
THE REGULARIZED SIEGEL-WEIL FORMULA: A SECOND TERM IDENTITY

WEE TECK GAN

In this talk, we describe a recent joint work [GQT] with Yannan Qiu and Shuichiro Takeda, which
proves the second term identity in the theory of the regularised Siegel-Weil formula for all classical dual
pairs. This expository paper is a summary of the results in [GQT]. We begin by introducing some
notation.

1. Spaces and Groups

Let $F$ be a number field with ring of ad\‘eles $\mathbb{A}$ . Fix a non-trivial additive character $\psi=\otimes_{v}’\psi_{v}$ on
$F\backslash \mathbb{A}$ . We let $E$ be either $F$ or a quadratic extension of $F$ . Moreover, let $\chi_{E}$ denote the (possibly trivial)
quadratic character of $\mathbb{A}^{\cross}$ associated to $E/F$ by global class field theory.

1.1. $\epsilon$-Hermitian spaces. Fix a $sign$

$\epsilon=\pm 1.$

Let $V_{0}$ be an $m_{0}$-dimensional vector space over $E$ equipped with a nondegenerate anisotropic $\epsilon$-Hermitian
form $(-, -)$ . With $\mathbb{H}$ denoting the hyperbolic plane, i.e. the split $\epsilon$-Hermitian space of dimension 2, we
set

$V_{r}=V_{0}\oplus \mathbb{H}^{r},$

and let
$m=\dim_{E}V=m_{0}+2r.$

The family of spaces $\{V_{r} : r\geq 0\}$ forms a Witt tower of $\epsilon$-Hermitian spaces.

1.2. The invariant $\epsilon_{0}$ . Set

$\epsilon_{0}=\{\begin{array}{l}\epsilon, if E=F;0, if E\neq F,\end{array}$

and
$d(n)=n+\epsilon_{0}$

for $n\in \mathbb{Z}.$

1.3. Isometry groups. Let $H_{r}=H(V_{r})$ be the associated isometry group, so that

$H_{r}\cong\{\begin{array}{ll}O_{m}, if \epsilon_{0}=1;Sp_{m}, if \epsilon_{0}=-1;U_{m}, if \epsilon_{0}=0.\end{array}$

The family of groups $\{H_{r}:r\geq 0\}$ forms a Witt tower of classical groups.
The space $V_{r}$ has a maximal isotropic space $X_{r}$ of dimension $r$ , so that

$V_{r}=X_{r}\oplus V_{0}\oplus X_{r}^{*}.$

Let
$P(X_{r})=M(X_{r})\cdot N(X_{r})$
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be the maximal parabolic subgroup of $H_{r}$ which stabilizes the space $X_{r}$ . Then its Levi factor is

$M(X_{r})\cong GL(X_{r})xH(V_{0})$ .

To simplify notation, we shall sometimes write $P_{r}$ in place of $P(X_{r})$ .

The group $H_{r}$ comes equipped with a family of maximal compact subgroups $\{K_{H_{r,v}}\}$ , such that $K_{H_{r.v}}$

is hyperspecial for almost all places $v$ of $F$ . We may and do assume that $K_{H_{r,v}}$ is a special maximal
compact for all finite $v$ . Then

$K_{H_{r}}= \prod_{v}K_{H_{r,v}}\subset H_{r}(A)$

is a maximal compact subgroup of $H_{r}(A)$ .

1.4. $-\epsilon$-Hermitian Spaces. Similarly, let $W_{n}$ be a 2$n$-dimensional vector space over $E$ equipped with
a nondegenerate - $\epsilon$-Hermitian form $\langle-,$ $-\rangle$ and a maximal isotropic subspace $Y_{n}$ of dimension $n$ , so that

$W_{n}=Y_{n}\oplus Y_{n}^{*}.$

Let $G_{n}=G(W_{n})$ be the associated isometry group or the unique two-fold cover thereof, according to

$G_{n}=\{\begin{array}{ll}Sp_{2n}, if \epsilon_{0}=1 and m_{0} is even;Mp_{2n}, if \epsilon_{0}=1 and m_{0} is odd;O_{2n}, if \epsilon_{0}=-1;U_{2n}, if \epsilon_{0}=0.\end{array}$

Thus, in addition to the space $W_{n}$ , the group $G_{n}$ depends on the space $V_{0}$ (or rather the parity of its
dimension) in the first two cases.

