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Notes on liftable vector fields

Yusuke Mizota*

Abstract

We introduce the author’s research about an estimate for the highest
degrees of liftable vector fields and the module of liftable vector fields for
non-singular mono-germs and function mono-germs of one variable. 7

1 ‘Introduction

In this paper, we introduce the author’s research about liftable vector fields.
Let K be R or C. In this paper, suppose that all mappings are smooth (that is,
of class C*° if K = R or holomorphic if K = C).

The notion of liftable vector fields was introduced by Arnol’d [1] for studying
bifurcations of wave front singularities. As results and applications of liftable
vector fields, Bruce and West [2] obtained diffeomorphisms preserving a crosscap
to classify functions on it, and Houston and Littlestone [4] obtained generators
for the module of vector fields liftable over the generalized cross cap to find
Ae-codimension 1 maps from C" to C"*!. Houston and Atique [3] classified
v K-codimension 2 maps on the generalized crosscap. to apply to a classification
of A.-codimension 2 maps from C* to C*+1. Nishimura [8] characterized the
minimal number of generators for the module of vector fields liftable over a
finitely determined multigerm of corank at most one satisfying a special condi-
tion when n < p. _

In previous work [6], the author showed that we can find polynomial vector
fields liftable over f if f is a polynomial multigerm and gave an estimate for
the highest degrees of liftable vector fields. The highest degree of polynomial
vector field £ means maximum of that of component functions of £. Let [z] be
the greatest integer not exceeding z. Lift(f) denotes the module of vector fields
liftable over f. We proved the following theorem.

Theorem 1.1 ([6]). Let f: (K", S) — (KP,0) (n < p) be a polynomial multi-
germ. Then, there exists a non-zero polynomial vector field in Lift(f) such that
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the highest degree is at- most

N = [P-{/(aJr (p - 1)1] +1,

where

a———r(p—'z—_ﬁ) (D+n-1)" r=]|S|,

n!
D =max{D;|i € {1,2,...,7}}, D;=max{deg(X;of:)|j€{L2,...,p}}.

The proof of Theorem 1.1 also gives a method to find a non-zero element
of Lift(f). However, we can usually take values of N that are much lower
than those calculated in Theorem 1.1. Therefore, we needed to improve this
estimate. In [7], a better estimate for the highest degrees of liftable vector fields
was discoverd when n = 1. It is the following result. Let [z] be the smallest
integer greater than or equal to z.

Theorem 1.2 ([7]). Let f : (K,S) — (K?,0) (p > 2) be a polynomial multigerm
which contains no branch of zero map. Then there exist a non-zero polynomial
vector field of Lift(f) such that the highest degree is at most

N:max{[v-\lf(Ap—A)(p—m— {/H] ,1},

and the highest degree of a corresponding lowerable vector field for f; is at most

D;N - D; + 1,

where .
A=S"Di, D;=max{deg(X;o fi)|j€{L,...,p}}.

1=1

This paper is organized as follows. In Section 2, we explain various defini-
tions, basic facts and examples implying difference of estimates between Theo-
rem 1.1 and Theorem 1.2. In Section 3 the sketch of proof of Theorem 1.2 is
described. In Section 4 and 5, topics about the module of liftable vector fields
are given. The number of generators for the module of vector fields liftable over
a non-singular mono-germ is identified in Section 4. Theorem 1.1 and Theorem
1.2 claims that there exist non-zero polynomial vector fields liftable over f when
f is a polynomial. It is natural to ask whether there exist non-zero polynomial
liftable vector fields when f is not a polynomial. In Section 5 we investigate
the module of vector fields liftable over a function germ of one variable and also
consider this problem.

