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1. INTRODUCTION

In this note we will give an upper bound for the absolute value of the global coefficients
$a^{M}(\gamma, S)$ appearing in the fine geometric expansion of Arthur’s trace formula for $GL(n)$ , and
sketch a proof of this bound, see [10] for details. Moreover, we will indicate how this upper
bound might be useful in the proof of a Weyl’s law for Hecke operators on $GL(n)$ .

Let $F$ be a number field with ring of adeles $\mathbb{A}_{F}$ and let $G$ be a reductive group defined
over $F$ . Arthur’s trace formula for $G$ is an identity of distributions

$J_{geom}(f)= \sum_{0\in \mathcal{O}}J_{0}(f)=\sum_{\chi\in \mathfrak{X}}J_{\chi}(f)=J_{spec}(f)$

between the so-called geometric and spectral side on some space of test functions $f$ (for
example smooth and compactly supported functions on $G(\mathbb{A}_{F})^{1})$ . Here $\mathcal{O}$ denotes the set of
certain equivalence classes which are parametrised by conjugacy classes of semisimple elements
in $G(F)$ , and $\mathfrak{X}$ is the set of spectral data for $G(F)$ , cf. [4]. In [2, Theorem 8.1] Arthur obtains
the following fine expansion for $J_{0}(f)$ : There exist coefficients $a^{M}(\gamma, S)\in \mathbb{C}$ such that for all
$f\in C_{c}^{\infty}(G(\mathbb{A}_{F})^{1})$ we have

(1) $J_{0}(f)= \sum_{M}\frac{|W^{M}|}{|W^{G}|}\sum_{\gamma}a^{M}(\gamma, S)J_{M}^{G}(\gamma, f)$

provided that $S$ is a sufficiently large finite set of places of $F$ (with respect to $\mathfrak{o}$ and the support
of $f)$ . Here $M$ runs over the finite set of Levi subgroups of $G$ containing a fixed minimal
Levi subgroup, and $\gamma\in M(F)\cap \mathfrak{o}$ runs over a system of representatives for the so-called
$(M, S)$-equivalence classes [4, \S 19]. In the case of $G=GL_{n}$ this equivalence relation is given
by $M(F)$-conjugation and does not depend on $S$ . Further, $W^{G}$ denotes the Weyl group of $G,$

and the distributions $J_{M}^{G}(\gamma, f)$ can be defined as weighted orbital integrals [3].
The coefficients $a^{M}(\gamma, S)$ depend on the normalisation of measures on the adelic and $v$-adic

points of $G$ and its subgroups. Exact formulas for them are only known in special cases,
namely for semisimple $\gamma$ in arbitrary $M\subseteq G$ by [2, Theorem 8.2], and for arbitrary $M$ and $\gamma$

in the case of $GL_{n},$ $SL_{n}$ with $n\leq 3$ , and $Sp_{2}\subseteq GL_{4}$ , cf. [7, 5, 6].
Here we will give an upper bound for the absolute value of these coefficients (with respect

to some fixed choice of measures) for Levi subgroups of $GL_{n}$ and arbitrary $\gamma$ . Such upper
bounds are needed- among other things - for establishing asymptotics for traces of Hecke
operators on $GL_{n}$ with uniform error term along the lines of [8]. The main idea how this
upper bound might be used in a proof of such a result will be sketched in \S 5 below.
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2. MAIN RESULT

We first need to find an upper bound for coefficients for unipotent $\gamma$ , since by definition [2,
(8.1) $]$ the general case is reduced to the unipotent one.

Coefficients for unipotent elements. Fix an integer $n\geq 1$ and let $G=GL_{n}$ . Let $T_{0}$

denote the torus of diagonal elements in $G$ , and $U_{0}$ the unipotent subgroup consisting of upper
triangular matrices with $1$ ’s on the diagonal. Then $P_{0}=T_{0}U_{0}\subseteq G$ is a minimal parabolic
subgroup and we call an arbitrary parabolic subgroup $P\subseteq G$ standard if $P_{0}\subseteq P$ . Let $\mathcal{L}$ be
the set of all Levi subgroups $M\subseteq G$ containing $T_{0}$ . If $v$ is a non-archimedean place of $F$ , let
$\mathcal{O}_{F_{v}}$ denote the ring of integers in the local field $F_{v}$ , and $K_{v}=GL_{n}(\mathcal{O}_{F_{v}})$ the usual maximal
compact subgroup in $G(F_{v})$ . If $v$ is a real place, we take $K_{v}=O(n)$ , and if $v$ is complex, we
take $K_{v}=U(n)$ as maximal compact subgroups. We let $K=\prod_{v}K_{v}\subseteq G(A_{F})$ be the usual
maximal compact subgroup in $G(\mathbb{A}_{F})$ .

