ON CONFLUENT HYPERGEOMETRIC FUNCTIONS AND REAL ANALYTIC SIEGEL MODULAR FORMS OF DEGREE 2

TAKUYA MIYAZAKI

We consider a vector-valued version of the confluent hypergeometric functions on the real symplectic groups, [11]. We characterize their vanishing in certain cases in Section 1, and give them another expressions of Fourier-Jacobi type in Section 2. They are applied to study Fourier-Jacobi expansions of certain real analytic Eisenstein series and also to construct a real analytic Siegel modular form.

1. Vanishing of integrals

Let G be the real symplectic group of degree n with a maximal compact subgroup $K \simeq \mathrm{U}(n)$. We put $\mu_g(\mathbf{i}) = C\mathbf{i} + D$ for $g = \binom{*}{C} \binom{*}{D} \in G$ with $\mathbf{i} = \sqrt{-1} 1_n$. Let $\varphi(x)$ be a polynomial on complex symmetric matrices $x \in S(\mathbb{C})$ of size n, and let ℓ be an even integer. Then we define a function $\varphi_\ell(g,s) := \det(\mu_g(\mathbf{i}))^{-\frac{s-\ell}{2}} \det(\overline{\mu_g(\mathbf{i})})^{-\frac{s+\ell}{2}} \varphi(\mu_g(\mathbf{i})^{-1} \overline{\mu_g(\mathbf{i})})$ of $g \in G$ and $s \in \mathbb{C}$. A natural action of K on $S(\mathbb{C})$, and hence on $\varphi(x)$, shows that $\varphi_\ell(g,s)$ defines a K-finite vector in $I_P(s)$, a degenerate principal series representation induced from the Siegel maximal parabolic subgroup P of G.

For a real symmetric nonsingular n by n matrix $B \in S(\mathbb{R})$ we define an integral

(1.1)
$$W_B(g,s)(\varphi_\ell) := \int_{S(\mathbb{R})} \mathbf{e}(-\operatorname{tr}(Bx)) \varphi_\ell(w_2 n(x) g, s) dx$$

with $\mathbf{e}(t)=e^{2\pi it}$, $w_2:=\begin{pmatrix} 0_n & 1_n \\ -1_n & 0_n \end{pmatrix}$ and $n(x):=\begin{pmatrix} 1_n & x \\ 0_n & 1_n \end{pmatrix}$. This is the confluent hypergeometric function associated with $\varphi_\ell(g,s)\in I_P(s)$.

If the parameter s is specialized to an integer, then $I_P(s)$ will become reducible. In that case we can obtain a vanishing criterion of (1.1) depending on each $\varphi_\ell(g,s) \in I_P(s)$ and the signature (p,q) of $B \in S(\mathbb{R})$. A typical example of this can be stated as following. Assume that n=2 and that $\varphi(x)$ belongs to an irreducible U(2)-module of highest weight (r,0) with an even integer $r \geq 0$. We understand $\det(x)$ is of weight (2,2). In particular $\varphi_\ell(g,s)$ is of weight $(r-\ell,-\ell)$.

Proposition 1.1 ([6], [14]). Let n = 2 and s = d + 1 with a positive even integer d. Assume that φ is of weight (r,0). Then $W_B(g,d+1)(\varphi_\ell)$ is vanishing in the following cases.

(i)
$$r - \ell < d$$
 and $-\ell \le -d$, and $(p,q) = (2,0)$.

(ii)
$$r - \ell > d$$
 and $-\ell < -d$, and $(p,q) = (0,2)$ or $(2,0)$.

(iii)
$$r - \ell > d$$
 and $-\ell > -d$, and $(p,q) = (0,2)$.

As the complements we can prove that $W_B(g, d+1)(\varphi_\ell) \neq 0$ if $r-\ell \geq d$ and $-\ell \leq -d$, and (p,q)=(1,1), for example. For results in higher degrees, see [7].

Proof. The proof proceeds as follows. It suffices to discuss the vanishing of

$$(1.2) \int_{S(\mathbb{R})} \mathbf{e}(-\operatorname{tr}(Bx)) \det(\varepsilon(x))^{-\frac{d-\ell+1}{2}} \det(\overline{\varepsilon(x)})^{-\frac{d+\ell+1}{2}} \varphi(\varepsilon(x)^{-1} \overline{\varepsilon(x)}) dx, \quad \varepsilon(x) = 1_2 - ix.$$

Here we remark $\varepsilon(x)^{-1}\overline{\varepsilon(x)} = 2\varepsilon(x)^{-1} - 1_2$. Then the following lemma is crucial.

