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1 Introduction
In this paper we prove some fundamental lemmas used in the author’s talk at the

workshop “Pursuit of the essence of singularity theory), while we refer the reader to [3]
for the main results. The subject of the talk was estimating distances, naturally defined
from a topological viewpoint, between two Morse functions on a manifold. The method for
it was reading information of the two functions from the discriminant set of the product
map, based on the lemmas proved in this paper.

We use the following notation. Suppose $M$ is a smooth $n$-manifold with $n\geq 2$ , and
$P,$ $Q$ are oriented smooth 1-manifolds. Let $F$ : $Marrow P$ and $G$ : $Marrow Q$ be smooth
functions, and let $\varphi$ : $Marrow P\cross Q$ denote the product map of $F,$ $G$ , that is to say,
$\varphi(x)=(F(x), G(x))$ for $x\in M$ . Suppose $p\in M$ is either a fold point or a cusp point of
$\varphi$ , and $U\subset M$ is a small neighborhood of $p$ . Let $\sigma\subset U$ denote the singular set of $\varphi|_{U},$

namely the set of singular points of $\varphi$ in $U.$

We postpone detailed descriptions of fold points and cusp points until Section 2, but
just note that the discriminant set $\varphi(\sigma)\subset P\cross Q$ is a smooth curve possibly with an
ordinary cusp.

We analyze the curve $\varphi(\sigma)$ . Note that the product structure of $P\cross Q$ gives a local
coordinate system $(f, g)$ at $\varphi(p)$ . It allows us to define the slope of $\varphi(\sigma)$ at $\varphi(p)$ . In
particular, $\varphi(p)$ is called a honzontal (resp. vertical) point of $\varphi(\sigma)$ if the slope is zero
(resp. infinity). We can also define the second derivative of $\varphi(\sigma)$ at $\varphi(p)$ if $\varphi(p)$ is not a
vertical point nor a cusp. In particular, $\varphi(p)$ is called an inflection point of $\varphi(\sigma)$ if the
second derivative is zero. Since zero or non-zero of the second derivative is preserved by
rotating the coordinate system, the notion of inflection can be defined even if $\varphi(p)$ is a
vertical point.

There is a correspondence between properties of the curve $\varphi(\sigma)$ at $\varphi(p)$ and properties
of the functions $F,$ $G$ at $p$ as the following.

Lemma 1. The point $p$ is a cnztical point $ofG$ (resp. $F$) if and only if $\varphi(p)$ is a horizontal
(resp. vertical) point of $\varphi(\sigma)$ .

Lemma 2. The point $p$ is a degenerate critical point of $G$ (resp. $F$) if and only if $p$ is a
fold point of $\varphi$ and $\varphi(p)$ is a horizontal (resp. vertical) inflection point of $\varphi(\sigma)$ .

数理解析研究所講究録
第 1868巻 2013年 101-108 101



Lemma 3. Suppose $p$ is a non-degenemte critical point of G. The index of $p$ is related
to the type of the horizontal point $\varphi(p)$ of $\varphi(\sigma)$ as the following tables. The symmetrical
holds for $F.$

In each of these tables, the first row shows the index of the non-degenerate critical point
$p$ , and the second row shows possible local pictures of $\varphi(\sigma)$ near the horizontal point
$\varphi(p)$ . We draw them so that the $f$-axis is horizontal and the coordinate $g$ increases from
bottom to top. The number noted to each branch of $\varphi(\sigma)$ is the absolute index of the
corresponding fold points. When $p$ is a fold point of absolute index $0$ , the image $\varphi(U)$ is
shown in gray.

These lemmas are generalizations of what described by Johnson in [1, Section 6].
Johnson considered the case where $M$ is a closed orientable 3-manifold and $P=Q=\mathbb{R},$

and used it for comparing two Heegaard splittings of $M$ . The author [2, Section 5] gave
simple analytic proofs of Johnson’s assertions, and we straightforwardly generalize them
for the proofs of Lemmas 1, 2 and 3.

