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Abstract

We introduce the author’s research about an estimate for the highest
degrees of liftable vector fields and the module of liftable vector fields for
non-singular mono-germs and function mon$(\succ$germs of one variable.

1 Introduction
In this paper, we introduce the author’s research about liftable vector fields.
Let $\mathbb{K}$ be $\mathbb{R}$ or $\mathbb{C}$ . In this paper, suppose that all mappings are smooth (that is,
of class $C^{\infty}$ if $\mathbb{K}=\mathbb{R}$ or holomorphic if $\mathbb{K}=\mathbb{C}$ ).

The notion of liftable vector fields was introduced by Arnol’d [1] for studying
bifurcations of wave front singularities. As results and applications of liftable
vector fields, Bruce and West [2] obtained diffeomorphisms preserving a crosscap
to classify functions on it, and Houston and Littlestone [4] obtained generators
for the module of vector fields liftable over the generalized cross cap to find
$\mathcal{A}_{e}$-codimension 1 maps from $\mathbb{C}^{n}$ to $\mathbb{C}^{n+1}$ Houston and Atique [3] classified
$v$

$\mathcal{K}$-codimension 2 maps on the generalized crosscap to apply to a classification
of $\mathcal{A}_{e}$ -codimension 2 maps from $\mathbb{C}^{n}$ to $\mathbb{C}^{n+1}$ Nishimura [8] characterized the
minimal number of generators for the module of vector fields liftable over a
finitely determined multigerm of corank at most one satisfying a special condi-
tion when $n\leq p.$

In previous work [6], the author showed that we can find polynomial vector
fields liftable over $f$ if $f$ is a polynomial multigerm and gave an estimate for
the highest degrees of liftable vector fields. The highest degree of polynomial
vector field $\xi$ means maximum of that of component functions of $\xi$ . Let $[x]$ be
the greatest integer not exceeding $x$ . Lift $(f)$ denotes the module of vector fields
liftable over $f$ . We proved the following theorem.

Theorem 1.1 ([6]). Let $f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p}, 0)(n<p)$ be a polynomial multi-
germ. Then, there exists a non-zero polynomial vector fidd in Lift $(f)$ such that
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the highest degree is at$\cdot$ most

$N=[p-\sqrt[n]{(\alpha+1)(p-1)!}]+1,$

where
$\alpha=r(\frac{p\cdot 2^{n}-n}{n!})(D+n-1)^{n}, r=|S|,$

$D= \max\{D_{i}|i\in\{1,2, \ldots, r\}\},$ $D_{i}= \max\{\deg(X_{j}of_{i})|j\in\{1,2, \ldots,p\}\}.$

The proof of Theorem 1.1 also gives a method to find a non-zero element
of Lift $(f)$ . However, we can usually take values of $N$ that are much lower
than those calculated in Theorem 1.1. Therefore, we needed to improve this
estimate. In [7], a better estimate for the highest degrees of liftable vector fields
was discoverd when $n=1$ . It is the following result. Let $\lceil x\rceil$ be the smallest
integer greater than or equal to $x.$

Theorem 1.2 ([7]). Let $f$ : $(\mathbb{K}, S)arrow(\mathbb{K}^{p}, 0)(p\geq 2)$ be a polynomial multigerm
which contains no branch of zero map. Then there exist a non-zero polynomial
vector field of Lift $(f)$ such that the highest degree is at most

$N= \max\{\lceil p-\sqrt[1]{(Ap-A)(p-1)!}-p!\rceil, 1\},$

and the highest degree of a $\omega$rresponding lowerable vector field for $f_{i}$ is at most

$D_{i}N-D_{i}+1,$

where

$A= \sum_{i=1}^{r}D_{i}, D_{i}=\max\{\deg(X_{j}of_{i})|j\in\{1, \ldots,p\}\}.$

This paper is organized as follows. In Section 2, we explain various defini-
tions, basic facts and examples implying difference of estimates between Theo-
rem 1.1 and Theorem 1,2. In Section 3 the sketch of proof of Theorem 1.2 is
described. In Section 4 and 5, topics about the module of liftable vector fields
are given. The number of generators for the module of vector fields liftable over
a non-singular mono-germ is identified in Section 4. Theorem 1.1 and Theorem
1.2 claims that there exist non-zero polynomial vector fields liftable over $f$ when
$f$ is a polynomial. It is natural to ask whether there exist non-zero polynomial
liftable vector fields when $f$ is not a polynomial. In Section 5 we investigate
the module of vector fields liftable over a function germ of one variable and also
consider this problem.