Lemma 1.2 (A generalized binomial expansion formula). Assume φ is of weight (r_1, r_2) . Then

$$\varphi(1_2+x) = \sum_{(r'_1,r'_2)} \varphi_{r'_1,r'_2}(x),$$

where $\varphi_{r'_1,r'_2}(x)$ is a polynomial belonging to the U(2)-module of weight (r'_1,r'_2) with $0 \le r'_1 \le r_1$ and $0 \le r'_2 \le r_2$.

This can be proved by constructing a basis of U(2)-modules by using Jack polynomials of two variables. Then the above binomial expansion is reduced to the corresponding property of Jack polynomials which was established by Lassalle [5], Kaneko [3]. See Yokokawa [14] for details, and [7] for the proof in higher degree case.

According to the lemma, (1.2) can be written as a sum of

(1.3)
$$\int_{S(\mathbb{R})} \mathbf{e}(-\operatorname{tr}(Bx)) \det(\overline{\varepsilon(x)})^{-\frac{d+\ell+1}{2}} \det(\varepsilon(x))^{-\frac{d-\ell+1}{2}} \varphi_{r',0}(\varepsilon(x)^{-1}) dx$$

with $r' \le r$. Each of these integrals can be studied by following the arguments by Shimura [11] and [12], Proposition 3.1. It implies indeed that (1.3) are vanishing for all $r' \le r$, if $r - \ell \ge d$ and $-\ell \le -d$ and (p,q) = (2,0), for example. Thus the vanishing of (1.2) is concluded in this case. On the other hand, (1.2) can be rewritten in another form as

$$(1.2) = \int_{S(\mathbb{R})} \mathbf{e}(-\operatorname{tr}(Bx)) \det(\varepsilon(x))^{-\frac{d+r-\ell+1}{2}} \det(\overline{\varepsilon(x)})^{-\frac{d-r+\ell+1}{2}} \psi(\overline{\varepsilon(x)})^{-1} \varepsilon(x)) dx$$

with an appropriate ψ of weight (r,0). By repeating the previous arguments, this expression yields that (1.2) is vanishing if $r-\ell \ge d$ and $-\ell \le -d$ and (p,q)=(0,2). This combined with the above gives the assertion in (ii) of the proposition.

2. Expressions of Fourier-Jacobi type

Let us take $\varphi = 1$ of weight (0,0) for brevity, and put s = d+1 and $\ell = d$ in (1.1). Then we have

(2.1)
$$(1.1) = \det(a)^{2-d} \int_{S(\mathbb{R})} \mathbf{e}(-\operatorname{tr}(B[a]x)) \det(\varepsilon(x))^{-\frac{1}{2}} \det(\overline{\varepsilon(x)})^{-d-\frac{1}{2}} dx$$

when
$$g = m(a) := \begin{pmatrix} a & 0_2 \\ 0_2 & {}^t a^{-1} \end{pmatrix}$$
, $a = \begin{pmatrix} \sqrt{v'} & q/\sqrt{v} \\ 0 & \sqrt{v} \end{pmatrix} \in \mathrm{GL}_2(\mathbb{R})$, $v, v' > 0$ and $q \in \mathbb{R}$. Also let us put coordinates on $x \in S(\mathbb{R})$ as $x = \begin{pmatrix} u' & p \\ p & u \end{pmatrix}$.

Assume that B is of the form $B = \begin{pmatrix} 1 & 0 \\ \ell & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ \lambda & n \end{pmatrix} \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix}$ with $\lambda = 0$ or $\frac{1}{2}$ and $\ell, n \in \mathbb{Z}$ (index 1) and is nondegenerate.