For an $r$-dimensional subspace $Y_{r}\subset Y_{n}$ , let

$Q(Y_{r})=L(Y_{r})\cdot U(Y_{r})$

denote the maximal parabolic subgroup fixing $Y_{r}$ . Then its Levi factor is

$L(Y_{r})\cong GL(Y_{r})\cross G_{n-r},$

though this is not entirely accurate in the metaplectic case. As before, we shall sometimes write $Q_{r}$ in
place of $Q(Y_{r})$ . Moreover, if there is a need to indicate that $Q_{r}$ is a subgroup of $G_{n}$ , we shall write $Q_{r}^{n}.$

When $r=n,$ $Q_{r}$ is a Siegel parabolic subgroup of $G_{n}.$

1.5. Summary. The following table summarizes the groups discussed so far:
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1.6. Complementary Spaces. With $W_{n}$ fixed, one may associate to each $V_{r}$ a complementary space
$V_{r’}$ in the same Witt tower, characterized by

$m_{0}+r+r’=d(n)$ .

Of course, this only makes sense if $r’\geq 0$ . Thus, the notion of complementary spaces is only relevant
when

$0\leq m_{0}+r\leq d(n)$ .
When $V_{r’}$ exists, and $r\geq r’$ , we may write:

$V_{r}=X_{r-r’}’\oplus V_{r’}\oplus X_{r-r’}’*$

with $X_{r-r}’$ , isotropic of dimension $r-r’$ . We set

$m’=\dim V_{r’}=m_{0}+2r’.$

1.7. Measures. Fix a nontrivial additive character $\psi$ of $F\backslash \mathbb{A}$, This gives rise to the Haar measure $dx_{v}$

on $F_{v}$ (for all v) which is self-dual with respect to $\psi_{v}$ . The product measure $dx$ on $\mathbb{A}$ is independent of
the choice of $\psi$ and is the Tamagawa measure of $\mathbb{A}$ . For any algebraic group $G$ over $F$ , we always use the
Tamagawa measure on $G(\mathbb{A})$ when $G(\mathbb{A})$ is unimodular. This applies to the groups $G_{n}(\mathbb{A})$ and $H_{r}(A)$ ,
as well as the Levi subgroups and unipotent radical of their parabolic subgroups. In addition, for any
compact group $K$ , we always use the Haar measure $dk$ with respect to which $K$ has volume 1. We ignore
the metaplectic case here so as not to get overly technical.

In any case, we write $\tau(G)$ for the Tamagawa number of $G$ . In particular, we have

$\tau(H_{r})=\{\begin{array}{ll}1, if \epsilon_{0}\neq 0;2, if \epsilon_{0}=0,\end{array}$

except when $\epsilon_{0}=1,$ $m_{0}=1$ and $r=0$ , in which case $H_{r}=O_{1}$ has $\tau(O_{1})=1/2$ . (See [We2].)

2. Regularization of Theta Integral

In this section, we introduce the regularised theta integral which intervenes on one side of the Siegel-
Weil formula.

2.1. Weil Representation. We need to fix some data to talk about the Weil representation of $H_{r}\cross G_{n}.$

Choose a Hecke character $\chi$ as follows:

$\{$

the quadratic character of $\mathbb{A}\cross$ associated to disc $(V_{0})$ , if $\epsilon_{0}=1$ ;
$\chi=\chi_{V_{0}}=$ the trivial character of $\mathbb{A}^{\cross}$ , if $\epsilon_{0}=-1$ ;

a character of $\mathbb{A}_{E}^{\cross}$ such that $\chi|_{A^{\cross}}=\chi_{E}^{m_{0}}$ , if $\epsilon_{0}=0.$

Note that when $\epsilon_{0}=\pm 1,$ $\chi$ is completely determined by $V_{0}.$

Associated to the pair $(\psi, \chi)$ , the group $G_{n}(\mathbb{A})\cross H_{r}(\mathbb{A})$ has a distinguished representation

$\omega_{n,r}=\omega_{\psi,\chi,W_{n},V_{r}}$

known as the Weil representation. The Weil representation can be realized on the space $S((Y_{n}^{*}\otimes V_{r})(A_{E}))$

of Schwarz functions on the adelic space $(Y_{n}^{*}\otimes V_{r})(\mathbb{A}_{E})$ . There is a natural $H_{r}\cross G_{n}$ -equivariant map
$\theta_{n,r}:S((Y_{n}^{*}\otimes V_{r})(A_{E}))arrow$ {Functions on $[H_{r}]\cross[G_{n}].$ }

This gives an automorphic realisation of the Weil representation.
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2.2. Theta Integral. The theta integral we are interested in is:

$I_{n,r}( \phi)(g):=\int_{[H_{r}]}\theta_{n,r}(\phi)(g, h)dh,$

where we have written $[H_{r}]$ for $H(F)\backslash H(A)$ and $\phi\in S((Y_{n}^{*}\otimes V_{r})(A_{E}))$ . It is an automorphic form on
$G_{n}$ if the integral converges absolutely. By Weil [Wel], it is known that the above integral converges if
and only if

$r=0$ or $m-r=m_{0}+r>d(n)$ .
We call this the Weil’s convergent mnge.