2 Preliminary

Let S be a subset of K*. A map germ f : (K", 5) — (K?,0) is called a multigerm.
If S is a singleton, f is called a mono-germ. Let Cg (resp., Cp) be the set of



function germs (K", S) — K (resp., (K?,0) — K), and let mg (resp., mo) be the
subset of Cs (resp., Cp) consisting of function germs (K", S) — (K, 0) (resp.,
(K?,0) — (K,0)). The sets Cs and Cy have natural K-algebra structures.
A multigerm f : (K”*,S) — (K?,0) can be defined by (fi,f2..., f.), where

fi 1 (K*,0) — (KP,0). Each f; is called a branch. In this paper, for a multigerm -

f: (K", 8) — (KP,0) defined by (f1,f2..., f,) with f; : (K*,0) — (K?,0), we
consider S to be a set consisting of r distinct points. o

For a map germ f : (K",S) — KP, let 85(f) be the set of germs of vector
fields along f. The set 65(f) has a natural Cs-module structure and is identified
with the direct sum of p copies of Cs. Put 85(n) = 85(idk~,s)) and 6(p) =
010y (id(k»,0)), Where id(kn gy (resp., id(k» o)) is the germ of the identity mapping
of (K", S) (resp., (K?,0)). For a multigerm f : (K", S) — (KP,0), following
Mather [5], we define tf and wf as

tf :0s(n) = 0s(f), tf(n) =df o,

~wf:0o(p) = 0s(f), wf(€)=¢&of,

- where df is the differential of f. Following Wall [9], we put TR.(f) = tf(0s(n))
and TL.(f) = wf(6o(p)). ‘ |

For a multigerm f : (K", S) — (KP?,0), a vector field ¢ € §y(p) is said to be
liftable over fif €o f € I'R.(f) N'I'L.(f). The set of vector fields liftable over
f is denoted by Lift(f). Note that Lift(f) has a natural Cy-module structure.
Let (z1,22,...,2,) (resp., (X1,...;X,)) be the standard local coordinates of

K™ (resp., K?) at the origin. Sometimes (z1,z3) (resp., (X1, X3)) is denoted by

(z,y) (resp., (X,Y)) and (21, 29, z3) (vesp., (X1, X2, X3)) is denoted by (z,y, 2)
(resp., (X, Y, Z)). We see easily that

g = (¢1(X1,X2) .. -)Xp)a e )wp(XlaX% e 7Xp)) € Llft(f))

where 1, : (K?,0) —= K (j = 1,2,...,p), if and only if for every i € {1,...,r}
there exist a vector field '

= (¢i,1(1171,372, ce ,xn), N ¢i,n($1,.$2, . ,.’En)),
where ¢; 1 : (K*,0) - K (k=1,2,...,n), such that £o f; = df; om; i. e.

¥1(X1, X, ..., Xp)

: o fi(z1,22,...,2,)
qvbp(XlaXQ) oo 7Xp)
O(Xi0fs) O(Xi0f;)
81:1 8;;2 ¢i,l($17$2,--';$n)
M M ¢i,n($1;$27--')mn)

Oz Oxyp

We call this 7; a lowerable vector field for f; corrésponding to &.
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Exé.mple 2.1. Let f : (K,0) — (K?,0) be given by f(z) = (2?,2°). Then, it
can be seen easily that the following vector fields are liftable over f:

(5 ) ()

The forms of vector fields liftable over a polynomial multigerm are compli-
cated generally.

Example 2.2. Let f : (K,S) — (K2,0) be given by fi(z) = (22, 23), fa(z) =
(2%,22). Then, it is known [8] that the following vector fields are liftable over
f:

0 : 0
ay2y2 _ 3 3 2y 9
(—6X°Y +6XY)_8X+( QXY +5X +4Y)8Y’

In fact,
—6X%Y? +6XY —6210 + 62° 2z
( —9XY® +5X° +4Y? )of o ( “orll 4 0ot ) = | 32 ) (7330,

—6X?Y? +6XY fom —6210 4625 \ [ 322
—9XY?34+5X3 44Y? 27\ —42% 442t )\ 2z
holds. ‘

The following property is very fundamental and important.