2 Preliminary

Let $S$ be a subset of $\mathbb{K}^{n}.$ $A$ map germ $f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p},0)$ is called a multigerm.
If $S$ is a singleton, $f$ is called a mono-germ. Let $C_{S}$ $(resp., C_{0})$ be the set of
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function germs $(\mathbb{K}^{n}, S)arrow \mathbb{K}$ $(resp., (\mathbb{K}^{p}, 0)arrow \mathbb{K})$ , and let $m_{S}$ $(resp., m_{0})$ be the
subset of $C_{S}$ $(resp., C_{0})$ consisting of function germs $(\mathbb{K}^{n}, S)arrow(\mathbb{K}, 0)$ (resp.,
$(\mathbb{K}^{p}, 0)arrow(\mathbb{K}, 0))$ . The sets $C_{S}$ and $C_{0}$ have natural $\mathbb{K}$-algebra structures.
A multigerm $f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p}, 0)$ can be defined by $(f_{1}, f_{2}\ldots, f_{r})$ , where
$f_{i}$ : $(\mathbb{K}^{n}, 0)arrow(\mathbb{K}^{p}, 0)$ . Each $f_{i}$ is called a branch. In this paper, for a multigerm
$f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p}, 0)$ defined by $(f_{1}, f_{2}\ldots, f_{r})$ with $f_{i}$ : $(\mathbb{K}^{n}, 0)arrow(\mathbb{K}^{p}, 0)$ , we
consider $S$ to be a set consisting of $r$ distinct points.

For a map germ $f$ : $(\mathbb{K}^{n}, S)arrow \mathbb{K}^{p}$ , let $\theta_{\mathcal{S}}(f)$ be the set of germs of vector
fields along $f$ . The set $\theta_{S}(f)$ has a natural $C_{S}$ -module structure and is identified
with the direct sum of $p$ copies of $C_{S}$ . Put $\theta_{S}(n)=\theta_{S}(id_{(\mathbb{K}^{n},S)})$ and $\theta_{0}(p)=$

$\theta_{\{0\}}(id_{(\mathbb{K}^{p},0)})$ , where id $(\mathbb{K}^{n},S)$
$(resp., id(\mathbb{K}p,0)$ ) is the germ of the identity mapping

of $(\mathbb{K}^{n}, S)$ $(resp., (\mathbb{K}^{p}, 0)$ ). For a multigerm $f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p},0)$ , following
Mather [5], we define $tf$ and $\omega f$ as

$tf:\theta_{S}(n)arrow\theta_{S}(f) , tf(\eta)=dfo\eta,$

$\omega f:\theta_{0}(p)arrow\theta_{S}(f) , \omega f(\xi)=\xi of,$

where $df$ is the differential of $f$ . Following Wall [9], we put $T\mathcal{R}_{e}(f)=tf(\theta_{S}(n))$

and $T\mathcal{L}_{e}(f)=\omega f(\theta_{0}(p))$ .
For a multigerm $f$ : $(\mathbb{K}^{n}, S)arrow(\mathbb{K}^{p}, 0)$ , a vector field $\xi\in\theta_{0}(p)$ is said to be

liftable over $f$ if $\xi of\in r1^{\dagger}\mathcal{R}_{e}(f)\cap 1’\mathcal{L}_{e}(f)$ . The set of vector fields liftable over
$f$ is denoted by Lift $(f)$ . Note that Lift $(f)$ has a natural $C_{0}$-module structure.
Let $(x_{1}, x_{2}, \ldots, x_{n})$ $(resp., (X_{1}, \ldots, X_{p})$ ) be the standard local coordinates of
$\mathbb{K}^{n}$ $(resp., \mathbb{K}^{p})$ at the origin. Sometimes $(x_{1}, x_{2})$ $(resp., (X_{1}, X_{2})$ ) is denoted by
$(x, y)$ $(resp., (X, Y)$) and $(x_{1}, x_{2}, x_{3})$ $(resp., (X_{1}, X_{2}, X_{3})$ ) is denoted by $(x, y, z)$
$(resp., (X, Y, Z)$ ). We see easily that