2 Folds and cusps
In this section, we review standard facts about fold points and cusp points of a smooth

map $\varphi$ : $Marrow S$ . Here, $M$ is a smooth $r\iota$-manifold with $n\geq 2$ , and $S$ is a smooth 2-
manifold. In fact, generic singular points of $\varphi$ are classified into fold points and cusp
points.
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A fold point of $\varphi$ is a singular point $p\in M$ with the form

$\{\begin{array}{l}(s\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=x_{1}(t\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=-x_{2}^{2}-\cdots-x_{\lambda+1}^{2}+x_{\lambda+2}^{\Delta}+\cdots+x_{n}^{\Delta}\end{array}$ (1)

for a coordinate system $(r_{1}, x_{2}, \ldots, x_{n})$ of a neighborhood $U$ of $p$ and a local coordinate
system $(s, t)$ at $\varphi(p)$ . The minimum of $\{\lambda, n-\lambda-1\}$ does not depend on the choice of
coordinate systems, and is called the absolute index of $p$ . We can assume that $\lambda$ is the
absolute index, namely $\lambda\leq\frac{n-1}{2’}$ , by reversing the coordinates if necessary. The singular
set $\sigma$ of $\varphi|_{U}$ is the $x_{1}$ -axis as the Jacobian matrix says. We can see that every singular
point on $\sigma$ is also a fold point of absolute index $\lambda$ by translating the coordinates. The
discriminant set $\varphi(\sigma)$ is the image of the $x_{1}$ -axis in $\varphi$ , that is, the $s$-axis. In particular, if
$\lambda=0$ , the image $\varphi(U)$ is contained in the upper half $\{(\mathcal{S}, t)|t\geq 0\}.$

A cusp point of $\varphi$ is a singular point $p\in M$ with the form

$\{\begin{array}{l}(s\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=x_{1}(t\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=x_{1}x_{2}-x_{2}^{3}-x_{3}^{2}-\cdots-x_{\lambda+2}^{2}+x_{\lambda+3}^{2}+\cdots+x_{n}^{2}.\end{array}$ (2)

The minimum of $\{\lambda, n-\lambda-2\}$ does not depend on the choice of coordinate systems. We
can assume that $\lambda$ is the minimum, namely $\lambda\leq\frac{n-2}{2}$ . The singular set $\sigma$ is the smooth
regular curve $\{(3x_{2^{}}^{2}, x_{2},0, \ldots, 0)\}$ . The branch $\sigma_{-}=\{(3x_{2}^{2}\prime x_{2},0, \ldots, 0)\prime,|x_{2}<0\}$ consists
of fold points of absolute index $\lambda$ . The other branch $\sigma_{+}=\{(3x_{2}^{2}, x_{2},0, \ldots, 0)|x_{2}>0\}$

consists of fold points of absolute index $\lambda+1$ except when is even and $\lambda=\frac{n-\prime 2}{2}$ . In
the exceptional case, both a-and $\sigma_{+}$ consist of fold points of absolute index $\lambda$ . The
discriminant set $\varphi(\sigma)$ is the smooth curve $\{(s, t)=(3x_{2}^{2},2x_{2}^{3})\}$ . It has an ordinary cusp
at $\varphi(p)=(0,0)$ , and the tangent line of $\varphi(\sigma)$ at the cusp is the $|9$-axis. Separated by
the $s$-axis, the lower side $\{(s, t)|t<0\}$ contains the branch $\varphi(\sigma_{-})$ , and the upper side
$\{(s, t)|t>0\}$ contains the other branch $\varphi(\sigma_{+})$ .