P.roposition 2.3. Weassumeg=tofos, which t and s are diffeomorphisms
(that is, f is A-equivalent to g). Then,

¢ € Lift(f) = dt o £ ot € Lift(g).

This means that only diffeomorphism of the target of f affects liftable vector
fields of g. In addition, we will see that only that of the sourse affects lowerable
vector fields in the proof.

Proof. There exists n € §5(n) such that
Eof=df on.
Then, the following holds:

(dtogot ') og

: dtqgot*lo(tofos)
= dto(fof)os

= dto(dfon)os
d(tof)onos
d(gos™')onos
dgo(ds~tonos)

Thus, dt o £ o t~1 € Lift(g). , 0



We compare estimates of Theorem 1.1 and Theorem 1.2 using examples.

Example 2.4, When n =1 and p = 2, by Theorem 1.1

N =3rD + 2.

For f(z) = (2%,2°), since r = 1 and D = 3, we get N = 11. On the other hand,
when p = 2 by Theorem 1.2

~[a-v2],

Since A = 3, we get N = 2. In fact, the highest degree of the followmg liftable
vector fields are 1 and 2 respectlvely,

2X 2Y

3y j\ 3x2 }-
Example 2.5. For f : (K S) (K2,0) given by fi(z) = (22,2%), fa(z) =
(—23,2%), fa(z) = (2% — 23,22 + 23), since r = 3 and D = 3, by Theorem 1.1

N =29. On the other hand by Theorem 1.2 since A =9, we get N = 8. In
fact, the following vector field are liftable over f and the highest degree is 6;

(—15X°® — 45X5Y — 45X4Y? + 19X3Y3 + 4X2y4
—4X°% — 64X%Y +45X3Y? + 41X2Y3 +57XY*
—7Y° +4X* - 12X3Y — 8X?Y? 4+ 52XY3
—14Y* +8X3 - 16X%Y) &

+(—10X%Y — 30X4Y? - 38X3Y3 4 18X2Y*% + 6XY5
+8X° — 8X4Y — 46X3Y? 4 34X2Y3 + 24XY*
+56Y 5 — 4X% +6X3Y —26X2%2Y2 - 10XY3
+28Y* + 12X%Y — 20XY?) 2.

Example 2.6. When n =1 and p = 3, by Theorem 1.1

N = [VaED ¥ D).

For f : (K, ) — (K®,0) given by f1(z) = (23, 2%,2°), fa(z) = (2%, % 2%), fa(z) =
(25,23, 2%), we get r = 3 and D = 5. Therefore N = 13. On the other hand,
when p = 3 by Theorem 1.2

~ |2vA- V6]

Since A = 15, we get N = 6. In fact, the following vector field are liftable over
f and the highest degree is 5;
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(12X3 +18X* — 12X2Y 4 12X3Y +18X*Y +6X%Y2—

6X3Y2 +18XY3 — 18X2Y3 4 6Y* +18X3Z —6XY Z—

12X%YZ —6X3YZ — 18XY?2%Z — 18X?%Y?Z + 12Y3Z+

6XY3Z +18Y47Z —6X272 — 18X3Z% — 18XY Z?—

6X2YZ2 - 18Y?Z2? + 12X Z° + 6X2%Z°% +6Y Z3-

12Y22° - 624 + 12X 2% &+ -

(-8X%+16X2Y +16X3Y +24X*Y — 8XY?2 +8X?Y?+ |
16X3Y2 + 16XY3 —8Y*4 —8X2%Z +8XYZ +16X°YZ +8X3Y Z~
8XY2Z —24X2Y2%2Z —16Y3Z - 16XY3Z — 24X3 7%+

8Y 72— 16X2Y 72 —8Y222 — 16X 23 — 8X223 +8Y Z3+

32XY Z° - 8Z%) é??Jr

(10X1Y +10XY? + 10X?Y2 + 30X3Y? + 10XY3+

10X2Y3 +20Y4 +10X2Z +20X3Z — 20XY Z + 10X2Y Z+
10X3YZ +10XY2%2Z —30XY3Z —10Y*4Z — 10X3 22—

10YZ2 —20XY 72 — 40X2Y Z2 — 20Y2%Z2% — 30XY?2%Z%—

10Y322 — 10X22% — 10Y 23 + 30Y 223 + 2024 + 10X 24 5;.