$\xi=(\psi_{1}(X_{1}, X_{2}, \ldots, X_{p}), \cdots, \psi_{p}(X_{1},X_{2}, \ldots, X_{p}))\in$ Lift $(f)$ ,

where $\psi_{j}$ : $(\mathbb{K}^{p}, 0)arrow \mathbb{K}(j=1,2, \ldots,p)$ , if and only if for every $i\in\{1, \ldots, r\}$

there exist a vector field

$\eta_{i}=(\phi_{i,1}(x_{1}, x_{2}, \ldots,x_{n}), \ldots, \phi_{i,n}(x_{1}, x_{2}, \ldots, x_{n}))$ ,

where $\phi_{i,k}$ : $(\mathbb{K}^{n}, 0)arrow \mathbb{K}(k=1,2, \ldots, n)$ , such that $\xi of_{i}=df_{i}o\eta_{i}$ i. e.

$(\begin{array}{lll}\psi_{l}(X_{1},X_{2} \cdots X_{p})| \psi_{p}(X_{1},X_{2)} \cdots X_{p})\end{array})\circ f_{i}(x_{1}, x_{2}, \ldots, x_{n})$

$= (\begin{array}{lll}\frac{\partial(X_{1}of_{i})}{\partial x_{1}} \cdots \frac{\partial(x_{1}\circ f_{i})}{\partial x_{n}}| |\frac{\partial(x_{p}\fcircle f_{i})}{\partial x_{l}} \cdots \frac{\partial(X_{p}\circ f_{\iota’})}{\partial x_{n}}\end{array})(\begin{array}{lll}\phi_{i,1}(x_{1},x_{2} \cdots x_{n})| \phi_{i,n}(x_{1},x_{2} \cdots x_{n})\end{array})$

We call this $\eta_{i}$ a lowerable vector field for $f_{i}$ corresponding to $\xi.$
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Example 2.1. Let $f$ : $(\mathbb{K},0)arrow(\mathbb{K}^{2},0)$ be given by $f(x)=(x^{2}, x^{3})$ . Then, it
can be seen easily that the following vector fields are liftable over $f$ :

$(\begin{array}{l}2X3Y\end{array}), (\begin{array}{l}2Y3X^{2}\end{array})$

The forms of vector fields liftable over a polynomial multigerm are compli-
cated generally.

Example 2.2. Let $f$ : $(\mathbb{K}, S)arrow(\mathbb{K}^{2},0)$ be given by $f_{1}(x)=(x^{2}, x^{3}),$ $f_{2}(x)=$

$(x^{3},x^{2})$ . Then, it is known [8] that the following vector fields are liftable over
$f$ :

$(-6X^{2}Y^{2}+6XY) \frac{\partial}{\partial X}+(-9XY^{3}+5X^{3}+4Y^{2})\frac{\partial}{\partial Y},$

In fact,

$(\begin{array}{ll}-6X^{2}Y^{2} +6XY+5x_{-9XY^{3}}^{3} +4Y^{2}\end{array})\circ fi=(\begin{array}{ll}-6x^{10} +6x^{5}-9x^{1l} +9x^{6}\end{array})=(\begin{array}{l}2x3x^{2}\end{array})(-3x^{9}+3x^{4})$ ,

$(\begin{array}{ll}-6X^{2}Y^{2} +6XY-9XY^{3}+5X^{3} +4Y^{2}\end{array})\circ f_{2}=(\begin{array}{ll}-6x^{10} +6x^{5}-4x^{9} +4x^{4}\end{array})=(\begin{array}{l}3x^{2}2x\end{array})(-2x^{8}+2x^{3})$

holds.

The following property is very fundamental and important.

Proposition 2.3. We assume $g=tofos$ , which $t$ and $s$ are diffeomorphisms
$(that is, f is \mathcal{A}-$ equivalent $to g)$ . Then,

$\xi\in$ Lift $(f)\Rightarrow dto\xi ot^{-1}\in$ Lift $(g)$ .

This means that only diffeomorphism of the target of $f$ affects liftable vector
fields of $g$ . In addition, we will see that only that of the sourse affects lowerable
vector fields in the proof.

Proof There exists $\eta\in\theta_{S}(n)$ such that

$\xi of=dfo\eta.$

Then, the following holds:

$(dt\circ\xi\circ t^{-1})\circ g = dto\xi ot^{-1}o(tofos)$

$= dt\circ(\xi of)os$

$= dto(dfo\eta)os$

$= d(tof)0\eta os$

$= d(gos^{-1})0\eta os$

$= dgo(ds^{-1}o\eta os)$

Thus, $dto\xi ot^{-1}\in$ Lift $(g)$ . $\square$
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We compare estimates of Theorem 1.1 and Theorem 1.2 using examples.