Proposition 2.1. With the above setting (2.1) is equal to

$$(2\pi v')^{\frac{d+1}{2}}e^{-2\pi v'}(2\pi v)^{\frac{d+1}{2}}\int_0^\infty e^{-4\pi v't}\Omega\left(4\pi|\det(B)|v,4\pi(\frac{q}{v}+\ell+\lambda)^2v;\frac{t}{1+t}\right)(1+t)^{-1\frac{1}{2}}t^{d-\frac{1}{2}}dt,$$

when $det(B) = n - \lambda^2 < 0$. On the other hand, it is vanishing, when det(B) > 0. Here we are defining

$$\Omega(x, y; w) := (1 - w)^{\frac{1}{2}} \exp\left(-\frac{x + y}{2}\right) \sum_{\kappa=0}^{\infty} \frac{\Gamma(\kappa + 1)}{\Gamma(d + \frac{1}{2} + \kappa)} L_{\kappa}^{d - \frac{1}{2}}(x) L_{\kappa}^{-\frac{1}{2}}(y) w^{\kappa}$$

with |w| < 1 using the Laguerre polynomials $L_{\kappa}^{\nu}(z)$.

We note that $v^{\frac{d}{2}+\frac{1}{4}}e^{-2\pi|\det(B)|\nu}L_{\kappa}^{d-\frac{1}{2}}(4\pi|\det(B)|\nu)$ is the Whittaker functions of the antiholomorphic discrete series representation $\overline{\pi}_{d+\frac{1}{2}}$ of $SL_2(\mathbb{R})$ of SO(2)-type (= weight) $-d-\frac{1}{2}-2\kappa$, and its product with $v^{\frac{1}{4}}e^{-2\pi(\frac{q}{\nu}+\ell+\lambda)^2\nu}L_{\kappa}^{-\frac{1}{2}}\left(4\pi(\frac{q}{\nu}+\ell+\lambda)^2\nu\right)$, which is of weight $\frac{1}{2}+2\kappa$, gives the Whittaker function of weight -d belonging to a discrete series representation of the real Jacobi group. This means that $(2\pi\nu)^{\frac{d+1}{2}}\Omega(4\pi|\det(B)|\nu,4\pi(\frac{q}{\nu}+\ell+\lambda)^2\nu;\frac{t}{1+t})$ is a generating series of Whittaker functions of weight -d on the real Jacobi group. Moreover, we should remark the generalized Hille-Hardy formula (Erdélyi [1], Rangarajan [9], and Srivastava [13]):

$$\Omega(x,y;w) = \Gamma(d+\frac{1}{2})^{-1} \exp\left(-\frac{x+y}{2} \cdot \frac{1+w}{1-w}\right) \Phi_3\left(d,d+\frac{1}{2};\frac{xw}{1-w},\frac{xyw}{(1-w)^2}\right),$$

where $\Phi_3(\beta, \gamma, X, Y)$ is an Humbert's confluent hypergeometric function, [2], Vol. I, p.225, (22). Then we can estimate the right hand side, cf. Shimomura [10], which is essential to verify the convergence of the integral expression in the proposition.

3. A SCALAR VALUED EISENSTEIN SERIES

We can apply the local formula in Proposition 2.1 to study the Fourier-Jacobi expansion of a scalar-valued Eisenstein series. Define at every finite prime p

$$\Lambda_p(n(x_p)m(a_p)k_p) := |\det(a_p)|_p^{d+1}$$

with $n(x_p)m(a_p)\in P(\mathbb{Q}_p)$ and $k_p\in G(\mathbb{Z}_p)$, and

$$\Lambda_{\infty}(g_{\infty}) := \det(\mu_{g_{\infty}}(\mathbf{i}))^{-\frac{1}{2}} \det(\overline{\mu_{g_{\infty}}(\mathbf{i})})^{-d-\frac{1}{2}}$$

with an even integer $d \ge 4$. We set $\Lambda(g) := \Lambda(g_{\infty}) \prod_p \Lambda_p(g_p)$, $g \in G(\mathbb{A})$, and define

$$E(g) := \sum_{\gamma \in P(\mathbb{Q}) \backslash G(\mathbb{Q})} \Lambda(\gamma g).$$

It is a scalar valued Eisenstein series. We set $g = n(x_{\infty})m(a_{\infty})\prod_{p}k_{p}$ with $x_{\infty} = \begin{pmatrix} u' & p \\ p & u \end{pmatrix}$ and $a_{\infty} = \begin{pmatrix} \sqrt{v'} & q/\sqrt{v} \\ 0 & \sqrt{v'} \end{pmatrix}$, and consider the Fourier-Jacobi expansion

$$E(g) = \sum_{m \in \mathbb{Z}} \mathrm{FJ}_m(\tau, z; v' + \frac{q^2}{v}) \mathbf{e}(mu'), \quad \tau = u + iv, \quad z = p + iq.$$

Proposition 3.1. Let m = 1. Then there exists a family $\{\phi_1^{\kappa}(\tau, z) \mid \kappa = 0, 1, 2, ...\}$ of real analytic Jacobi form of index 1 and weight -d satisfying the following properties.

