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ON CONFLUENT HYPERGEOMETRIC FUNCTIONS AND REAL ANALYTIC
SIEGEL MODULAR FORMS OF DEGREE 2

TAKUYA MIYAZAKI

We consider a vector-valued version of the confluent hypergeometric functions on the real
symplectic groups, [11]. We characterize their vanishing in certain cases in Section 1, and give
them another expressions of Fourier-Jacobi type in Section 2. They are applied to study Fourier-
Jacobi expansions of certain real analytic Eisenstein series and also to construct a real analytic
Siegel modular form.

1. VANISHING OF INTEGRALS

Let G be the real symplectic group of degree n with a maximal compact subgroup K =~ U(n).
We put (i) = Ci+ D for g = (¢ p) € G with i = v/—11,. Let ¢(x) be a polynomial on
complex symmetric matrices x € S(C) of size n, and let £ be an even integer. Then we define a
function ¢y(g,s) := det(ug(i))_si‘[ det(/._t—g(i—)-)“%! (p(ug(i)“E(i_)) of g€ Gands € C. A natural
action of K on S(C), and hence on @(x), shows that @(g,s) defines a K-finite vector in Ip(s), a
degenerate principal series representation induced from the Siegel maximal parabolic subgroup

Pof G.
For a real symmetric nonsingular n by n matrix B € S(R) we define an integral
(L1) Wal(g,s)(@e) := /S S EN w2 (2)3,5)dx
: 2rit . 0, 1, . I, x ..
with e(z) = e”™, wy 1= and n(x) := . This is the confluent hypergeo-
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metric function associated with @y(g,s) € Ip(s).

If the parameter s is specialized to an integer, then Ip(s) will become reducible. In that case
we can obtain a vanishing criterion of (1.1) depending on each ¢;(g,s) € Ip(s) and the signature
(p,q) of B € S(R). A typical example of this can be.stated as following. Assume that n =2 and
that @(x) belongs to an irreducible U(2)-module of highest weight (r,0) with an even integer
r > 0. We understand det(x) is of weight (2,2). In particular @(g,s) is of weight (r — £, —¢).

Proposition 1.1 ([6], [14]). Let n=2 and s = d + 1 with a positive even integer d. Assume that
@ is of weight (r,0). Then Wg(g,d + 1)(@;) is vanishing in the following cases.
(i) r—¢<dand —¢ < —d, and (p,q) = (2,0).
(i) r—£€>dand —¢ < —d, and (p,q) = (0,2) or (2,0).
(iii) r—£>d and —¢ > —d, and (p,q) = (0,2).

As the complements we can prove that Wa(g,d +1)(¢) #0if r—£ > d and —¢ < —d, and
(p,q) = (1,1), for example. For results in higher degrees, see [7].
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Proof. The proof proceeds as follows. It suffices to discuss the vanishing of

(1.2) /S € tr(Bx)) det(e(x)) 5 det(e(x)

“o(e(x) " e()dx, €(x) = 12— ix.

Here we remark £(x) ~1&(x) = 2¢(x)~! — 1,. Then the following lemma is crucial.

Lemma 1.2 (A generalized binomial expansion formula). Assume @ is of weight (ry, r2). Then

P(la+x)= ) ¢ .(),
(ror2) ‘
where @ ,, (x) is a polynomial belonging to the U(2)-module of weight (r},rh) with0 < ¥} < ry
and0<r) <nr,.

This can be proved by constructing a basis of U(2)-modules by using Jack polynomials of
two variables. Then the above binomial expansion is reduced to the corresponding property of
Jack polynomials which was established by Lassalle [5], Kaneko [3]. See Yokokawa [14] for
details, and [7] for the proof in higher degree case.