Example 2.4. When $n=1$ and $p=2$ , by Theorem 1.1

$N=3rD+2.$

For $f(x)=(x^{2}, x^{3})$ , since $r=1$ and $D=3$ , we get $N=11$ . On the other hand,
when $p=2$ by Theorem 1.2

$N=\lceil A-\sqrt{2}\rceil,$

Since $A=3$ , we get $N=2$ . In fact, the highest degree of the following liftable
vector fields are 1 and 2 respectively;

$(\begin{array}{l}2X3Y\end{array}), (\begin{array}{l}2Y3X^{2}\end{array})$

Example 2.5. $1\{^{\urcorner}orf$ : $(\mathbb{K}, S)arrow(\mathbb{K}^{2},0)$ given by $f_{1}(x)=(x^{2},x^{3}),$ $f_{2}(x)=$
$(-x^{3}, x^{2}),$ $f_{3}(x)=(x^{2}-x^{3}, x^{2}+x^{3})$ , since $r=3$ and $D=3$ , by Theorem 1.1
$N=29$ . On the other hand, by Theorem 1.2 since $A=9$ , we get $N=8$ . In
fact, the following vector field are liftable over $f$ and the highest degree is 6;

$(-15X^{6}-45X^{5}Y-45X^{4}Y^{2}+19X^{3}Y^{3}+4X^{2}Y^{4}$

$-4X^{5}-64X^{4}Y+45X^{3}Y^{2}+41X^{2}Y^{3}+57XY^{4}$

$-7Y^{5}+4X^{4}-12X^{3}Y-8X^{2}Y^{2}+52XY^{3}$

$-14Y^{4}+8X^{3}-16X^{2}Y) \frac{\partial}{\partial X}$

$+(-10X^{5}Y-30X^{4}Y^{2}-38X^{3}Y^{3}+18X^{2}Y^{4}+6XY^{5}$

$+8X^{5}-8X^{4}Y-46X^{3}Y^{2}+34X^{2}Y^{3}+24XY^{4}$

$+56Y^{5}-4X^{4}+6X^{3}Y-26X^{2}Y^{2}-10XY^{3}$

$+28Y^{4}+12X^{2}Y-20XY^{2}) \frac{\partial}{\partial Y}.$

Example 2.6. When $n=1$ and $p=3$ , by Theorem 1.1

$N=\lceil\sqrt{2(5rD+1)}\rceil$

For $f$ : $(\mathbb{K}, S)arrow(\mathbb{K}^{3},0)$ given by $f_{1}(x)=(x^{3}, x^{4}, x^{5}),$ $f_{2}(x)=(x^{4}, x^{5}, x^{3}),$ $f_{3}(x)=$
$(x^{5}, x^{3}, x^{4})$ , we get $r=3$ and $D=5$ . Therefore, $N=13$ . On the other hand,
when $p=3$ by Theorem 1.2

$N=\lceil 2\sqrt{A}-\sqrt[3]{6}\rceil$

Since $A=15$ , we get $N=6$ . In fact, the following vector field are liftable over
$f$ and the highest degree is 5;

67



$(12X^{3}+18X^{4}-12X^{2}Y+12X^{3}Y+18X^{4}Y+6X^{2}Y^{2}-$

$6X^{3}Y^{2}+18XY^{3}-18X^{2}Y^{3}+6Y^{4}+18X^{3}Z-6XYZ-$

$12X^{2}YZ-6X^{3}YZ-18XY^{2}Z-18X^{2}Y^{2}Z+12Y^{3}Z+$

$6XY^{3}Z+18Y^{4}Z-6X^{2}Z^{2}-18X^{3}Z^{2}-18XYZ^{2}-$

$6X^{2}YZ^{2}-18Y^{2}Z^{2}+12XZ^{3}+6X^{2}Z^{3}+6YZ^{3}-$

$12Y^{2}Z^{3}-6Z^{4}+12XZ^{4}) \frac{\partial}{\partial X}+$ $\cdot$

$(-8X^{4}+16X^{2}Y+16X^{3}Y+24X^{4}Y-8XY^{2}+8X^{2}Y^{2}+$

$16X^{3}Y^{2}+16XY^{3}-8Y^{4}-8X^{2}Z+8XYZ+16X^{2}YZ+8X^{3}YZ-$

$8XY^{2}Z-24X^{2}Y^{2}Z-16Y^{3}Z-16XY^{3}Z-24X^{3}Z^{2}+$

$8YZ^{2}-16X^{2}YZ^{2}-8Y^{2}Z^{2}-16XZ^{3}-8X^{2}Z^{3}+8YZ^{3}+$

$32XYZ^{3}-8Z^{4}) \frac{\partial}{6^{Y}}+(10X^{4}Y+10XY+10X^{2}Y^{2}+30X^{3}Y^{2}+10XY^{3}+$