- (i) $\phi_1^0(\tau,z)$ is a skew holomorphic Jacobi Eisenstein series of index 1 and weight -d.
- (ii) $\phi_1^{\kappa}(\tau,z)$ is obtained by differentiating $\phi_1^{0}(\tau,z)$ by k times.
- (iii) The generating series

$$\phi_1^{\Sigma}(\tau, z; w) := (1 - w)^{\frac{1}{2}} \sum_{\kappa=0}^{\infty} \frac{\Gamma(\kappa + 1)}{\Gamma(d + \frac{1}{2} + \kappa)} \phi_1^{\kappa}(\tau, z) w^{\kappa}, \quad |w| < 1$$

converges absolutely.

(iv) The coefficient $FJ_1(\tau, z; \nu' + \frac{q^2}{\nu})$ of index 1 is equal to

(3.1)
$$(2\pi v')^{\frac{d+1}{2}} e^{-2\pi v'} \int_0^\infty e^{-4\pi v't} \phi_1^{\Sigma} \left(\tau, z; \frac{t}{1+t}\right) (1+t)^{-\frac{1}{2}} t^{d-\frac{1}{2}} dt.$$

This result refines Kohnen's limit formula, [4]. Also by applying suitable operator, (3.1) yields a description of every coefficient of a positive index. As concerns the coefficients of negative indices we will meet another ingredient that did not appear in the case of positive index.

4. VECTOR-VALUED SIEGEL MODULAR FORMS

One can generalize the results in Section 3 to a vector-valued Eisenstein series. We take a polynomial belonging to the U(2)-module V(d) of weight (2d,0) and put

$$\Lambda_{\infty}(g_{\infty})(\varphi) := \varphi_d(g_{\infty}, d+1)$$

using the notation in Section 1. Then we set $\Lambda(g)(\varphi) := \Lambda_{\infty}(g_{\infty})(\varphi) \prod_{n} \Lambda_{n}(g_{n})$ and define

(4.1)
$$E(g)(\varphi) := \sum_{\gamma \in P(\mathbb{Q}) \backslash G(\mathbb{Q})} \Lambda(\gamma g)(\varphi).$$

This belongs to the U(2)-module of weight (d, -d) according to the right K-translation.

Proposition 1.1 implies that the Siegel-Fourier expansion of (4.1) is supported on those B of signature (1,1), and besides, (1,0), (0,1), and $B=0_2$. Now we are concerned with the Fourier-Jacobi expansion. Then it turns out that this vector valued Eisenstein series has suitable symmetry for its coefficients of positive and negative indices and that we can treat them in a parallel way. Indeed, the coefficient of indices ± 1 can be described by suitably modifying the expressions (3.1). Besides these, we can also describe the coefficient of index 0, thus the Fourier-Jacobi expansion of $E(g)(\varphi)$ is understood well explicitly. See [8] for the details.

Our method can be extended to study other Siegel-type Fourier series of degree 2. Keep that φ varies in V(d) and consider $W_B(g)(\varphi) := W_B(g,d+1)(\varphi_d)$ defined in (1.1). Besides it, let $h(\tau)$ be a cusp form of weight $d+\frac{1}{2}$ for $\Gamma_0(4)$ that corresponds to a normalized cuspidal eigenform of weight 2d for $SL_2(\mathbb{Z})$ by Shimura correspondence. Consider its Fourier expansion

$$h(\tau) = \sum_{\ell=1}^{\infty} c(\ell) \mathbf{e}(\ell \tau).$$

Let us define

(4.2)
$$F(g_{\infty}k;\varphi) := \sum_{R} F_{B}(g_{\infty}k)(\varphi) \text{ for } g_{\infty}k \in G(\mathbb{R}) \prod_{p} G(\mathbb{Z}_{p}),$$

where the coefficients $F_B(g_{\infty}k; \varphi)$ are determined by

(i) If $\mathbf{D}_B := -\det(2B) > 0$, then

$$F_B(g_\infty k; oldsymbol{arphi}) := \left(\sum_{t|e_B} t^d c\left(rac{\mathbf{D}_B}{t^2}
ight)
ight) \mathbf{D}_B^{rac{1}{2}-d} W_B(g_\infty)(oldsymbol{arphi}),$$

where
$$e_B := \gcd(m, r, n)$$
 for $B = \begin{pmatrix} m & r/2 \\ r/2 & n \end{pmatrix}$ with $m, n, r \in \mathbb{Z}$.