In particular, the pair $(W_{n}, V_{0})$ is in this range. Then for $\phi_{0}\in S(Y_{n}^{*}\otimes V_{0})(A)$ , we have the theta
integral $I_{n,0}(\phi_{0})\in \mathcal{A}(G_{n})$ . The classical Siegel-Weil formula, first formulated in [Wel] and extended by
Kudla-Rallis in $(KR1],$ determines $the$ theta integral $I_{n,0}(\phi_{0})$ as an Eisenstein series on $G_{n}.$

2.3. Regularization. In [KR3], Kudla and Rallis defined a regularization of the integral $I_{n,r}(\phi)$ beyond
the Weil’s convergent range. More precisely, we suppose that

(2.1) $r>0$ , and $m-r\leq d(n)$ .

Note that the second inequality implies that
$r\leq d(n)\leq n+1.$

We further impose (as did Kudla-Rallis) that

(2.2) $r\leq n,$

or equivalently that the $F$-rank of $G_{n}$ is at least that of $H_{r}$ . Note that this is only an extra condition
when $\epsilon_{0}=1$ ; when $\epsilon_{0}=-1$ or $0$ , it follows automatically from (2.1) since $d(n)\leq n$ . Indeed, the only case
satisfying (2.1) but not (2.2) is when $\epsilon_{0}=1$ and $m_{0}=0$ so that $H_{r}=O_{n+1,n+1}$ (split) and $G_{n}=Sp_{2n}.$

We also note that under (2.1):
$0<m\leq 2\cdot d(n)$ .

For a given place $v$ , one can find an element $z_{G}$ (resp. $z_{H}$ ) in the center of universal enveloping algebra
of $g_{v}$ (resp. $\mathfrak{h}_{v}$ ) for $v$ real ([KR3]) or in the spherical Hecke algebra of $G_{n}(F_{v})$ (resp. $H_{r}(F_{v})$ ) for $v$

non-archimedean $([Il, I2,$ $?])$ so that
$\omega_{n,r}(z_{G})=\omega_{n,r}(z_{H})$ ,

$\omega_{n,r}(g, h)\omega_{n,r}(z_{G})=\omega_{n,r}(z_{G})\omega_{n,r}(g, h)$

(i.e. the action of $Z_{G}$ (and hence $z_{H}$ ) commutes with the action of $G_{n}(\mathbb{A})\cross H_{r}(A)$ ), and such that the
function $\theta_{n,r}(\omega_{n,r}(zc)\varphi)(g, -)$ is rapidly decreasing on a Siegel domain of $H_{r}(A)$ . It follows that one can
integrate $\theta_{n,r}(\omega_{n,r}(z_{G})\phi)$ against any automorphic form on $H_{r}$ ; we shall integrate it against an auxiliary
Eisenstein series on $H_{r}$ to be defined next.

2.4. Auxiliary Eisenstein series on $H_{r}$ . Recall $P_{r}$ is the parabolic subgroup of $H_{r}$ whose Levi is
$M_{r}=GL(X_{r})\cross H(V_{0})$ . Consider the family of (normalized) induced representation

$I_{H_{r}}(s) :=Ind_{P_{f}(A)}^{H,(A)}|\det|^{s}\otimes 1_{H_{0}}$

where $|\det|^{S}$ is a character of $GL(X_{r})(\mathbb{A})$ and 1 $H_{0}$ is the trivial representation of $H_{0}(A)$ . Let $f_{S}^{0}\in I_{H_{r}}(s)$

be the $K_{H_{f}}$ -spherical standard section with $f_{S}^{0}(1)=1$ . Then we define the Eisenstein series $E_{H_{r}}(s, -)$

on $H_{r}$ by

$E_{H_{r}}(s, h)= \sum_{\gamma\in P_{r}(F)\backslash H_{f}(F)}f_{s}^{0}(\gamma h)$
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for $h\in H_{r}(\mathbb{A})$ and $Re(s)\gg 0$ . We call $E_{H_{r}}(s, -)$ the auxiliary Eisenstein series.
We are interested in the point

$S= \rho_{H_{r}}:=\frac{m-r-\epsilon_{0}}{2},$

since at this point, the auxiliary Eisenstein series $E_{H_{r}}(s, -)$ has a pole of order 1 and its residue there is
a constant function on $H_{r}(A)$ . We set

${\rm Res}_{s=\rho_{H_{r}}}E_{H_{r}}(s, h)=\kappa_{r}$

for all $h\in H_{r}(\mathbb{A})$ . Furthermore, the regularizing element $z_{H}$ acts on $E_{H_{r}}(s, -)$ by a scalar $P_{n,r}(s)$ :

$z_{H}*E_{H_{r}}(s, -)=\mathcal{P}_{n,r}(s)\cdot E_{H_{r}}(s, -)$.