3 Proofs
For the proofs of Lemmas 1, 2 and 3, we calculate the gradient vector and the Hessian

matrix of $G$ from local forms of $\varphi$ . On one hand, $\varphi$ has the form (1) or (2) for a coordinate
system $(x_{1}, x_{2}, \ldots, x_{n})$ of a neighborhood $U$ of $p$ and a local coordinate system $(s, t)$ at
$\varphi(p)$ . On the other hand, by the definition of the product map, $\varphi$ has the form

$\{\begin{array}{l}(f\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=F(x_{1}, x_{2}, \ldots, x_{n})(g\circ\varphi)(x_{1}, x_{2}, \ldots, x_{n})=G(x_{1}, x_{2}, \ldots, x_{n})\end{array}$ (3)

for the coordinate system $(f, g)$ given by the product structure of $P\cross Q$ . Note that there
is a smooth regular coordinate transformation

$\{\begin{array}{l}f=f(s, t)g=g(\mathcal{S}, t) .\end{array}$ (4)
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3.1 Cusp Case
We first deal with the case where $p$ is a cusp point of $\varphi$ . The forms (2), (3), (4) and

the chain rule gives

$\frac{\partial G}{\partial x_{1}}=\frac{\partial s}{\partial x_{1}}\frac{\partial g}{\partial s}+\frac{\partial t}{\partial x_{1}}\frac{\partial g}{\partial t}$

$= \frac{\partial}{\partial x_{1}}(x_{1})\frac{\partial g}{\partial s}+\frac{\partial}{\partial x_{1}}(x_{1}x_{2}-x_{2}^{3}-x_{3}^{2}-\cdots-x_{\lambda+2}^{2}+x_{\lambda+3}^{2}+\cdots+x_{n}^{2})\frac{\partial g}{\theta t}$

$= \frac{\partial g}{\partial s}+x_{2}\frac{\partial g}{\partial t},$

$\frac{\partial}{\partial x_{2}}=\frac{\partial s}{\partial x_{2}}\frac{\partial}{\partial s}+\frac{\partial t}{\partial x_{2}}\frac{\partial}{\partial t}$

$= \frac{\partial}{\partial x_{2}}(x_{1})\frac{\partial}{\partial s}+\frac{\partial}{\partial x_{2}}(x_{1}x_{2}-x_{2}^{3’}-x_{3}^{2}-\cdots-x_{\lambda+2}^{2’}+x_{\lambda+3}^{2}+\cdots+x_{n}^{2})\frac{\partial}{\partial t}$

$=(x_{1}-3x_{2}^{2}) \frac{\partial}{\partial t},$

$\frac{\partial^{2}G}{\partial x_{1}\partial x_{2}}=\frac{\partial}{\partial x_{2}}\frac{\partial G}{\partial x_{1}}$

$= \frac{\partial}{\partial x_{2}}(\frac{\partial g}{\partial_{\mathcal{S}}}+x_{2}\frac{\partial g}{\partial t})$

$= \frac{\partial}{\partial x_{2}}(\frac{\partial g}{\partial_{\mathcal{S}}})+\frac{\partial}{\partial x_{2}}(x_{2})\frac{\partial g}{\partial t}+x_{2}\frac{\partial}{\partial x_{2}}(\frac{\partial g}{\partial t})$

$=(x_{1}-3x_{2}^{2}) \frac{\partial}{\partial t}(\frac{\partial g}{\partial s})+\frac{\partial g}{\partial t}+x_{2}(x_{1}-3x_{2}^{2})\frac{\partial}{\partial t}(\frac{\partial g}{\partial t})$

$= \frac{\partial g}{\partial t}+(x_{1}-3x_{2}^{2})\frac{\partial^{2}g}{\partials\partial t}+x_{2}(x_{1}-3x_{2}^{2})\frac{\partial^{2}g}{\partial t^{2}}.$

By similar calculations,

$\frac{\partial G}{\partial x_{i}}=\{\begin{array}{ll}\frac{\partial g}{\partial s}+x_{2}\frac{\partial g}{\partial t} (i=1)(x_{1}-3^{2}x_{2’}’)\frac{\partial g}{\partial t} (i=2)-2x_{i^{\frac{\partial g}{\partial t}}} (3\leq i\leq\lambda+2)2x_{i}\frac{\partial g}{\partial t} (\lambda+3\leq i\leq n) ,\end{array}$

