

$D_{cubic,2}^{new}$ $=$ $(3BD-C^{2})+(3CE-D^{2})$ . (5)

We now show that the discriminants $D_{cutnc,1},$ $D_{cubc,2}^{new}$ work well to classify the types of
the homogeneous polynomials $F(x, y)=0$ . If $D_{cub\not\in c,1}\neq 0$ , we may distinguish $(0,1+1+1)-$

case and (2,1)-case from the other. If $D_{cubic,1}=0$ , we have the following lemma:

Lemma 4.2. Let $F(x, y)=Bx^{3}+Cx^{2}y+Dxy^{2}+Ey^{3}$ and polynomials $D_{\alpha rbic,1}$ and
$D_{cubc,2}^{new}$ are defined as above. Suppose that $D_{cubic,1}=0$ then we have:

(1) $F(x, y)=0$ is $(0,2+1)$-type if and only if $D_{cubc,2}^{new}\neq 0.$

(2) $F(x, y)=0$ is (0,3)-type if and only if $D_{cubic,2}^{new}=0$ and $(B, C, D, E)\neq 0.$ $(\# S^{1}$-type
corresponds to $(B, C, D, E)=0.)$

Proof. By assumption, it is sufficient to check the following.
If $f(x)=0$ is $(0,2+1)$-type, then without loss of generality, we may write $f(x, y)=$

$(\alpha x-\beta y)^{2}(\gamma x-\delta y)$ with $[\alpha : \beta]\neq[\gamma : \delta]\in \mathbb{R}P^{1}$ . By computation, $D_{cubic,2}^{new}=-(\alpha^{2}+$

$\beta^{2})(\alpha\delta-\beta\gamma)^{2}\neq 0.$

If $f(x)=0$ is $(0,3)$-type, then without loss of generality we may write $f(x, y)=$
$(\alpha x-\beta y)^{3}$ , then obtain $D_{\alpha 4}^{new}tnc,2=0.$

$\square$

We finally conclude the list for types of $F(x, y)=0$ , by using two discriminants
$D_{c,1}=B^{2}E^{2}+ \frac{4}{27}(C^{3}E+BD^{3})-\frac{2’}{3}BCDE-\frac{1}{27}C^{2}D^{2}$ and $D_{c,2}^{new}=(3BD-C^{2})+(3CE-D^{2})$ .
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Table 5: Types on $F(x, y)=Bx^{3}+Cx^{2}y+Dxy^{3}+Ey^{4}=0$

5 Quartic case
5.1 Classification of quartic equation $f(x)=0$

The classification for the types of solutions in the quartic equation case are also argued
some researchers before. In this report, we will use the classification in [2]. Let $A,$ $B,$ $C,$ $D$

and $E$ be real number with $A\neq 0$ and $f(x)=Ax^{4}+Bx^{3}+Cx^{2}+Dx+E$ , then all quartic
equations are simplified to the following form:

$f(x)=x^{4}+6Hx^{2}+4Gx+(I-3H^{2})=0$ (6)

where $I= \frac{E}{A}-\frac{BD}{4A^{2}}+\frac{c^{2}}{12A^{2}},$ $G= \frac{D}{4A}-\frac{BC}{8A^{2}}+\frac{B^{3}}{3’2A^{3}}$ and $H= \frac{c}{6A}-\frac{B^{2}}{16A^{2}}$ . The discriminant of
$f(x)=0$ is written by $D_{q,1}=I^{3}-27(HI-4H^{3}-G^{2})^{2}.$

Table 6: Table of types on $f(x)=x^{4}+6Hx^{2}+4Gx+(I-3H^{2})=0$

We draw a picture of null set of the discriminant $D_{q,1}$ in Figure 1 and Figure 3. We
observe that (0,4)-type consists of a curve around $(2+2,0)$ -type domain, we call the curve
$a(0,4)$ -filament. We review that the (0,4)-type means that there are multiple imaginary
solutions of $f(x)=0$ . Since the (0,4)-filament belongs to null set of $D_{q,1}$ , we have the
following remark.
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Figure 3: discriminant of the quartic equations

Remark 5.1. Set germ of null set of $D_{q,1}$ at the origin is not homeomorphic to the
cuspidal edge. This claim also holds on the parameter space $(b, c, d, e)$ for the quartic
equation $f(x)=x^{4}+bx^{3}+cx^{2}+dx+e=0.$