3 The sketch of proof of Theorem 1.2

We want non-negative integers N and N/ (i = 1,2,...,r) such that we can find
a coefficient vector
(0,0,...,0) (1,0,...,0 0,0,....N
((11 ’a’(l ),...,Cl‘; )’alyo,al,l,...,aT,M)#O

such that for every i € {1,2,...,7}, the following polynomial equation with
respect to the variable z; holds:

v )
Z ( Z a(lu,zz ..... ip) H Xﬁh’)
h=1

d=0 \ii+-+ip=d
: o f;
N p
Z ( agil,ig,...,i,,) H Xfl")
d=0 \i++ip=d h=1 /
( (X0 f;)
or, )
= : (ai,O +a;121 +--- + ai,Ni’xiVi) )
0(Xp o fi)
\ 3:1,'1
where i1, is, . . ., i, are non-negative integers. Note that foreveryi € {1,2,...,r},

the highest degree of the left-hand side is at most N - D; and that of the right-
‘hand side is at most N/ + D; — 1. By comparing the coefficients of the terms on
the both sides, a system of linear equations with'respect to

(0,0,...,0 (1,0,...,0) 0,0,...,N
aq ))a'l )"'70’57 ))a1,07a1,1)~"7a7',N.,'.



is obtained. Let the number of unknowns of the sysfem of linear equations be
denoted by U and the number of equations by £. We assume that N > 1 to

put
N/ =ND; — D; +1.

The number of combinations of non-negative integers i, -- - ,%, such that i; +
tip,=dis
d+p-1Y\ _ (d+p—1)! (d+p-1)---(d+1)
d Cdip-1)! (p— 1! '
Thus, we get
U i d+p—-1 - (d+1) Z(NU D+ 2)
pd - 1)1 =1
and

E<p> (ND;+1).
=1

Here, the folloing formula is known.

Proposition 3.1. For a non-negative integer k,

nn+1)---(n+k+1)
k+2 '

Z dd+1)---(d+k) =
~ In addition, the following lemma holds.
Lemma 3.2. For p € N>y and z € Ry,

(:c+ !) <(z+1)(z+2)---(z+p)
Put ‘ B}
A=>"D;.
=1
By Proposition 3.1 and Lemma 3.2, we get

U-E> (_1 (N+</_){(N+{/ﬁ)p*l—A(p-;)(p—m}.

Thus, if we put

szax{[P“\l/(A?—A)(p—l)!— {/ﬁ] ,1}

and
N/ =ND; - D; +1,

then we can obtain U — £/ > 0. This completes the proof.
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4 Liftable vector fields for non-singular mono-
germs

A mono-germ f : (K*,0) — (KP,0) is singular if rankJ f(0) < min{n, p} holds,
where J f(0) is the Jacobian matrix of f at 0. A mono-germ f : (K”,0) — (K?,0)
is non-singular if f is not singular.

We identify the number of generators for Lift(f) for a non-singular mono-
germ f. 4
Proposition 4.1. Let f : (K",0) — (KP,0) be non-singular. Then, the number
of generators for Lift(f) is

{ n+(p-n)p—n) (n<p)
p (n > p)

Proof. When n > p we know that f is A-equivalent to the following form :
9(z1,...,zn) = (Z1,...,2p).

Then, we can easily check that Lift(g) = Cy. Therefore, the number of genera-

tors for Lift(f) is p.
When n < p we know that f is A-equivalent to the following form :

h(z1,...,zn) = (21,...,24,0,...,0).