Here the scalar $P_{n,r}(s)$ depends on the choice of $z_{H}$ , though we suppress the dependence from our
notation. The function $P_{n,r}(s)$ can be explicitly computed; see [KR3, Lemma 5.5.3], [Il, p. 208], [I2, $p.$

249] and [$T$ , Cor. 2.2.5] for the various cases.

2.5. Regularized theta integral. The regularized theta integral is defined to be the function

$B^{n,r}(s, \phi)(g)=\frac{1}{\kappa_{r}\cdot P_{n,r}(s)}. \int[H_{r}]^{\theta_{n,r}(\omega_{n,r}(z)\phi)(gh)E_{H_{f}}(s,h)dh}).$

The integral converges absolutely at all points $s$ where $E_{H_{r}}(s, h)$ is holomorphic, and defines a $mer(\succ$

morphic function of $s$ (for fixed $\phi$).

We can now explain why the extra condition $r\leq n$ as in (2.2) is necessary. Indeed, if this condition
is not satisfied, one cannot hope to regularize the theta integral in the same way as above. Otherwise,
one may integrate the regularized theta kernel against the Eisenstein series associated to the family
of principal series representations induced from the minimal parabolic subgroup of $H_{r}$ ; this gives a
meromorphic function in $r$ complex variables whose iterated residue at a specific point is the regularized
theta lift of the constant function of $H_{r}$ . If this meromorphic function is not identically zero, then a
Zariski open set of these minimal principal series representations will have a nonzero theta lift to $G_{n}.$

For this to happen, it is necessary that $n\geq r.$

2.6. First and Second term range. The analytic behavior of $B^{n,r}(s, \phi)$ at the point of interest $s=\rho_{H}$

is described as follows:

Lemma 2.3. (i) If $m\leq d(n)$ , then $B^{n,r}(s, \phi)$ has a pole of order at most 1 at $s=\rho_{H_{r}}.$

(ii) If $d(n)<m\leq 2\cdot d(n)$ , then $P_{n,r}(s)$ has a simple zero at $s=\rho_{H_{r}}$ and $B^{n_{\rangle}r}(s, \phi)$ has a pole of order
at most 2 at $s=\rho_{H_{r}}.$

Because the analytic behavior of $B^{n,r}(s, \phi)$ at $s=\rho_{H_{r}}$ differs for different ranges of the pair $(n, m)$ ,
we introduce the following terminology outside the Weil’s convergent range:

$m<d(n)$ : the first term range;
$m=d(n)$ : the boundary case;

$d(n)<m\leq 2\cdot d(n)$ : the second term range.

Observe that if $V_{r}$ and $V_{r’}$ are complementary spaces, then $(W_{n}, V_{r})$ is in the first term range if and
only if $(W_{n}, V_{r’})$ is in the second term range. Moreover, in the boundary case, we have $V_{r}=V_{r’}$ . Note
also that when $m>2\cdot d(n)$ , one is automatically in the Weil’s convergent range.
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2.7. Laurent expansion. In the first term range and the boundary case, we may thus consider the
Laurent expansion at $s=\rho_{H_{r}}$ :

$B^{n,r}(s, \phi)=\frac{B_{-1}^{n,r}(\phi)}{s-\rho_{H_{\backslash }}}+B_{0}^{n,r}(\phi)+\cdots$

whereas in the second term range, we have

$B^{n,r}(s, \phi)=\frac{B_{-2}^{n,r}(\phi)}{(s-\rho_{H_{r}})^{2}}+\frac{B_{-1}^{n,r}(\phi)}{s-\rho_{H_{r}}}+B_{0}^{n,r}(\phi)+\cdots.$

The functions $B_{d}^{n,r}(\phi)$ are automorphic forms on $G_{n}$ and the linear map $\omega_{n,r}arrow \mathcal{A}(G_{n})$ (where $\mathcal{A}(G_{n})$ is
the space of automorphic forms on $G_{n}$ ) given by $\phi\mapsto B_{d}^{n,r}(\phi)$ is $G_{n}(A)$-equivariant. Moreover, if $B_{d}^{n,r}$ is
the leading term in the Laurent expansion, it is $H_{r}(\mathbb{A})$-invariant.

The purpose of the regularized Siegel- Weil formula is to give an altemative construction of the auto-
morphic forms $B_{-1}^{n,r}(\phi)$ and $B_{-2}^{n,r}(\phi)$ .

3. Siegel Eisenstein Series

In this section, we introduce the other side of the Siegel-Weil formula, namely certain Siegel Eisenstein
series.

3.1. Siegel Eisenstein series. We consider the global Siegel principal series representation $I_{n}^{n}(s, \chi)$ of
$G_{n}(A)$ .