5.2 Aspects from the invariants
We now switch to argue the homogeneous polynomial and argue the invariants for the
quartic equations. Let

$\triangle(\theta)=\sum_{i,j\geq 0,i+j\leq 2}q_{j}\cos^{i}\theta\sin^{j}\theta=0$

be a nontrivial trigonometric equation, by replacing $(\sin\theta, \cos\theta)$ with $(2xy/(x^{2}+y^{2}),$ $(y^{2}-$

$x^{2})/(x^{2}+y^{2}))$ and multiplying $(x^{2}+y^{2})^{2}$ , we have a homogeneous polynomial of degree at
most four $F(x, y)=Ax^{4}+Bx^{3}y+Cx^{2}y^{2}+Dxy^{3}+Ey^{4}$ with real parameters $A,$ $B,$ $C,$ $D,$ $E.$

Suppose that $(A, B, C, D, E)\neq 0$ , then we have at most four solutions $[x : y]$ for the
equation $F(x, y)=0$ on the projective complex space $\mathbb{C}P^{1}$ . Let $S=\{Q\in rGL(2, \mathbb{R})|$

$\det Q=\pm 1\}$ be a subgroup of general linear group, an action $Q\in S$ to the homogeneous
equation $F(x, y)=0$ is defined by

Q.$F(x, y)=F(ax+by, cx+dy)$ , where $Q=(\begin{array}{ll}a bc d\end{array})\in S.$

The action $Q\in S$ does not change solution type of the equation $F(x, y)=0$ . We have
two invariants $I^{*}$ and $K^{*}$ under the action of $Q\in S$ :

$I^{*}=12AE-3BD+C^{2},$ $K^{*}= \frac{1}{2}(72ACE-27AD^{2}-27B^{2}E+9BCD-2C^{3})$ .

Let
$D_{q,1}^{*}=I^{*3}-K^{*2}$

be the discriminant of $F(x, y)=0$. When $A\neq 0$ , the coefficients $I,$ $H,$ $G$ are written
by the coefficients $A,$ $B,$ $C,$ $D,$ $E$ of quartic equation $f(x)=F(x, 1)=0$ . We may write
$I^{*}=12A^{2}I,$ $K^{*}=216A^{3}(HI-4H^{3}-G^{2})$ and $D_{q,1}^{*}=12^{3}A^{6}D_{q,1}.$

56



Remark 5.2. Let $F(x, y)$ be a homogeneous polynomial and we denote $F_{inv}(x, y)=$

$F(y_{)}x)$ and $F_{s}(x, y)=F(x, y+sx)$ for real parameter $s$ , then the solution type of
$F_{inv}(x, y)=0$ and $F_{s}(x, y)=0$ are the same as the solution type of $F(x, y)=0$. Moreover,
the degree of $F_{s}(1, x),$ $F_{s}(x, 1)$ is equal to four for almost all $s$ in $\mathbb{R}.$

We denote a candidate of the discriminant:

$J= \frac{(|A|+|E|)\sqrt{I^{*}}}{12}+\frac{(AC+CE)}{6}-\frac{B^{2}+D^{2}}{16}.$

It is not a polynomial, perhaps we may have some other discriminants, but we do not
argue the existence problem here.

Proposition 5.3. Let $(A, B, C, D, E)\neq 0$ and $F(x, y)=0$ be a homogeneous polynomial
of degree four and $J$ is defined as above, then

(1) If the solution type of $F(x, y)=0$ are $(0,3+1),$ $(0, 1+1+1+1)$ , (0,2 $+$ 1 $+$ 1) then $J<0.$

(2) If the solution type of $F(x, y)=0$ are $(2+2,0),$ $(2,2),$ $(4,0)$ then $J>0.$

(3) If the solution type of $F(x, y)=0$ are (0,4), $(0,2+2)$ then $J=0.$

Therefore the $sign$ of $J$ is also an invariant under the actions on $S$ except for $(2,1+1)$

case, and we may discriminate the solution type of $F(x, y)=0$ the as follows:

Table 7: Table of types on $F(x, y)=Ax^{4}+Bx^{3}y+Cx^{2}y^{2}+Dxy^{3}+Ey^{4}=0$

Therefore, the sufficient and necessity condition that $F(x, y)\geq 0$ $($or $\leq 0)$ for all
element $[x:y]$ in $\mathbb{R}P^{1}$ is $I^{*}\geq 0,$ $D_{q,1}^{*}\geq 0$ and $J\geq 0.$
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