According to the lemma, (1.2) can be written as a sum of

(13) /S (R)e(——tr(Bx))det(.e—Gc_))—dJrg : )dx

with v’ < r. Each of these integrals can be studied by following the arguments by Shimura [11]
and [12], Proposition 3.1. It implies indeed that (1.3) are vanishing for all % <rifr—-€>d
and —¢ < —d and (p,q) = (2,0), for example. Thus the vanishing of (1.2) is concluded in this
case. On the other hand, (1.2) can be rewritten in another form as

(12) = fs o S BD)det(e(x) =3 det(2(0)~ =5 w(e() e (x))dx

‘with an appropriate 1[/ of weight (r,0). By repeating the previous arguments, this expression
yields that (1.2) is vanishing if » — ¢ > d and —¢ < —d and (p,q) = (0,2). This combined with
the above gives the assertion in (ii) of the proposition. (]

+r ~{+1

2. EXPRESSIONS OF FOURIER-JACOBI TYPE

Let us take @ = 1 of weight (0,0) for brevity, and put s = d+ 1 and £ = d in (1.1). Then we
have

2.1 (1.1) = det(a)*™ /S(R) e(—tr(Blajx)) det(g(x)) "2 det(e(x)) 9~ 2dx

. (@)= (@ 02 L (VY a/y , |

when g =m(a) := (02 ,a_1>,a— ( 0 € GL2(R), v,v' >0 and g € R. Also let us
/

put coordinates on x € S(R) as x = (L; 5 .

Assume that B is of the form B = L0y (1 AY e withA=0or L and t,n e Z
¢ 1J\A n/\O 1 2

(index 1) and is nondegenerate.
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Proposition 2.1. With the above setting (2.1) is equal to
emv')F e 2mv) / =1 (4] det(B) v, 4m (4 + 0+ A)%v; 1) (1 4+1) 71214 3ar,

when det(B) = n— A% < 0. On the other hand, it is vanishing, when det(B) > 0. Here we are
defining

o 1 x+y\ w Ix+1) a-4 -3 "
Q(x,y;w) :=(1—w)Zexp (— 5 ) xzz:o F(d+%+ K‘)LK 2(x)Ly * (y)w

with |w| < 1 using the Laguerre polynomials Ly (z).

We note that vi+ie=27ldet(B lVL -t (47| det(B)|v) is the Whittaker functions of the antiholo-
morphic discrete series representation 7 ; + | of SL, (R) of SO(2)-type (= weight) —d — % -2k,

and its product with vie~ 27+ v 2 (47:(1 + £+ 4)?v), which is of weight 5 + 2K, gives
the Whittaker function of weight —d belonging to a discrete series representation of the real
Jacobi group. This means that (27tv)d’§_19(47t|det(B)|v, 4m(2+ €+ A)%v;15;) is a generating
series of Whittaker functions of weight —d on the real Jacobi group. Moreover, we should
remark the generalized Hille-Hardy formula (Erdélyi [1], Rangarajan [9], and Srivastava [13]):
I1+w 1w w
Q(x,y;w) =T(d+ 2)_ exp (_x_—;—_y_ i+—w> D; (a’ d+ = ST oW (lx_yw)z)
where ®3(8,7,X,Y) is an Humbert’s confluent hypergeometric function, [2], Vol. 1, p.225,
(22). Then we can estimate the right hand side, cf. Shimomura [10], which is essential to verify
the convergence of the integral expression in the proposition.

3. A SCALAR VALUED EISENSTEIN SERIES

We can apply the local formula in Proposition 2.1 to study the Fourier-Jacobi expansion of a
scalar-valued Eisenstein series. Define at every finite prime p

Ap(n(xp)m(ap)ky) := | det(ap)|5"!
with n(x,)m(a,) € P(Q,) and k, € G(Z,), and
Ac(ger) = det(pt (1)) 4 det (g () 2
with an even integer d > 4. We set A(g) := A(ge)[1,Ap(gp), & € G(A), and define
E(@:= )  A©)
YEP(Q\G(Q)

/
It is a scalar valued Eisenstein series. We set g = n(xeo)m(ae) [1,kp With xeo = (L;) I; ) and

0o W

E@g)= ¥ Fn(t,5v + Le(mi), t=utiv, z=p+ig.
meZ

I
oo = (f 9/ \/_) and consider the Fourier-Jacobi expansion
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Proposition 3.1. Let m = 1. Then there exists a family {9 (7,z) | k =0, 1,2,...} of real analytic
Jacobi form of index 1 and weight —d satisfying the following properties.