$I_{n}^{n}(s, \chi)$ $:=Ind_{Q_{n}(A)}^{G_{n}(A)}$ ( $\chi$ odet) $\cdot|\det|^{S}.$

Here, we take $\chi=\chi_{V_{r}}=\chi_{V_{O}}$ to be a Hecke character fixed earlier.

For a standard section $\Phi_{s}\in I_{n}^{n}(s, \chi)$ , we consider the Siegel Eisenstein series defined for ${\rm Re}(s)\gg O$ by

$E(s, \Phi)(g):=\sum_{\gamma\in Q_{n}(F)\backslash G_{n}(F)}\Phi_{s}(\gamma g)$

for $g\in G_{n}(\mathbb{A})$ . Sometimes we write
$E(s, \Phi)=E^{n,n}(s, \Phi)$

when we want to emphasize the rank of the group. It admits a meromorphic continuation to $\mathbb{C}.$

3.2. Global Siegel-Weil sections. We are interested in certain special sections of $I_{n}^{n}(s, \chi)$ known as
the Siegel-Weil sections. For an $\epsilon$-Hermitian space $V_{r}$ of dimension $m=m_{0}+2r$ over $E$ , we have

$\Phi^{n,r}:S(Y_{n}^{*}\otimes V_{r})(A_{E})arrow I_{n}^{n}(\frac{m-d(n)}{2}, \chi)$

defined by
$\Phi^{n,r}(\phi)(g)=\omega_{n,r}(g)\phi(0)$ .

The map $\Phi^{n,r}$ is $H_{r}(A)$-invariant and $G_{n}(\mathbb{A})$ -equivariant. Its image is isomorphic to the maximal $H_{r}(A)-$

invariant quotient of $\omega_{n,r}$ , and the standard sections associated to its image is the space of Siegel-Weil
sections (relative to $V_{r}$ ). Henceforth, we shall set

$s_{m,n}= \frac{m-d(n)}{2}.$

Observe that, outside the Weil’s convergent range, we have:

$\{\begin{array}{l}s_{m,n}>0rightarrow second term range,s_{m,n}=0rightarrow boundary case,s_{m,n}<0rightarrow first term range.\end{array}$
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3.3. The Laurent coefficients $A_{d}^{n,r}$ . Suppose that we are in the boundary or second term range, so
that $0\leq s_{m,n}\leq d(n)/2$ . It is known that the Siegel Eisenstein series has at most a simple pole at
$s=s_{m,n}$ which is attained for some standard section if $s_{m,n}>0$ . Considering the Siegel-Weil sections
arising from $V_{r}$ $($with $\dim_{E}V_{r}=m)$ , we have the Laurent expansion

$E(s, \Phi^{n,r}(\phi))=\frac{A_{-1}^{n,r}(\phi)}{s-s_{m,n}}+A_{0}^{n,r}(\phi)+\cdots$ if $s_{m,n}>0$ ;

or
$E(s, \Phi^{n,r}(\phi))=A_{0}^{n,r}(\phi)+A_{1}^{n,r}(\phi)\cdot s+\cdot\cdot$ if $s_{m,n}=0.$

Thus $A_{d}^{n,r}$ is viewed as a linear map:

$A_{d}^{n,r}=E_{d}^{n,m}o\Phi^{n,r}:S(Y_{n}^{*}\otimes V_{r})(\mathbb{A})arrow \mathcal{A}(G_{n})$ .

4, The Siegel-Weil formula

The Siegel-Weil formula was discovered by Siegel in the context of classical modular forms and then
cast in the representation theoretic language and considerably extended in an influential paper of Weil
[Wel]. It identifies the global theta lift of the trivial representation of $H(V_{r})$ to $G(W_{n})$ as an Eisenstein
series, at least when some convergence conditions are satisfied. In a series of 3 papers [$KR$l, $KR$2,
$KR$3], Kudla and Rallis greatly extended the theory of the Siegel-Weil formula to situations where these
convergence conditions are not satisfied. Their work culminates in a regulamzed Siegel-Weil formula,
and they established what is now known as the first term identity, at least when $G(W_{n})$ is symplectic
and $H(V_{r})$ orthogonal. Their work was subsequently refined and extended to other dual pairs by others
([Ik, Il, I2, I3, Y2, Y3, Mo, JS]), especially in the work of Ikeda, Ichino and Yamana.

In this section, we recall the known cases of the Siegel-Weil formula.

4.1. Anisotropic case. We first consider the case $r=0$ , i.e. the pair $(W_{n}, V_{0})$ , so $H_{0}=H(V_{0})$ is
anisotropic. In this case, the Siegel-Weil formula is due to Weil [Wel], Kudla-Rallis [KRl], Ichino [I3]
and Yamana [Y2].