- (ii) If $\mathbf{D}_B < 0$, or if rank(B) = 1, then $F_B(g_{\infty}k; \varphi) := 0$.
- (iii) If $B = 0_2$, then

$$F_{0_2}(g_{\infty}k;\boldsymbol{\varphi}) := \sum_{0 \neq \ell \in \mathbb{Z}} \left(\sum_{t \mid \ell} t^{d-1} c\left(\frac{\ell^2}{t^2}\right) \right) |\ell|^{1-2d} W_{\ell}^P(g_{\infty})(\boldsymbol{\varphi})$$

where we put

$$W_{\ell}^{P}(g_{\infty})(\varphi) := \int_{0}^{\infty} \mathbf{e}(-\ell s) \int_{0}^{\infty} \Lambda_{\infty} \left(w_{1} n \left(\begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} \right) m \left(\begin{pmatrix} 0 & 1 \\ 1 & s \end{pmatrix} \right) g_{\infty} \right) dt ds$$

with
$$w_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
.

The compact group $K \simeq U(2)$ acts on $\{F(g_{\infty}k, \varphi) \mid \varphi \in V(d)\}$ by the right translation, which has the weight (d, -d). Using our local formulas we can rewrite (4.2) into a series of Fourier-Jacobi type and study its transformation property for the action of Jacobi group. Then we get the following result by repeating the argument in the holomorphic case, [15].

Theorem 4.1 ([8], Theorem 9.4). For every $\varphi \in V(d)$ (4.2) satisfies

$$F(\gamma g_{\infty} k; \varphi) = F(g_{\infty} k; \varphi)$$

for all $\gamma \in Sp(2,\mathbb{Z})$, thus it defines a real analytic Siegel modular form of degree 2.

REFERENCES

- [1] A. Erdélyi, Transformation einer gewissen nach Produkten konfluenter hypergeometrischer Funktionen fortschreitenden Reihe, Compositio Math. 6 (1939), 336–347.
- [2] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, *Higher transcendental functions*, Vols. I and II, McGraw-Hill, New York-Toronto-London, 1953.
- [3] J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993) 1086–1110.
- [4] W. Kohnen, Jacobi forms and Siegel modular forms: recent results and problems, Enseign. Math. (2) 39 (1993), 121-136.
- [5] M. Lassalle, Une formule du binôme généralisée pour les polynômes de Jack, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 253-256.
- [6] T. Miyazaki, On Siegel-Eisenstein series attached to certain cohomological representations, J. Math. Soc. Japan 63 (2011), 599-646.

- [7] T. Miyazaki, On Bessel integrals for reducible degenerate principal series representations, J. Funct. Anal. **260** (2011) 2579–2597
- [8] T. Miyazaki, On Fourier-Jacobi expansions of real analytic Eisenstein series of degree 2, preprint (2013)
- [9] S. K. Rangarajan, Series involving products of Laguerre polynomials, Proc. Indian Acad. Sci. Sect. A 58 (1963) 362-367.
- [10] S. Shimomura, A system associated with the confluent hypergeometric function Φ_3 and a certain linear ordinary differential equation with two irregular singular points, Internat. J. Math. 8 (1997) 689–702.
- [11] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982) 269-302.
- [12] G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math. 77 (1984) 463—488.
- [13] H. M. Srivastava, Certain series involving products of Laguerre polynomials, Proc. Indian Acad. Sci. Sect. A 70 (1969) 102–106.
- [14] T. Yokokawa, Analysis in symmetric matrix space and module structures of degenerate principal series representations (Japanese), Master thesis, Keio University (2011).
- [15] D. Zagier, Sur la conjecture de Saito-Kurokawa (d'après H. Maass), Seminar on Number Theory, Paris 1979-80, 371-394, Progr. Math., 12, Birkhäuser, Boston, Mass., 1981.

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, HIYOSHI, YOKOHAMA 223-8522, JAPAN E-mail address: miyazaki@math.keio.ac.jp