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Let $G$ be a quasi-split reductive group defined over a number field $F$ . Fix a
Borel subgroup $B$ of $Gdefin\dot{e}d$ over $F$ and let $N$ be its unipotent radical. Fix a
non-degenerate character of $N(A)$ , trivial on $N(F)$ . The $\psi_{N}$-Whittaker coefficient
of an automorphic form $\varphi$ on $G(F)\backslash G(\mathbb{A})$ is defined by

$\mathcal{W}^{\psi_{N}}(\varphi)=\int_{N(F)\backslash N(A)}\varphi(u)\psi_{N}^{-1}(u)du.$

When $\varphi$ belongs to a $\psi_{N}$ -generic automorphic cuspidal representation $\pi$ we would
like to compare $\mathcal{W}^{\psi_{N}}(\varphi)$ with the Petersson inner product. More precisely, we have
a relation

$| \mathcal{W}(\varphi)|^{2}=c_{\pi}\lim_{s=1}\frac{\Delta_{F}^{s}(s)}{L^{S}(s,\pi,Ad)}\int_{N(F_{S})}^{st}(\pi(u)\varphi, \varphi)_{G(F)\backslash G(A)^{1}}\psi_{N}(u)^{-1}du$

where
$\bullet$ $S$ is a sufficiently large finite set of places of $F$ containing all archimedean

ones and the places where either $G,$ $\pi$ or $\psi_{N}$ are ramified.
$\bullet$ $\triangle_{F}^{S}(s)$ is a certain partial $L$-function which depends only on $G.$

$\bullet$ $L^{S}(s, \pi, Ad)$ is the partial $L$-function of $\pi$ with respect to the adjoint L-
function of $LG.$

$\bullet$ The local integral makes sense by a suitable regularization. (In the p–adic
case it is simply the integral over a sufficiently large compact open subgroup
of $N(F_{v}).)$

The constant $c_{\pi}$ depends on the automorphic realization of $\pi$ as well as the Haar
measures chosen. It follows from the Casselman-Shalika formula [CS80] that $c_{\pi}$

does not depend on $S$ . It is convenient to choose the Haar measures by $vol(G(F)\backslash G(\mathbb{A})^{1})=$

$vol(N(F)\backslash N(\mathbb{A}))=1$ . The measure on $N(F_{S})$ is chosen so that under the decom-
position $N(A)=N(F_{S})\cross N(F^{S}),$ $vol(N(F^{s})\cap K^{S})=1$ where $K^{S}$ is a suitable
maximal compact subgroup of $G(\mathbb{A}^{S})$ . Implicit here is the assumption that the

limit $\lim_{s=1}\frac{\triangle_{F}^{s}(s)}{L^{s}(s,\pi,Ad)}$ exists and is non-zero.
In the case where $G=GL_{n}$ the theory of Rankin-Selberg integrals for $GL_{n}\cross GL_{n}$

developed by $Jacquet-Piatetski$-Shapiro-Shalika (cf. [JacOl, \S 2]) together with 10-
cal unfolding shows that $c_{\pi}=1$ for any cuspidal representation $\pi$ . In the case
where $G=SL_{n}$ it easily follows that $c_{\pi}=|X(\tilde{\pi})|^{-1}$ if $\pi$ is the $\psi_{N}$-generic irr\‘e-

ducible constituent of the restriction of functions from a cuspidal representation ft
of $GL_{n}(\mathbb{A})$ to $SL_{n}(F)\backslash SL_{n}(A)$ . Here $X(\tilde{\pi})$ is the finite group of Hecke character $\chi$

such that ft $CD\chi=\tilde{\pi}.$
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Our work concerns the value of $c_{\pi}$ for the identity component of classical groups.
By the works of $Ginzburg-Rallis$-Soudry [GRSII] and Cogdell-Kim-Piatetski-Shapiro-
Shahidi [CKPSS04] the generic cuspidal representations of a classical group $G$ are
parameterized by isobraic representations $\Pi=\pi_{1}$ ffl $\cdots$ ffl $\pi_{k}$ of $GL_{N}$ (with $N$ deter-
mined by $G$) where $\pi_{1},$

$\ldots,$
$\pi_{k}$ are distinct cuspidal representations of $GL_{n_{1}},$

$\ldots,$
$GL_{n_{k}}$

of a certain type. Moreover, $Ginzburg-Rallis$-Soudry give an automorphic realiza-
tion of such $\pi$ ’s in terms of $\Pi$ $($ namely, $\pi is the$ descent $of \Pi)$ . We conjecture that
for this $\pi$ we have $c_{\pi}=2^{1-k}$ unless $G=SO(2n)$ and all the local components of
$\pi_{v}$ are invariant under $O(2n)$ , in which case $c_{\pi}=2^{2-k}$ . This relation is analogous
to a conjecture of Ichino-Ikeda [II10]. There is also an analogous conjecture for the
metaplectic two-fold cover for $Sp_{n}(\mathbb{A})$ . In this case we expect that

$| \mathcal{W}(\varphi)|^{2}=2^{-k}\prod_{i=1}^{n}\zeta_{F}^{S}(2i)\frac{L^{S}(\frac{1}{2},\Pi)}{L^{S}(1,\Pi,sym^{2})}\int_{N(F_{S})}^{st}(\pi(u)\varphi, \varphi)_{G(F)\backslash G(A)^{1}}\psi_{N}(u)^{-1}du$

where $\Pi$ is as before with all $\pi_{i}$ ’s satisfying $L( \frac{1}{2}, \pi_{i})L^{S}(1, \pi_{i}, \wedge^{2})=\infty$ and $\pi$ is the
descent of $\Pi$ . The case $n=1$ is essentially a reformulation of a well-known result
of Waldspurger [Wa181].

In the cases of odd orthogonal, unitary and metaplectic groups we reduce the
conjecture to a local statement. We also have partial results toward the local
statement.
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