Theorem 4.1. For $\phi\in S(Y_{n}^{*}\otimes V_{0})(\mathbb{A})$ , the Eisenstein series $E(s, \Phi^{n,0}(\phi))$ is holomorphic at $s=s_{m,n}=$
$(m-d(n))/2$ and

$c_{m,n}\cdot\tau(H_{0})^{-1}\cdot I_{n,0}(\phi)=E(s_{m,n}, \Phi^{n,0}(\phi))$

with

$c_{m,n}=\{\begin{array}{l}1, if s_{m,n}>0,2, if s_{m,n}\leq 0;\end{array}$

and $\tau(H_{0})$ denoting the Tamagawa number of $H_{0}.$

More precisely, Weil [Wel] established the case when $m>2\cdot d(n)$ , Kudla-Rallis [KRl] established the
case when $\epsilon_{0}=1$ , Ichino showed the case when $\epsilon_{0}=0$ and $d(n)<m\leq 2\cdot d(n)$ , and Yamana completed
the case $\epsilon_{0}=0$ and $m\leq d(n)$ . There is nothing to check when $\epsilon_{0}=-1.$

4.2. Ikeda’s map. Before coming to the first term identity, we need to recall one last ingredient. Suppose
that $V_{r}\supset V_{r’}$ are complementary spaces. Writing

$V_{r}=X_{r-r’}’\oplus V_{r’}\oplus X_{r-r’}’*,$

we define a map
$Ik^{n,r}:S(Y_{n}^{*}\otimes V_{r})(\mathbb{A})arrow S(Y_{n}^{*}\otimes V_{r’})(\mathbb{A})$ ,
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given by

$Ik^{n,r}(\phi)(a)=\int_{(Y_{\dot{n}}’\otimes X_{r-r’}’)(A)}\phi(x, a, 0)dx,$

for $a\in(Y_{n}^{*}\otimes V_{r’})(A)$ . Thus, $Ik^{n,r}$ is the composite

$S(Y_{n}^{*}\otimes V_{r})=S(Y_{n}^{*}\otimes V_{r’})\otimes S(Y_{n}^{*}\otimes(X_{r-r}’, +X_{r-r’}^{J^{*}}))$

$\downarrow Id\otimes \mathcal{F}_{1}$

$S(Y_{n}^{*}\otimes V_{r’})\otimes S(W_{n}\otimes X_{r-r}’,)$

$\downarrow Id\otimes ev_{0}$

$S(Y_{n}^{*}\otimes V_{r’})$

where
$\mathcal{F}_{1}$ : $S(Y_{n}^{*}\otimes(X_{r-r}’, +X_{r-r}’*,))arrow S(W_{n}\otimes X_{r-r}’,)$

is the partial Fourier transform in the subspace $(Y_{n}^{*}\otimes X_{r-r’}’*)(\mathbb{A})$ , and $ev_{0}$ is evaluation at $0.$

The map $Ik^{n,r}$ was used by T. Ikeda in his refinement ([Ik]) of the first term identity of Kudla-Rallis
([KR3]). Thus we call $Ik^{n,r}$ an Ikeda map.

4.3. First term identity. We can now recall the regularized Siegel-Weil formula in the first term range.
Here the problem is to identify the automorphic form $B_{-1}^{n,r}(\phi)$ for $\phi\in S(Y_{n}^{*}\otimes V_{m})(\mathbb{A})$ . Since $B_{-1}^{n,r}$ is the
leading term of the Laurent expansion in this case, the resulting identity is called the first term identity.

The following theorem was shown by Kudla-Rallis [KR3], Moeglin [Mo], Ichino [Il, Theorem 3.1] and
[I2, Theorems 4.1 and 4.2] $)$ , Jiang-Soudry [JS, Theorem 2.4] and Yamana [Y2, Proposition 5.8]:

Theorem 4.2. Suppose that $m+m’=2\cdot d(n)$ with $m>m’$ , where recall $m’=m_{0}+2r’$ . Then for
$\phi\in S(Y_{n}^{*}\otimes V_{r})(\mathbb{A})$ , we have:

$A_{-1}^{n,r}(\phi)=\kappa_{r,r’}\cdot\tau(H_{r})^{-1}\cdot B_{-1}^{n,r’}(Ik^{n,r}(\pi_{K_{H_{r}}}\phi))$ ,

where $\kappa_{r,r’}$ is an explicit nonzero constant and $\pi_{K_{H_{f}}}$ is the projection onto the $K_{H_{r}}$ -fixed subspace. $In$

the boundary case, where $m=m’=d(n)$ , one has:

$A_{0}^{n,r}(\phi)=2\cdot\tau(H_{r})^{-1}\cdot B_{-1}^{n,r}(\phi)$ .

