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1. INTRODUCTION

In Euclidean 3-space $\mathbb{R}^{3}$ , a space curve is called regular if its velocity
vector never vanishes. $A$ closed regular space curve $\gamma$ in $\mathbb{R}^{3}$ is called a
knot (or simple closed curve) if it has no self-intersections. We consider
the following problem:

Problem. Give a necessary and sufficient condition for the existence
of closed strips along a given knot $\gamma$ which have prescribed negative
Gaussian curvature at each point on $\gamma.$

The positively curved case has been studied by Gluck-Pan [3]. It has
been proved that any positively curved strip along $\gamma$ admits only one
isotopy type. On the other hand, the flat (zero Gaussian curvature)
case has been studied in Chicone-Kalton [1], Rgen [8], and in the
author’s previous work [5]. The purpose of this paper is to report on
the outline of the answer [6] for the above problem in the case that $\gamma$

is real-analytic.

2. PRELIMINARIES

We first define some terminologies. Let $\gamma=\gamma(s)$ : $\mathbb{S}^{1}arrow \mathbb{R}^{3}$ be a
$C^{\infty}$-knot with arc-length parameter $s$ , where $\mathbb{S}^{1}$

$:=\mathbb{R}/l\mathbb{Z}$ and $l$ is the
total arc-length of $\gamma$ . We assume that the curvature function $\kappa(\mathcal{S})$ $:=$

$|\gamma"(s)|$ of $\gamma$ is positive everywhere. The torsion function of $\gamma$ is defined
by

$\tau:=\frac{\det(\gamma’,\gamma",\gamma"’)}{\kappa^{2}}.$

Under this definition, for example, the torsion function of the clockwise
helix $t\mapsto(\cos t, \sin t, t)$ is positive. We fix a sufficiently small $\epsilon>0.$

The integer

(2.1) $SL(\gamma)$ $:=$ Link$(\gamma(s), \gamma(\mathcal{S})+\epsilon n(\mathcal{S}))\in \mathbb{Z}$
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is called the self-linking number of $\gamma$ , where Link$(\alpha, \beta)$ is the linking
number between two knots $\alpha$ and $\beta$ (cf. [7], [8]).

Let $\sim_{+}$ (resp. $\sim-$ ) be the equivalence relation in $\mathbb{R}\cross(-\epsilon, \epsilon)$ generated
by

$(s, u)\sim\pm(s+l, \pm u) (\mathcal{S}\in \mathbb{R}, |u|<\epsilon)$ ,
and set $M_{\pm}:=\mathbb{R}\cross(-\epsilon, \epsilon)/\sim\pm\cdot$ Then, $M_{+}$ (resp. $M_{-}$ ) is homeomorphic
to a cylinder (resp. a M\"obius strip). Suppose that $M$ is either $M_{+}$ or
$M_{-}$ . For a sufficiently small $\epsilon>0$ , a $C^{\infty}$-embedding $F:Marrow \mathbb{R}^{3}$

satisfying $F(s, 0)=\gamma(s)$ for each $\mathcal{S}\in \mathbb{S}^{1}$ is called a closed strip along $\gamma.$

Let $B$ be the boundary of the image of a closed strip $F$ along $\gamma$ . The
number of connected components of $B$ is one or two, and the former
case occurs if and only if $M$ is non-orientable. We assign the orientation
induced by $\gamma$ to all (one or two) connected components of $B$ . Then,

(2.2) Mtn$(F)$ $:= \frac{1}{2}$ Link$(\gamma, B)\in(1/2)\mathbb{Z}$

is called the topological twisting number, or the twisting number for
short, of $F$ , where Link $(\gamma, B)$ is the sum of linking numbers of all
connected components of $B$ . The isotopy type of $F$ is determined by
the isotopy type of $\gamma$ and its twisting number. The twisting number
Mtn$(F)$ becomes a half-integer if and only lf $M$ is non-orientable. If the
twisting direction of $F$ is clockwise, then the twisting number Mtn$(F)$

is positive.