$10X^{2}Y^{3}+20Y^{4}+10X^{2}Z+20X^{3}Z-20XYZ+10X^{2}YZ+$

$10X^{3}YZ+10XY^{2}Z-30XY^{3}Z-10Y^{4}Z-10X^{3}Z^{2}-$

$10YZ^{2}-20XYZ^{2}-40X^{2}YZ^{2}-20Y^{2}Z^{2}-30XY^{2}Z^{2}-$

$10Y^{3}Z^{2}-10X^{2}Z^{3}-10YZ^{3}+30Y^{2}Z^{3}+20Z^{4}+10XZ^{4}) \frac{\partial}{\partial Z}.$

3 The sketch of proof of Theorem 1.2
We want non-negative integers $N$ and $N_{i}’(i=1,2, \ldots, r)$ such that we can find
a coefficient vector

$(a_{1}^{(0,0,\ldots,0)}, a_{1}^{(1,0,\ldots,0)}, \ldots, a_{p}^{(0,0,\ldots,N)}, a_{1,0}, a_{1,1}, \ldots, a_{r,N_{r}’})\neq 0$

such that for every $i\in\{1,2, \ldots, r\}$ , the following polynomial equation with
respect to the variable $x_{1}$ holds:

$(\begin{array}{lll}\sum_{d=0}^{N}(\sum_{i_{1}+\cdots+i_{p}=d}a_{l}^{(i_{1},i_{2}} \cdots i_{p})\prod_{h=1}^{p}X_{h}^{i_{h}})| \sum_{d=0}^{N}(\sum_{i_{l}+\cdots+i_{p}=d}a_{p}^{(i_{l},i_{2}} \cdots i_{p})\prod_{h=l}^{p}X_{h}^{i_{h}})\end{array})\circ f_{i}$

$= (\begin{array}{l}-\vdots-\end{array})(a_{i},0+a_{i,1}x_{1}+\cdots+a_{i,N_{i}’}x_{1}^{N_{i}’})$ ,

where $i_{1},$ $i_{2},$
$\ldots,$

$i_{p}$ are non-negative integers. Note that for every $i\in\{1,2, \ldots, r\},$

the highest degree of the left-hand side is at most $N\cdot D_{i}$ and that of the right-
hand side is at most $N_{i}’+D_{i}-1$ . By comparing the coefficients of the terms on
the both sides, a system of linear equations with$(_{respect}$ to

$a_{1}^{(0,0,\ldots,0)}, a_{1}^{(1,0,\ldots,0)}, \ldots, a_{p}^{(0,0,\ldots,N)},a_{1,0}, a_{1,1}, \ldots, a_{r,N_{r}’}$
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is obtained. Let the number of unknowns of the system of linear equations be
denoted by $U$ and the number of equations by $B^{1}$ . We assume that $N\geq 1$ to
put

$N_{i}’=ND_{i}-D_{i}+1.$

The number of combinations of non-negative integers $i_{1},$
$\cdots,$ $i_{p}$ such that $i_{1}+$

. . . $+i_{p}=d$ is

$(\begin{array}{l}d+p-1d\end{array})=\frac{(d+p\langle-1)!}{d!(p-1)!}=\frac{(d+p-1)\cdots(d+1)}{(p-1)!}.$

Thus, we get

$U=p \sum_{d=0}^{N}\frac{(d+p-1)\cdots(d+1)}{(p-1)!}+\sum_{i=1}^{r}(ND_{i}-D_{i}+2)$

and

$A^{1}\leq p\sum_{i=1}^{r}(ND_{i}+1)$ .

Here, the folloing formula is known.

Proposition 3.1. For a non-negative integer $k,$

$\sum_{d=1}^{n}d(d+1)\cdots(d+k)=\frac{n(n+1)\cdots(n+k+1)}{k+2}.$

In addition, the following lemma holds.