It should be mentioned that the above statement of the first term identity is not quite natural, since
the pair $(n, r’)$ is in the first term range, but we are considering $\phi\in S(Y_{n}^{*}\otimes V_{r})(\mathbb{A})$ which is the Weil
representation in the second term range. In [Y2, Theorem 2.2], Yamana has shown the more natural
statement below:

Theorem 4.3. Suppose that $(n, r’)$ is in the first term range, so that $m’=m_{0}+2r’<d(n)$ . Then for
$\phi\in S(Y_{n}^{*}\otimes V_{r’})(A),$ $E(s, \Phi^{n,r’}(\phi))$ is holomorphic at $s=s_{m’,n}<0$ , and

$A_{0}^{n,r’}(\phi)=2\cdot\tau(H_{r})^{-1}\cdot B_{-1}^{n,r’}(\phi)$ .

5. The Second Term Identity

Now we come to our main result. The goal is to relate the automorphic forms $B_{-1}^{n,r}(\phi)$ and $B_{-2}^{n,r}(\phi)$

with $A_{0}^{n,r}(\phi)$ and $A_{-1}^{n,r}(\phi)$ . Earlier special cases were shown in [GT], [KRS], [K], [T] and [X].
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5.1. Main result. The following is the main result of [GQT].

Theorem 5.1 (Siegel-Weil formula). Suppose that $0<r\leq n$ and $n+\epsilon_{0}<m\leq n+\epsilon_{0}+r$ , so that
we are in the second term mnge. Then one has:
(i) (First term identity) For all $\phi\in\omega_{n,r}$ , one has

$A_{-1}^{n,r}(\phi)=\tau(H(V_{r}))^{-1}\cdot B_{-2}^{n,r}(\phi)$ .

(ii) (Second term identity) For all $\phi\in\omega_{n,r}$ , one has

$A_{0}^{n,r}(\phi)=\tau(H(V_{r}))^{-1}\cdot B_{-1}^{n,r}(\phi)+c_{n,r}\cdot\tau(H(V_{r’}))^{-1}\cdot B_{0}^{n,r’}(Ik^{n,r}(\pi_{K_{H_{r}}}\phi))$ mod ${\rm Im} A_{-1}^{n,r}.$

Here, $c_{n,r}$ zs some explicit constant and $r’<r$ zs such that

$\dim V_{r}+\dim V_{r’}=2\cdot(n+\epsilon_{0})$ ,

so that $V_{r’}w$ the complementary space to $V_{r}$ with respect to $W_{n}$ . Moreover,

$Ik^{n,r}:\omega_{n,r}arrow\omega_{n,r’}$

$w$ the Ikeda map which is $G(W_{n})\cross H(V_{r’})$ -equivariant.

5.2. Strategy. We give a brief sketch of the main idea of the proof. The strategy of the proof has already
been used in [GT] to prove a weak form of the theorem in the case when $\epsilon_{0}=-1$ . It is based on induction
on the integer

2. $s_{m,n}=m-d(n)$ .
Let us illustrate how one starts the induction argument by going from the theorem in the boundary

case $(s_{m,n}=0)$ to the first case in the second term range $(2\cdot s_{m,n}=1)$ . Thus suppose we are dealing
with the Weil representation of $G(W_{n+1})\cross H(V_{r})$ with $m=d(n+1)$ . Then we are in the boundary case,
and for $\phi\in S(Y_{n+1}^{*}\otimes V_{r})(\mathbb{A})$ , we have the first term identity supplied by Theorem 4.2:

$A_{0}^{n+1,r}(\phi)=2\cdot\tau(H_{r})^{-1}\cdot B_{-1}^{n+1,r}(\phi)$ .

We may take the constant term of both sides with respect to the maximal parabolic $Q^{n+1}(Y_{1})=L^{n+1}(Y_{1})$ .
$U^{n+1}(Y_{1})$ of $G_{n+1}$ , which gives

$A_{0}^{n+1,r}(\phi)_{U^{n+1}}=2\cdot\tau(H_{r})^{-1}\cdot B_{-1}^{n+1,r}(\phi)_{U^{n+1}},$

which is an identity of automorphic forms on $L(Y_{1})=GL(Y_{1})\cross G(W_{n})$ , where $W_{n}=Y_{n}’\oplus Y_{n}’*$ (Note
that the superscript $n+1$ in the groups $Q^{n+1}(Y_{1})$ etc indicates the rank of the ambient group $G_{n+1}.$ )