3. MAIN THEOREM

Let $\gamma=\gamma(s):\mathbb{S}^{1}arrow \mathbb{R}^{3}$ be a $C^{\omega}$ -knot (i.e. real-analytic knot) whose
curvature function is positive everywhere. In this case, we can give a
necessary and sufficient condition for the isotopy types of negatively
curved strips on $\gamma$ , using a prescribed negative Gaussian curvature
function $K=K(s)$ along $\gamma$ . The following assertion is an answer to
the problem in the introduction:
Main Theorem([6]). Let $K=K(s)$ : $\mathbb{S}^{1}arrow(-\infty, 0)$ be a negatively
valued $C^{\omega}$ -function. Define two $C^{\omega}$ -functions
$b_{K}^{-}(s):=-\tau(s)-\sqrt{|K(s)|},$ $b_{K}^{+}(s):=-\tau(s)+\sqrt{|K(s)|}$ $(\mathcal{S}\in \mathbb{S}^{1})$ .
Denote by $B_{K}^{-}$ (resp. $B_{K}^{+}$ ) the minimum of $b_{K}^{-}(s)$ (resp. maximum of
$b_{K}^{+}(s))$ , and define the open interval $I_{K}$ $:=(B_{K}^{-}, B_{K}^{+})$ .
(1) Suppose $I_{K}\subset(0, \infty)$ . Then,

(i) for each $n\geq SL(\gamma)(n\in(1/2)\mathbb{Z})$ , there exists a.real-analytic
closed strip along $\gamma$ such that its Gaussian curvature at each
point on $\gamma(6)$ is $K(s)$ and its topological twisting number is
$n$ . On the other hand,
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(ii) for each $n<SL(\gamma)(n\in(1/2)\mathbb{Z})$ , there does not exist such a
strip.

(2) Suppose $0\in I_{K}$ . Then, for each $n\in(1/2)\mathbb{Z}$ , there exists a real-
analytic closed strip along $\gamma$ such that its Gaussian curvature at
each point on $\gamma(s)$ is $K(s)$ and its topological twisting number is
$\gamma\iota.$

(3) Suppose $I_{K}\subset(-\infty, 0)$ . Then,
(i) for each $n\leq SL(\gamma)(n\in(1/2)\mathbb{Z})$ , there exists a real-analytic

closed strip along $\gamma$ such that its Gaussian curvature at each
point on $\gamma(\mathcal{S})$ is $K(s)$ and its topological twisting number is
$r\iota$ . On the other hand,

(ii) for each $n>SL(\gamma)(\prime n\in(1/2)\mathbb{Z})$ , there does not exist such a
strip.

Moreover, in (1)$-(i),$ (2) and (3)$-(i)$ , the closed strip can be constructed
as a ruled surface.

Any pair of $C^{\omega}$-knot $\gamma$ and negatively valued $C^{\omega}$ -function $f$ satisfies
one of the three cases of $I_{K}\subset(0, \infty),$ $0\in I_{K}$ or $I_{K}\subset(-\infty, 0)$ . On the
other hand, if $\gamma$ and $K$ are of class $C^{\infty}$ , instead of $C^{\omega}$ , then it seems
difficult to describe such a necessary and sufficient condition. However,
if $B_{K}^{-}\neq 0$ and $B_{K}^{+}\neq 0$ , then the same assertion as the Main Theorem
holds, as follows:

Corollary 3.1. Let $\gamma(s)$ be a $C^{\infty}$ -knot with positive curvature, and
$K(s)$ a negatively valued $C^{\infty}$ -function. If $I_{K}\subset(0, \infty)$ and $B_{K}^{-}\neq 0,$

then the item (1) holds as in the Main Theorem. Similarly, if $I_{K}\subset$

$(-\infty, 0)$ and $B_{K}^{+}\neq 0$ , then the item (3) holds. On the other hand, if
$0\in I_{K}$ , then the item (2) holds without any modifications.
Example 3.2. We consider twisting numbers of closed strips along the
unit circle

$\gamma_{0}(s) :=(\cos s, \sin s, 0) (s\in \mathbb{R})$

which have Gaussian curvature $K(s)=-1$ at each point on $\gamma_{0}$ . Since
the torsion function of $\gamma_{U}$ vanishes identically, we can calculate $b_{K}^{-}(s)=$