$\frac{\partial^{2}G}{\partial x_{i}^{2}}=\{\begin{array}{ll}\frac{\partial^{2}g}{\partial s^{2}}+2x_{2}\frac{\partial^{2}g}{\partial s\partial t}+x_{2}^{2}\frac{\partial^{2}g\prime}{\partial t^{2}} (i=1)-6x_{2}\frac{\partial g}{\partial t}+(x_{1}-3x_{2}^{2})^{2}\frac{\partial^{2}g}{\partial t^{2}} (i=2)-2\frac{\partial g}{\partial t}+4x_{i}^{2}\frac{\partial^{2}g}{\partial t^{2}} (3\leq i\leq\lambda+2)2\frac{\partial g}{\partial t}+4x_{i}^{2}\frac{\partial^{2}g}{\partial t^{2}} (\lambda+3\leq i\leq n) ,\end{array}$
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$\frac{\partial^{2}G}{\partial x_{i}\partial x_{j}}=\{\begin{array}{ll}\frac{\partial g}{\partial t}+(x_{1}-3x_{2}^{2})\frac{\partial^{2}g}{\partial s\partial t}+x_{2}(x_{1}-3x_{2}^{2’})\frac{\partial^{2}g}{\partial t^{2}} (i=1, j=2)-2x_{j}\frac{\partial^{2}g}{\partial s\partial t}-2x_{2}x_{j}\frac{\partial^{2}g}{\partial t^{2}} (i=1,3\leq j\leq\lambda+2)2x_{j}\frac{\partial^{2}g}{\partial s\partial t}+2x_{2}x_{j}\frac{\partial^{2}g}{\partial t^{2}} (i=1, \lambda+3\leq j\leq n)-2x_{j}(x_{1}-3x_{2}^{2})\frac{\partial^{2}g}{\partial t^{2}} (i=2,3\leq j\leq\lambda+2)2x_{j}(x_{1}-3x_{2}^{2}\prime)\frac{\partial^{2}g}{\partial t^{2}} (i=2, \lambda+3\leq j\leq n)4x_{i}x_{j^{\frac{\partial^{2}g}{\partial t^{2}}}} (3\leq i<j\leq\lambda+2)\partial^{2}g -4x_{i}x_{j}\overline{\partial t^{2}} (3\leq i\leq\lambda+2<j\leq n)4x_{i}x_{j^{\frac{\partial^{2}g}{\partial t^{2}}}} (\lambda+3\leq i<j\leq n) .\end{array}$

The gradient vector of $G$ at $p=(0,0, \ldots, 0)$ is

$(( \frac{\partial G}{\partial x_{1}})_{p}(\frac{\partial G}{\partial x_{2}})_{p}\cdots, (\frac{\partial G}{\partial x_{n}})_{p})=((\frac{\partial g}{\partial s})_{\varphi(p)}, 0, \ldots, 0)$ .

The point $p$ is a critical point of $G$ if and only if this vector is zero, namely $( \frac{\partial}{\partial}s\mathscr{Q})_{\varphi(p)}=0.$

It means that the $s$-axis is parallel to the $f$-axis at $\varphi(p)$ . Recall that the $\mathcal{S}$-axis is the
tangent line of $\varphi(\sigma)$ at the cusp $\varphi(p)$ . This finishes the proof of Lemma 1 in the case
where $p$ is a cusp point.

The Hessian matrix of $G$ at $p=(0,0, \ldots, 0)$ is

$(\begin{array}{lll}(\frac{(\frac{\partial^{2}}{\partial x}G\tau)\partial^{2}G1}{\partial x2\partialx1}f_{p}\cdots (\frac{\partial^{2}G}{(\frac{\partial^{2}G}{\partial x_{2}^{2}})\partial x_{l}\partial x_{2}})_{p}p\cdots (\frac{\partial^{2}G}{\partial x2\partial x_{n}})_{p}^{p}(\frac{\partial^{2}G}{\partial x_{1}\partial x_{n}})\vdots \vdots \vdots(\frac{\partial^{2}G}{\partial x_{n}\partial x_{1}})_{p}(\frac{\partial^{2}G}{\partial x_{n}\partial x2})_{p} \vdots\cdots (\frac{\partial^{2}G}{\partialx_{n}^{2}})_{p}\end{array})$