Lemma 3.2. For $p\in \mathbb{N}_{\geq 2}$ and $x\in \mathbb{R}>0_{J}$

$(x+y_{p}\overline{!})^{p}<(x+1)(x+2)\cdots(x+p)$

Put

$A= \sum_{i=1}^{r}D_{i}.$

By Proposition 3.1 and Lemma 3.2, we get

$U-E> \ell\frac{1}{(p-1)!}(N+\nu\overline{p!})\{(N+\varphi_{\overline{p!})^{p-1}-A}(p-1)(p-1)!\}.$

Thus, if we put

$N= \max\{\lceil p-\sqrt[1]{(Ap-A)(p-1)!}-\eta_{p!\rceil,1\}}^{\Gamma}$

and
$N_{i}’=ND_{i}-D_{i}+1,$

then we can obtain $U-B^{\urcorner}>0$ . This completes the proof.
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4 Liftable vector fields for non-singular mono-
germs

A mono-germ $f$ : $(\mathbb{K}^{n}, 0)arrow(\mathbb{K}^{p}, 0)$ is singular if rank$Jf( O)<\min\{n,p\}$ holds,
wh$6reJf(O)$ is the Jacobian matrix of $f$ at $0.$ $A$ mono-germ $f$ : $(\mathbb{K}^{n}, 0)arrow(\mathbb{K}^{p}, 0)$

is non-singular if $f$ is not singular.
We identify the number of generators for Lift $(f)$ for a non-singular mono-

germ $f.$

Proposition 4.1. Let $f$ : $(\mathbb{K}^{n}, 0)arrow(\mathbb{K}^{p}, 0)$ be non-singular. Then, the number
of generators for Lift $(f)$ is

$\{\begin{array}{ll}n+(p-n)(p-n) (n<p)p (n\geq p)\end{array}$

Proof. When $n\geq p$ we know that $f$ is $\mathcal{A}$-equivalent to the following form:

$g(x_{1}, \ldots, x_{n})=(x_{1}, \ldots, x_{p})$ .

Then, we can easily check that Lift $(g)=C_{0}$ . Therefore, the number of genera-
tors for Lift $(f)$ is $p.$

When $n<p$ we know that $f$ is $\mathcal{A}$-equivalent to the following form :

$h(x_{1}, \ldots, x_{n})=(x_{1}, \ldots, x_{n}, 0, \ldots, 0)$ .

Then, we can check that the following vector fields belong to Lift $(h)$ :

$\frac{\partial}{\partial X_{i}}\partial (1\leq i\leq n)$

$X_{n+i}\overline{\partial X_{n+j}} (1\leq i,j\leq p-n)$
.

Therefore, we know

$\langle\frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}, X_{n+1}\frac{\partial}{\partial X_{n+1}}, X_{n+2}\frac{\partial}{\partial X_{n+1}}, \ldots,X_{p}\frac{\partial}{\partial X_{p}}\rangle_{C_{0}}$

is contained in Lift $(h)$ .
Conversely, for $\xi=(\psi_{1}(X_{1}, X_{2}, \ldots, X_{p}), \cdots, \psi_{p}(X_{1}, X_{2}, \ldots, X_{p}))\in$ Lift $(h)$ ,

since there exist smooth function germs $\phi_{i}(x_{1}, x_{2}, \ldots, x_{n})(i=1,2, \ldots, n)$ such
that

$\psi_{i}(x_{1}, x_{2}, \ldots,x_{n},0,0, \ldots, 0)=\{\begin{array}{ll}\phi_{i}(x_{1}, x_{2}, \ldots, x_{n}) (1\leq i\leq n)0 (n+1\leq i\leq p)\end{array}$

when $n+1\leq i\leq p$ there exist smooth function germs $\tilde{\psi}_{i}(X_{1}, X_{2}, \ldots, X_{p})(i=$

1, 2, . . . , $p-n)$ such that

$\psi_{i}(X_{1}, X_{2}, \ldots, X_{p})$ $=$ $\psi_{i}(X_{1}, X_{2}, \ldots, X_{n}, 0,0, \ldots, 0)+\tilde{\psi}_{1}X_{n+1}+\cdots+\psi_{p-n}^{\sim}X_{p}$