$-1$ and $b_{K}^{+}(s)=1$ for $s\in \mathbb{R}$ . Therefore, we have $I_{K}=(-1,1)$ . By
(2) of the Main Theorem, for any twisting number $n\in(1/2)\mathbb{Z}$ , we can
construct a strip containing $\gamma_{0}$ and having Gaussian curvature-l along
$\gamma_{0}$ . For example, the four pictures in Figure 1 are all such examples
which have twisting number $n=-1/2,0,1/2,1$ , respectively. The
first figure is the reflection of the M\"obius strip of the third example
(which will be defined soon) with respect to the $xy$-plane. The second
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figure is the image of
$F_{)}(b, u):=\gamma_{(},(s)+u(\sin s_{\rangle}-\cos s, 1) (s’\in \mathbb{R}, |u|<1/5)$,

which is a part of a one-sheeted hyperboloid. The fourth figure is the
image of

$F_{1}(s, u)=\gamma_{0}(s)+u(-\cos^{2}s, -\cos s\sin s, \sin s)$ $(s\epsilon \mathbb{R}, |u|<1/5)$ .
This example is a ruled closed strip generated by a ruling vector which
twists just once clockwise at constant speed when $\gamma_{U}$ is traversed once.
The third figure is a ruled $M6bius$ strip defined by

$F_{1/2}(s, u)=\gamma_{0}(s)+u\xi(s) (s\in \mathbb{R}, |u|<1/5)$ ,

where
$\xi(6):=p(s\rangle e\langle s)+\cos\theta(6^{\backslash })n(s)+\sin\theta(s)b(6^{\cdot}\rangle_{2}$

$p(s):= \frac{-1+\cos s}{2\sin\theta(s\rangle}, \theta(s);=\frac{s+\sin s}{2},$

and $\{e, n, b\}$ is the Frenet frame of $\gamma$ . Since the pair of the two func-
tions $p(s\cdot)$ and $\theta(s)$ satisfies the three conditions (4.9), (4.11), $\langle$4.12),
this strip is a $M6bius$ strip with Gaussian curvature-l at each point on
$\gamma_{0}$ . We remark that $p(s)$ can be also real-analytic at $s=0(mod 2\pi\rangle,$

so $p(s)$ is well-defined on $\mathbb{R}$ . To find such functions $p(s)$ and $\theta(s\rangle$ , we
must control the jets of these functions at all points where $\sin\theta(s)=0.$

FIGURE 1. Closed ruled strips containing $\gamma_{0}$ which have
Gaussian curvature-l along $\gamma_{0}$ . Their twisting numbers
$are-1/2,0,1/2,1$ , respectively.

Example 3.3. The torus knot defined by

$\gamma(t)$ $:=( \cos t-\frac{1}{10}\cos t\cos 5t, \sin t-\frac{1}{10}\cos 5t\sin t, -\frac{1}{10}\sin 5t)$

coils 5 times anti-clockwise around a solid torus as in Figure 2. The
curvature function $\kappa(s)$ of $\gamma$ does not vanish, and the torsion function
$\tau$ of $\gamma$ is less than-l. Since the knot $t\mapsto\gamma(t)+\epsilon n(s)$ is isotopic to the
unit circle centered the origin in the $/xy$-plane, the self-linking number
$SL(\gamma)$ is equal to $-5$ , where $\epsilon>0$ is sufficiently small and $n$ is the
principal normal vector field of $\gamma,$
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FIGURE 2. The first figure is the image of $\gamma$ . The sec-
ond and third figures are an orientable strip and a $M6bius$

strip along $\gamma$ which have Gaussian curvature-l at each
point on $\gamma$ and twisting numbers $-5$ and $-9/2$ , respec-
tively. We can see a joint of the M\"obius strip in the top
center of the third figure.