$=(( \frac{\partial^{2}g}{\frac{\partial s^{2}\partial g}{\partial t}})_{\varphi(p)}()_{\varphi(p)}$

$(_{\partial t}^{\partial}z_{0})_{\varphi(p)}$

$-2( \frac{\partial g}{\partial t})_{\varphi(p)}$

$\cdots$

$-2( \frac{\partial g}{\partial t})_{\varphi(p)}$

2 $( \frac{\partial g}{\partial t})_{\varphi(p)}$

$\cdots$

2

$( \frac{\partial g}{\partial t})_{\varphi(p)}]$

and its determinant is $(-1)^{\lambda+1}2^{n-2}( \frac{\partial g}{\partial t})_{\varphi(p)}^{n}$ . We suppose that $p$ is a critical point of $G$ , and
hence $( \frac{\partial g}{\partial s})_{\varphi(p)}=0$ . It requires $( \frac{\partial g}{\partial t})_{\varphi(p)}\neq 0$ since the regular coordinate transformation
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(4) satisfies $\frac{\partial j}{\partial s}\frac{\partial}{\partial}g_{-\frac{\partial f}{\partial t}\frac{\partial}{\partial}}g\neq 0$ . It follows that the determinant $(-1)^{\lambda+1}2^{n-2}(_{\partial t}^{\partial}-B)_{\varphi(p)}^{n}$ is
not zero, that is to say, the critical point $p$ is non-degenerate. This finishes the proof of
Lemma 2 in the case where $p$ is a cusp point.

We consider the index of $p$ , which is the sum of the multiplicities of negative eigenval-
ues of the Hessian matrix. The first two eigenvalues are the solutions of $()$ for the equation

$\alpha\{\alpha-(\frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}\}=(_{\partial t}^{\partial}B)_{\varphi(p)}^{2}$ . Noting that $( \frac{\partial g}{\partial t})_{\varphi(p)}\neq 0$, the two eigenvalues have oppo-

site signs. The rest eigenvalues are $-2(_{\partial t}^{\partial}B)_{\varphi(p)}$ and 2 $( \frac{\partial g}{\partial t})_{\varphi(p)}$ , whose multiplicities are $\lambda$

and $n-\lambda-2$ , respectively. The index of $p$ is $\lambda+1$ if $( \frac{\partial}{\partial}tg)_{\varphi(p)}$ is positive, and the index
of $p$ is $\prime n-\lambda-1$ if $(_{\partial t}^{\partial}\Delta)_{\varphi(p)}$ is negative. In particular, when $n$ is even and $\lambda=\frac{n-2}{2}$ , the
index of $p$ is $\lambda+1$ regardless of the $sign$ of $(_{\partial t}^{\partial}B)_{\varphi(p)}$ . Recall that in this case, both the
two branches of $\sigma$ are of absolute index $\lambda$ . In the other cases, we can assume $\lambda<\frac{n-2}{2}$ by
reversing the coordinates if necessary. Recall that in these cases, one branch $\sigma_{-}$ of $\sigma$ is of
absolute index $\lambda$ and the other $\sigma_{+}$ is of absolute index $\lambda+1$ . Recall also that, separated
by the tangent line of $\varphi(\sigma)$ at the cusp, $\varphi(\sigma_{-})$ lies in the lower side and $\varphi(\sigma_{+})$ lies in the
upper side with respect to the coordinate $t$ . With respect to the coordinate $g$ , the same
holds if $(_{\overline{\partial}t}^{\partial_{4}})_{\varphi(p)}$ is positive, and the opposite holds if $( \frac{\partial}{\partial}t2)_{\varphi(P)}$ is negative. This flnishes
the proof of Lemma 3 in the case where $p$ is a cusp point.