$= \tilde{\psi}_{1}X_{n+1}+\cdots+\psi_{p-n}^{\sim}X_{p}.$
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Therefore, $\xi=(\psi_{1}(X_{1}, X_{2}, \ldots, X_{p}), \cdots, \psi_{p}(X_{1}, X_{2}, \ldots, X_{p}))\in$ Lift $(h)$ belongs
to

$\langle\frac{\partial}{\partial X_{1}}, \ldots, \frac{\partial}{\partial X_{n}}, X_{n+1}\frac{\partial}{\partial X_{n+1}}, X_{n}2\frac{\partial}{\partial X_{n+1}}, \ldots X_{p}\frac{\partial}{\partial X_{p}}\rangle_{C_{0}}$

Thus, the number of generators for Lift $(f)$ is $n+(p-n)(p-n)$ . This completes
the proof. a

When $f$ is singular, characterization of the number of generators for Lift $(f)$

is essentially difficult (see [8]).

5 Liftable vector fields for function mono-germs
of one variable

We investigate Lift $(f)$ for $n=p=1.$

Proposition 5.1. Let a smooth function $f$ : $(\mathbb{K}, 0)arrow(\mathbb{K}, 0)$ be denoted by
$f(x)=f(x)x^{n}$ , where $f$ : $(\mathbb{K}, 0)arrow \mathbb{K}$ satisfies $f(0)\neq 0$ and $n$ is an integer
greater than 1. Then, Lift $(f)=\langle X\rangle_{C_{0}}.$

Proof Since $f(x)=f(x)x^{n}$ , we can see easily

$f’(x)=\tilde{f}’(x)x^{n}+n\tilde{f}(x)x^{n-1}$

At first we show $(\subset)$ . Since $f(O)=f’(O)=0$, for $\xi\in$ Lift $(f)\xi(0)=0$ holds.
Therefore, there exists a function $\psi(X)$ such that $\xi(X)=\psi(X)X$ . This means
Lift $(f)\subset\langle X\rangle_{C_{0}}.$

Next, we show $(\supset)$ . It is sufficient to show $X\in$ Lift $(f)$ . In fact,

$f(x)x^{n}=( \tilde{f}’(x)x^{n}+nf(x)x^{n-1})(\frac{\tilde{f}(x)x}{\tilde{f}(x)x+n\tilde{f}(x)})$

holds. Thus, Lift $(f)\supset\langle X\rangle_{C_{U}}$ . This completes the proof. $\square$

This implies that there exist some cases that we can take non-zero polynomial
vector fields liftable over $f$ even though $f$ is not a polynomial. Proposition 5.1
does not hold generally for a flat function $f$ . For example, if

$f(x)=\{\begin{array}{ll}x^{2}e^{-1/x} (x>0)0 (x=0)x^{2}e^{1/x} (x<0)\end{array}$

then $X$ is not liftable. We prove this statement. we show that

$X\not\in$ Lift $(f)$ .

At first, since

$g(x)=\{\begin{array}{ll}e^{-1/x} (x>0)0 (x\leq 0)\end{array}$
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is a $C^{\infty}$ function, so is $g(-x)$ . Therefore,

$h(x)=\{\begin{array}{ll}e^{-1/x} (x>0)0 (x=0)e^{1/x} (x<0)\end{array}$

is a $C^{\infty}$ function. Thus, $f(x)=x^{2}h(x)$ is a $C^{\infty}$ function.
We assume that $X\in$ Lift $(f)$ . Then, a lowerable vector field $\phi(x)$ for a

liftable vector field $X$ must be

$\phi(x)=\{\begin{array}{ll}\frac{x^{2}}{2x+1} (x>0)a (x=0)\frac{x^{2}}{2x-1} (x<0)\end{array}$

$(a\in \mathbb{R})$ . However, $\phi(x)$ is not class of $c\infty$ . Thus, $X\not\in$ Lift $(f)$ .
On the other hand, we can show that $X^{2}$ is liftable. In fact, we can give a

lowerable vector field $\phi(x)$ as follows:

$\phi(x)=\{\begin{array}{ll}\frac{x^{4}e^{-1/x}}{2x+1} (x>0)0 (x=0)\frac{x^{4}e^{1/x}}{2x-1} (x<0)\end{array}$

It can be seen easily that $\phi(x)$ is class of $C^{\infty}$ . Thus, $X^{2}\in$ Lift $(f)$ .
The author does not know examples of $f$ such that there exist no polynomial

vector fields liftable over $f.$
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