Now, we set $K(s)=-1$ for $\mathcal{S}\in \mathbb{S}^{1}$ Then, the function $b_{K}^{\pm}(s)$

is positive everywhere. Hence, the pair of $\gamma$ and $K$ satisfies $I_{K}\subset$

$(0, \infty)$ . By the item (1)$-(i)$ in the Main Theorem, for each $n\geq SL(\gamma)=$

$-5(n\in(1/2)\mathbb{Z})$ , there exists a closed strip $F$ along $\gamma$ such that the
Gaussian curvature of $F$ on $\gamma(s)$ is equal to-l and the twisting number
Mtn$(F)$ is.n. For example, the second and third surfaces of Figure 2 are
an orientable strip and a M\"obius strip along $\gamma$ in the cases of $n=-5$
and $n=-9/2$ , respectively. On the other hand, by (1)$-(ii)$ , for each
$n<-5(n\in(1/2)\mathbb{Z})$ , there does not exist such a strip along $\gamma$ whose
Gaussian curvature is-l at each point on $\gamma.$
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4. OUTLINE OF THE PROOF

Let $\gamma$ be a given $C^{\omega}$-knot with arc-length parameter $s$ whose cur-
vature function $\kappa(s)$ never vanishes. Any closed strip $F$ : $Marrow \mathbb{R}^{3}$

along $\gamma$ can be expressed by

(4.1) $F(s, u)=\gamma(s)+u\xi(s)+u^{2}\eta(s, u) (s\in \mathbb{R}, |u|<\epsilon)$ ,

where $\xi(s)$ is a $C^{\omega}$ -vector field along $\gamma$ and $\eta(\mathcal{S}, u)$ is a $C^{\omega}$-vector field
along $F$ . The strip $F$ is ruled if $\eta(s, u)$ vanishes identically. The peri-
odicity condition that the strip $F$ is closed is equivalent to
(4.2) $\xi(s+l)=\pm\xi(s)$ , $\eta(s+l, u)=\eta(s, \pm u)$ $(s\in \mathbb{R}, |u|<\epsilon)$

for $M=M_{\pm}$ , respectively. The condition that $F$ gives an embedding
is equivalent to
(4.3) $\gamma’(s)\cross\xi(s)\neq 0 (s\in \mathbb{R})$ ,

where $x$ is the vector product in $\mathbb{R}^{3}$ Given $\xi(s)$ and $\eta(s, u)$ satisfying
(4.2) and (4.3), a closed strip can be constructed by (4.1).

From now on, we may assume that any strip $F$ is expressed as in the
form in (4.1). By a suitable parameter change, we can normalize $\xi(s)$

$SO$ that

(4.4) $|\gamma’(\mathcal{S})\cross\xi(s)|=1 (s\in \mathbb{R})$ .
Then, the Gaussian curvature $K(s)$ of $F$ along $\gamma(\mathcal{S})$ can be calculated
to be

(4.5) $K=2\det(\gamma’, \xi, \gamma")\det(\gamma’, \xi, \eta_{0})-\det(\gamma’, \xi, \xi’)^{2},$

where $\eta_{0}(s)$ $:=\eta(s, 0)$ for $s\in \mathbb{R}$ . Let $\{e(s), n(s), b(s)\}$ be the Frenet
frame of $\gamma$ . The vector field $\xi(s)$ can be expressed as a linear combina-
tion of $\{e(s), n(s), b(s)\}$ by
(4.6) $\xi(s)=p(s)e(s)+\cos\theta(s)n(s)+\sin\theta(s)b(s) (s\in \mathbb{R})$ ,

where $p(s)$ and $\theta(s)$ are certain $C^{\omega}$ -functions satisfying
(4.7) $p(s+l)=(-1)^{m}p(s) , \theta(s+l)=\theta(s)+’rr\iota\pi (s\in \mathbb{R})$

for some $\prime/r\iota\in \mathbb{Z}$ . The number

Gtn$(F)$ $:=m/2\in(1/2)\mathbb{Z}$

is called the geometwic twisting number of $F$ . The topological twisting
number Mtn$(F)$ and geometric twisting number Gtn$(F)$ satisfy
(4.8) $Mtn(F)=SL(\gamma)+Gtn(F)$ .
Namely, we can use the geometric twisting number Gtn$(F)$ , instead of
the topological twisting number Mtn$(F)$ when we consider the isotopy
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type of $F$ . Using (4.6), the right-hand side of (4.5) can be calculated
to be

(4.9) $K=-q\kappa\sin\theta-(\theta’-p\kappa\sin\theta+\tau)^{2},$

where

(4.10) $q(s) :=2\det(\gamma’(\mathcal{S}), \xi(\mathcal{S}), \eta_{0}(s))$ .