3.2 Fold Case
If $p$ is a fold point of $\varphi$ , the forms (1), (3), (4) and the chain rule gives

$\frac{\partial G}{\partial x_{i}}=\{\begin{array}{ll}\frac{\partial g}{\partial s} (i=1)-2x_{i^{\frac{\partial g}{\partial t}}} (2\leq i\leq\lambda+1)2x_{i}\frac{\partial g}{\partial t} (\lambda+2\leq i\leq\prime r\iota) ,\end{array}$ $\frac{\partial^{2}G}{\partial x_{i}^{2}}=\{\begin{array}{ll}\frac{\partial^{2}g}{\partial s^{2}} (i=1)-2\frac{\partial g}{\partial t}+4x_{i}^{2}\frac{\partial^{2}g}{\partial t^{2}} (2\leq i\leq\lambda+1)2\frac{\partial g}{\partial t}+4x_{i}^{2}\frac{\partial^{2}g}{\partial t^{2}} (\lambda+2\leq i\leq n) ,\end{array}$

$\frac{\partial^{2}G}{\partial x_{i}\partial x_{j}}=\{\begin{array}{ll}-2x_{j}\frac{\partial^{2}g}{\partial_{\mathcal{S}}\partial t} (i=1,2\leq j\leq\lambda+1)\partial^{2}g 2\prime x_{j}\overline{\partial s\partial t} (i=1, \lambda+2\leq j\leq\prime r\iota)\partial^{2}g 4x_{i}x_{j}\overline{\partial t^{2}} (2\leq i<j\leq\lambda+1)-4x_{i^{J}}x_{j}\frac{\partial^{2}g}{\partial t^{2}} (2\leq i\leq\lambda+1<j\leq n)\partial^{2}g 4x_{i’}x_{j}\overline{\partial t^{2}} (\lambda+2\leq i<j\leq n) .\end{array}$

The gradient vector of $G$ at $p$ is $((_{\partial s}^{\partial}z)_{\varphi(p)},$ $0,$
$\ldots,$

$0)$ . The point $p$ is a critical point of
$G$ if and only if $(_{\overline{\partial}s}^{\partial_{B}})_{\varphi(p)}=0$ . It means that the $s$-axis, which is just $\varphi(\sigma)$ , is parallel to
the $f$-axis at $\varphi(p)$ . This finishes the proof of Lemma 1 in the case where $p$ is a fold point.
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The Hessian matrix of $G$ at $p$ is

$(\begin{array}{lllllll}(\frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)} -2(\frac{\partial g}{\partial t})_{\varphi(p)} \ddots 2(\frac{\partial g}{\partial t})_{\varphi(p)} -2(\frac{\partial g}{\partial t})_{\varphi(p)} \ddots 2(\frac{\partial g}{\partial t}I_{\varphi(p)}\end{array})$

and its determinant is $(-1)^{\lambda}2^{n-1}( \frac{\partial g}{\partial t})_{\varphi(p)}^{n-1}(\frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}$. We suppose that $p$ is a critical point

of $G$ , and hence $( \frac{\partial g}{\partial s})_{\varphi(p)}=0$ . It requires $( \frac{\partial f}{\partial s})_{\varphi(p)}\neq 0$ and $( \frac{\partial g}{\partial t})_{\varphi(p)}\neq 0$ since the regular
coordinate transformation (4) satisfies $\frac{\partial f}{\partial s}-\partial B\partial t^{-\frac{\partial f}{\partial t}\frac{\partial g}{\partial s}}\neq 0$. It follows that the critical point
$p$ degenerates if and only if $( \frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}=0.$

We calculate the second derivative of $\varphi(\sigma)$ at $\varphi(p)$ . The discriminant set $\varphi(\sigma)=$

$\{(s, t)=(x_{1},0)\}$ is regarded as the graph of a function $g=\theta(f)$ near the horizontal point
$\varphi(p)$ . Its first and second derivatives are