Then, we can check that the following vector fields belong to Lift(h):

15]
<1 <
X, (lfz_n)
ntim——— (1<4,j<p—n).
X+6Xn+j (1<4,j<p-n)

Therefore, we know

0 0 0 0 0
<5Y1’ Xy B B, 3Xp>c

is contained in Lift(h). :
Conversely, for £ = (Y¥1(X1,X2,...,Xp), -+, ¥p(X1, Xo, ..., Xp)) € Lift(h),

since there exist smooth function germs ¢;(x1,z2,...,2,)(¢ = 1,2,...,n) such
that '
' | pi(z1, 0, ... 20) (1<i<n)
wz(ml,xg,...,mn,0,0,...,O)—{ 0 (n+1<i<p) ’

when n 4+ 1 < i < p there exist smooth function germs 9;(Xj, Xg, LX) =
1,2,...,p— n) such that

"pi(Xl)XZ; .. )Xp) = wi(XlaX% . '7Xn70,0) R 70) +¢~an+1 + - +¢p~—nXp
S SRS



Therefore, £ = (¥1(X1, Xa,..., Xp), -+, ¥p(X1, X3, ..., Xp)) € Lift(h) belongs

o 0 0 0 0 0
< X Xpyo——o0 X > .
Co

ale"'aaXn) n+1aXn+17 n+26Xn+l>"‘7 anp
Thus, the number of generators for Lift(f) is n+ (p—n)(p—mn). This completes
the proof. ‘ O

When f is singular, characterization of the number of generators for Lift( f)
is essentially difficult (see [8]).

5 Liftable vector fields for function mono-germs
-of one variable

We investigate Lift(f) for n = p = 1.

Proposition 5.1. Let a smooth function f : (K,0) — (K,0) be denoted by
Sflz) = f(z)z™, where f : (K,0) — K satisfies f(0) # 0 and n is an integer
greater than 1. Then, Lift(f) = (X)¢,-

Proof. Since f(z) = f(z)z™, we can see easily
f'(@) = f'(z)2" + nf(z)z""1.

At first we show (C). Since f(0) = f/(0) = 0, for ¢ € Lift(f) £(0) = 0 holds.
Therefore, there exists a function ¥(X) such that £(X) = ¢ (X)X. This means
Lift(f) C (X)os-

Next, we show (D). It is sufficient to show X € Lift(f). In fact,

f(z)z" = (f(2)2" +nf(z)z" 1 f(iv)it'~

holds. Thus, Lift(f) D (X)¢,. This completes the proof. O

This implies that there exist some cases that we can take non-zero polynomial
vector fields liftable over f even though f is not a polynomial. Proposition 5.1
does not hold generally for a flat function f. For example, if

z?e=1/% (2> 0)
f@=3 0 (@=0)
: z2el/®  (z < 0)
then X is not liftable. We prove this statement. we show that
X ¢ Lift(f).
At first, since

—1/z 0
g(m):{eo gizog
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is a C* function, so is g(-x). Therefore,
o e=1/% (2> 0)
h(z) = 0 (=0
et/ (z <0)
is a C* function. Thus, f(z) = 22h(z) is a C* function.

We assume that X € Lift(f). Then, a lowerable vector field ¢(x) for a
liftable vector field X must be |

2a+1 (m > 0)
$z)=y a (2=0)
so— (¢ <0)

(a € R). However, ¢(z) is not class of C*°. Thus, X ¢ Lift(f).
On the other hand, we can show that X? is liftable. In fact, we can glve a
lowerable vector field ¢(x) as follows:

zle— 1=

e (>0)

p)=¢ 0  (z=0)
4. 1/z

’;;_1 (<0

It can be seen easily that ¢(z) is class of C*°. Thus, X 2 e Lift(f).
The author does not know examples of f such that there exist no polynomial
vector fields liftable over f.
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