Now note that both sides of this last equation are constant terms of the Laurent coefficients of some
Eisenstein series. Thus we may compute them by first computing the constant term of the relevant
Eisenstein series, followed by$\cdot$ extracting the relevant Laurent coefficients. The constant terms along
$U^{n+1}(Y_{1})$ of Eisenstein series on $G_{n+1}$ are simply the sum of Eisenstein series on $L(Y_{1})$ . We can compare
terms on both sides with the same $GL(Y_{1})$ part, and thus obtain an identity of Eisenstein series on
$G(W_{n})$ . It remains to identify these Eisenstein series and the sections where they are evaluated with
the desired objects coming from the Weil representation of $G_{n}xH_{r}$ . The theorem will then follow by
extracting the relevant Laurent coefficients (plus some extra technical work).
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5.3. Rallis inner product formula. The main application of the second term identity is he following
Rallis inner product formula for the theta lifting from $G(U_{n})$ to $H(V_{r})$ , where $U_{n}$ is any $n$-dimensional
$\epsilon$-Hermitian space. Since the Rallis inner product formula has been established in the convergent range
and the first term range, we shall focus on the case

$(n+\epsilon_{0})<m\leq 2\cdot(n+\epsilon_{0})$ .

Then we have:

Theorem 5.2 (Rallis inner product formula). Suppose that
$(n+\epsilon_{0})<m\leq 2\cdot(n+\epsilon_{0})$ and $r\leq n$

so that we are either in the second term mnge or the convergent mnge, depending on whether $m\leq$

$(n+\epsilon_{0})+r$ or not. Let $\pi$ be a cuspidal representation of $G(U_{n})$ and consider its global theta lift $\Theta_{n,r}(\pi)$

to $H(V_{r})$ .

(i) Assume that $\Theta_{n,j}(\pi)=0$ for $j<r$ , so that $\Theta_{n,r}(\pi)$ is cuspidal. Then for $\phi_{1},$ $\phi_{2}\in\omega_{\psi,U_{1},V_{r}}$ and
$f_{1},$ $f_{2}\in\pi,$

$\langle\theta(\phi_{1}, f_{1}), \theta(\phi_{2}, f_{2})\rangle=\tau(H(V_{r}))Va1_{s=s_{m\iota}},(L(s+\frac{1}{2}, \pi)\cdot Z^{*}(s, \phi_{1}\otimes\overline{\phi_{2}}, f_{1}, f_{2}))$ ,

where
$s_{m,n}= \frac{m-n-\epsilon_{0}}{2}>0,$

$L(s, \pi)w$ the standard $L$ -function of $\pi$ , and $Z^{*}(s, -)$ denotes the normalized doubling zeta integral as in
$[Y4J.$

(ii) Assume further that for all places $v$ of $F$ , the local theta lift $\Theta_{n,r}(\pi_{v})$ is nonzero. Then $L(s+ \frac{1}{2}, \pi)$

is $holomo7Y^{yhic}$ at $s=s_{m,n}$ , so that in the context of (i),

$\langle\theta(\phi_{1}, f_{1}), \theta(\phi_{2}, f_{2})\rangle=\tau(H(V_{r}))\cdot L(s_{m,n}+\frac{1}{2}, \pi)\cdot Z^{*}(s_{m,n}, \phi_{1}\otimes\overline{\phi_{2}}, f_{1}, f_{2})$ .

As a consequence, we are able to deduce the following local-global criterion for the nonvanishing of
global theta lifts.

Theorem 5.3 (Local-Global nonvanishing criterion). Assume the same conditions on $(m, n)$ as in
Theorem 5.2. Let $\pi$ be a cuspidal representation of $G(U_{n})$ and consider its global theta lift $\Theta_{n,r}(\pi)$ to
$H(V_{r})$ . Assume that $\Theta_{n,j}(\pi)=0$ for $j<r$ , so that $\Theta_{n.r}(\pi)$ is cuspidal.

(i) If $\Theta_{n,r}(\pi)$ is nonzem, then
$(a)$ for all places $v,$ $\Theta_{n,r}(\pi_{v})\neq 0$ , and
$(b)L(s_{m,n}+ \frac{1}{2}, \pi)\neq 0i.e$ . nonzero holomorphic.

(ii) The converse to (i) holds when one assumes one of the following conditions:. $\epsilon_{0}=-1$ ;. $\epsilon_{0}=0$ and $E_{v}=F_{v}\cross F_{v}$ for all archimedean places $v$ of $F$ ;. $\epsilon_{0}=1$ and $F$ is totally complex;. $m=d(n)+1.$

(iii) In geneml, under the conditions $(a)$ and $(b)$ in (i), there is an $\epsilon$ -Hermitian space $V’$ over $E$ such
that . $V’\otimes F_{v}\cong V\otimes F_{v}$ for every finite or complex place of $F$ ;. the global theta lift $\Theta_{U_{n},V’}(\pi)$ of $\pi$ to $H(V’)\iota s$ nonzero.
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