$\frac{d\theta}{df}=\frac{d}{df}g(x_{1},0)=\frac{\frac{d}{dx_{1}}g(x_{1}’,0)}{\frac{d}{dx1}f(x_{1}’,0)}=\frac{\frac{d}{dx1}(\prime x_{1})\frac{\partial g}{\partial s}(\prime x_{1},0)+\frac{d}{dx_{1}}(0)\frac{\partial g}{\partial t}(J_{1}^{\prime.\cdot,,o)}}{\frac{d}{dx_{1}}(x_{1})\frac{\partial f}{\partial s}(x_{1},0)+\frac{d}{dx_{1}}(0)\frac{\partial f}{\partial t}(x_{1}0)}=\frac{\frac{\partial g}{\partial s}(x_{1},0)}{\frac{\partial f}{\partial s}(x_{1},0)},$

$d^{2}\theta$ $d \frac{\partial g}{\partial s}(x_{1},0)$

$df^{2}$ $df \frac{\partial f}{\partial s}(x_{1},0)$

$= \{\frac{d}{df}(\frac{\partial g}{\partial s}(x_{1},0))\frac{\partial f}{\partial_{\mathcal{S}}}(x_{1},0)-\frac{\partial g}{\partial s}(x_{1},0)\frac{d}{df}(\frac{\partial f}{\partial_{\mathcal{S}}}(x_{1},0))\}/(\frac{\partial f}{\partial s}(x_{1},0))^{2}$

$= \{\frac{\frac{\partial^{2}g}{\partial s^{2}}(x_{1},0)\partial f}{\frac{\partial f}{\partial s}(x_{1},0)\partial s}(x_{1},0)-\frac{\partial g}{\partial_{\mathcal{S}}}(x_{1},0)\frac{\frac{\partial^{2}f}{\partial s^{2}}(x_{1},0)}{\frac{\partial f}{\partial s}(x_{1},0)}\}/(\frac{\partial f}{\partial_{\mathcal{S}}}(x_{1},0))^{2}$

Noting that $( \frac{\partial g}{\partial s})_{\varphi(p)}=0$ and $( \frac{\partial f}{\partial s}I_{\varphi(p)}\neq 0, the$ second derivative $of \theta at \varphi(p)=(0,0)$ is
$/( \frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}/(\frac{\partial f}{\partial s})_{\varphi(p)}^{2}$ . It follows that the horizontal point $\varphi(p)$ is an inflection point if and

only if $( \frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}=0.$

By the results in the previous two paragraphs, the critical point $p$ degenerates if and
only if the horizontal point $\varphi(p)$ is an inflection point. This finishes the proof of Lemma
2 in the case where $p$ is a fold point.

We consider the index of $p$ assuming that $p$ is a non-degenerate critical point of $G.$

The eigenvalues of the Hessian matrix are $( \frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)},$ $-2( \frac{\partial g}{\partial t})_{\varphi(p)}$ and 2 $( \frac{\partial g}{\partial t})_{\varphi(p)}$ , whose

multiplicities are 1, $\lambda$ and $\int n-\lambda-1$ , respectively. The $sign$ of the first eigenvalue $( \frac{\partial^{2}g}{\partial s^{2}})_{\varphi(p)}$
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is equal to the $sign$ of the second derivative $( \frac{\partial^{2}}{\partial s}g2)_{\varphi(p)}/(\frac{\partial f}{\partial s})_{\varphi(p)}^{2}$ of $\varphi(\sigma)$ at $\varphi(p)$ . Noting

that $\varphi(p)$ is a horizontal point but not an inflection point, the $sign$ of the second derivative
corresponds to whether $\varphi(\sigma)$ is downward or upward convex at $\varphi(p)$ . For instance, if $\varphi(\sigma)$

is downward convex horizontal point, the index of $P$ is $\lambda$ or $n-\lambda-1$ according to the sing
of $( \frac{\partial}{\partial}gt)_{\varphi(p)}$ . Though we do not know the sing of $( \frac{\partial g}{\partial t})_{\varphi(p)}$ in general, if the absolute index
of $p$ is $0$ , it corresponds to whether $\varphi(U)$ lies in the lower or upper half. This finishes the
proof of Lemma 3 in the case where $p$ is a fold point.
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