By using (4.9), we can reduce the proof of the Main Theorem into
considering the existence and non-existence of $C^{\omega}$ -functions $p(s),$ $\theta(s)$

and $q(\mathcal{S})$ satisfying the following conditions:

(4.11) $q(s)\kappa(s)\sin\theta(s)+K(s)\leq 0 (s\in \mathbb{R})$

is satisfied, and for each $s\in \mathbb{R}$ , either

(4.12) $\theta’(s)=p(s)\kappa(s)\sin\theta(s)-\tau(s)+\sqrt{|q(6)\kappa(s)\sin\theta(s)+K(s)|}$

or

(4.13) $\theta’(s)=p(s)\kappa(s)\sin\theta(s)-\tau(s)-\sqrt{|q(6)\kappa(s)\sin\theta(6)+K(s)|}$

holds. In fact, for a pair of $(\gamma, K)$ : $\mathbb{S}^{1}arrow \mathbb{R}^{3}\cross(-\infty, 0)$ and a
prescribed integer $m$ , if we take $C^{\omega}$ -functions $p(s),$ $q(s)$ and $\theta(s)$ sat-
isfying (4.7), (4.11), (4.12) (or (4.13)), and define $\xi(s)$ by (4.6) and
$\eta(s, u)$ $:=q(s)e(s)\cross\xi(s)$ , then these three functions satisfy (4.9).
Hence, the strip $F$ defined by (4.1) is a closed strip along $\gamma$ so that
its Gaussian curvature at each point on $\gamma(s)$ is equal to $K(s)$ and the
geometric twisting number Gtn$(F)$ is $m/2$ . In order to construct such
functions, we use a special technique to approximate a $C^{\infty}$-function
by a Fourier polynomial while we fix the jet of the function at finitely
many points. This technique was given in the author’s previous pa-
per [5, Lemma A.4]. Fortunately, it can be applied also for negatively
curved closed strips along $\gamma.$

5. REMAINING PROBLEMS

Let $F_{1}$ and $F_{2}$ be two negatively curved strips. We write $F_{1}\approx_{-}F_{2}$

if they can be deformed into one another through negatively curved
surfaces, and write $F_{1}\approx F_{2}$ if they are isotopic. Although $F_{1}\approx_{-}F_{2}$

implies $F_{1}\approx F_{2}$ , its converse is not true. In fact, the following examples
are two negatively curved strips which have the same isotopy type, but
they cannot be deformed into one another through negatively curved
surfaces:
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Example 5.1 ([6]). Two negatively curved strips $F_{1},$ $F_{2}$ are defined
by

$F_{1}(s, u).:=f_{0}(s, u) (|s|\leq\pi, |u|<1/2)$ ,
$F_{2}(s, u):=f_{0}(u\cos s, u\sin s) (|s|\leq\pi, 1/2<u<1)$ ,

respectively, where $f_{0}(x, y)$ $:=(\sqrt{1+y^{2}}\cos x, \sqrt{1+y^{2}}\sin x, y)$ is a
one-sheeted hyperboloid. Figure 3 shows the images of $F_{1}$ and $F_{2},$

which are described with curvature lines of $f_{0}.$

FIGURE 3. An example of $F_{1}\approx F_{2}$ and $F_{1}\not\simeq {}_{-}F_{2}$

If a negatively curved strip $F$ is orientable, then we can define the
rotational index of the principal direction of curvature of $F$ along $\gamma$

in the tangent planes of $F$ when $\gamma$ is traversed once $(cf. R\emptyset gen[8])$ .
The rotational index does not change under deformations of $F$ keeping
negatively curved surfaces. On the other hand, $F_{1}$ and $F_{2}$ are isotopic,
but their rotational indices are $0$ and $\pm 1$ . Therefore, they cannot be
deformed into one another through negatively curved surfaces.

$R\emptyset gen[8]$ conjectured that two negatively curved surfaces having
the same isotopy type can be deformed into one another through neg-
atively curved surfaces if and only if their rotational indices are equal.
Recently, Ghomi-Kossowski [2] solved this conjecture affirmatively by
using the $h$-principle. Therefore, it is interesting to consider the fol-
lowing problem:

Problem. Give a necessary and sufficient condition for the existence of
negatively curved closed strips along a given knot which have prescribed
twisting numbers and rotational indices of principal curvatures.
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