(i) ¢2(7,2) is a skew holomorphic Jacobi Eisenstein series of index 1 and weight —d.
(i) ¢{(7,z) is obtained by differentiating ¢ (7,z) by k times.
(iii) The generating series
1o [(x+1)

Or(t,zw) = (1-w)? ¥ —————oF(r,2w", |w|<1
,;0 I(d+5+k)
converges absolutely.

(iv) The coefficient FJ;(t,z;V + qu) of index 1 is equal to

: 2 it / t
(3.1) (2rv') E =2 / eI px <‘L’,z; ———) (1+1)" 219 14r.
0 1+1¢
This result refines Kohnen’s limit formula, [4]. Also by applying suitable operator, (3.1)
yields a description of every coefficient of a positive index. As concerns the coefficients of
negative indices we will meet another ingredient that did not appear in the case of positive

index.

4. VECTOR-VALUED SIEGEL MODULAR FORMS

One can generalize the results in Section 3 to a vector-valued Eisenstein series. We take a
polynomial belonging to the U(2)-module V (d) of weight (2d,0) and put

Awo(8e0) (@) := Qu(8srd +1)
using the notation in Section 1. Then we set A(g)(9) := Aw(gx)(9)[1,Ap(gp) and define

(4.1) E(@(p):= Y  Alrg)o).
YeP(Q\G(Q)

This belongs to the U(2)-module of weight (d, —d) according to the right K-translation.

Proposition 1.1 implies that the Siegel-Fourier expansion of (4.1) is supported on those B
of signature (1,1), and besides, (1,0), (0,1), and B = 0,. Now we are concerned with the
Fourier-Jacobi expansion. Then it turns out that this vector valued Eisenstein series has suitable
symmetry for its coefficients of positive and negative indices and that we can treat them in
a parallel way. Indeed, the coefficient of indices &1 can be described by suitably modifying
the expressions (3.1). Besides these, we can also describe the coefficient of index 0, thus the
' Fourier-Jacobi expansion of E(g)(¢) is understood well explicitly. See [8] for the details.

Our method can be extended to study other Siegel-type Fourier series of degree 2. Keep
that ¢ varies in V(d) and consider Wz(g)(¢@) := Wg(g,d + 1)(¢,) defined in (1.1). Besides
it, let £(7) be a cusp form of weight d + % for I(4) that corresponds to a normalized cuspidal
eigenform of weight 2d for SL,(Z) by Shimura correspondence. Consider its Fourier expansion

h(t) = [i c(f)e(lt).
=1
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Let us define

4.2) F(g-k; @) : ZFB g-k)(¢) for gwke GR)[]6(z,),
14

where the coefficients Fg(g-.k; ¢) are determined by
(i) If Dg := —det(2B) > 0, then

Fals-ki) = ():r : (’,’B)) D} “Wals-)(0).

tlep

m r/2\ .
r/2 n)wnhm,n,reZ.

(ii) If Dg < 0, or if rank(B) = 1, then Fp(gwk; ) := 0.
(iii) Tf B = 0,, then

Fo,(8=k; @) := ), ():td 16< ))Ifl1 L ACSI)

0A£LeZ \ 1]

where ep := gcd(m, r,n) for B =

where we put
w(gi9)i= [ e(—ts) [“an (win((§ 9))m( (D 3))e-)aas

with w) =

The compact group K ~ U(2) acts on {F(g«k; @) | ¢ € V(d)} by the right translation, which
has the weight (d, —d). Using our local formulas we can rewrite (4.2) into a series of Fourier-
Jacobi type and study its transformation property for the action of Jacobi group. Then we get
the following result by repeating the argument in the holomorphic case, [15].

Theorem 4.1 ([8], Theorem 9.4). For every ¢ € V(d) (4.2) satisfies

F(Ygk; @) = F (gk; 9)
for all v € Sp(2,Z), thus it defines a real analytic Siegel modular form of degree 2.
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