We denote by $\mathcal{U}_{M}$ the variety of unipotent elements in $M$ , and by $\mathfrak{U}^{M}$ the finite set of
$M$-conjugacy classes on $\mathcal{U}_{M}$ . Let $S_{\infty}$ denote the set of archimedean places of $F$ . Fix a finite set
of places $S$ of $F$ with $S_{\infty}\subseteq S$ , and let $F_{S}= \prod_{v\in S}F_{v}$ be the product over the completions $F_{v}$

of $F$ at $v$ . We write $S_{f}=S\backslash S_{\infty}$ for the set of non-archimedean places contained in $S$ . The set
of unipotent elements $\mathcal{U}_{G}\subseteq G$ constitutes exactly one equivalence.class $\mathfrak{o}$ unip $=\mathcal{U}_{G}(F)\in \mathcal{O}.$

The distribution associated with $\mathfrak{o}_{unip}$ is the unipotent distribution
$J_{unip}=J_{0_{unip}}:C_{c}^{\infty}(G(\mathbb{A}_{F})^{1})arrow \mathbb{C}$

studied in [1]. Specialising [1, Theorem 8.1] to $GL_{n}$ , there are uniquely determined numbers
$a^{M}(\mathcal{V}, S)\in \mathbb{C}$ for $\mathcal{V}\in \mathfrak{U}^{M}$ such that

(2) $J_{unip}(f)= \sum_{M\in \mathcal{L}}\frac{|W^{M}|}{|W^{G}|}\sum_{\mathcal{V}\in\mathfrak{U}^{\Lambda t}}a^{M}(\mathcal{V}, S)J_{M}^{G}(\mathcal{I}_{M}^{G}\mathcal{V}, f)$

holds for all functions $f\in C_{c}^{\infty}(G(A_{F})^{1})$ of the form $f_{S}\otimes 1_{K^{S}}$ with $f_{S}\in C_{c}^{\infty}(G(F_{S})^{1})$ and
$1_{K^{S}}$ the characteristic function of $K^{S}=\prod_{v\not\in S}K_{v}\subseteq\prod_{v\not\in S}G(F_{v})$ . Here $\mathcal{I}_{M}^{G}\nu$ denotes the
unipotent conjugacy class in $G(F)$ induced from $\mathcal{V}$ and $J_{M}^{G}(\mathcal{I}_{M}^{G}\mathcal{V}, f)$ $:=J_{M}^{G}(u, f)$ for some
(and hence any) $u\in \mathcal{V}$ . The expansion of the general distribution in (1) is a generalisation of
this equality.

The absolute value of the constants depends on a choice of measures on the adelic and
$v$-adic points of $G$ and its subgroups. This can already be seen for $GL_{1}$ : There is only one
coefficient and it equals $a^{GL_{1}}(1, S)=vol(F^{\cross}\backslash \mathbb{A}_{F}^{1})$ . We choose the usual (resp., twice the
usual) Lebesgue measures on $F_{v}$ if $v$ is real (resp., complex), and normalise the measure such
that $vol(\mathcal{O}_{F_{v}})=\mathbb{N}(\mathcal{D}_{v})^{-\frac{1}{2}}$ if $v$ is non-archimedean $(\mathbb{N}(\mathcal{D}_{v})=$ the norm of the local different of
$F_{v}/\mathbb{Q}_{p})$ . Similarly, we take the usual multiplicative measure on $F_{v}$ if $v$ is archimedean, and
$\zeta_{F,v}(1)|x|_{v}^{-1}dx_{v}$ if $v$ is non-archimedean ( $\zeta_{F,v}=$ local factor of Dedekind zeta function). The
(up to normalisation unique) Haar measure on the maximal compact subgroup is normalised
to give it volume 1. By taking the usual coordinates in the torus and the unipotent subgroup
of upper triangular matrices, we can define a measure on the ninimal standard parabolic
subgroup and, using Iwasawa decomposition, also on arbitrary standard parabolic subgroups
and $G(F_{v})$ . Globally, we take the (unnormalised) product measures, and take the measure
defined by $1arrow G(\mathbb{A}_{F})^{1}arrow G(\mathbb{A}_{F})arrow \mathbb{R}_{>0}|\det|arrow 1$ on $G(\mathbb{A}_{F})^{1}.$

With respect to these measures the following bound on the coefficients associated with the
unipotent elements can then be proved.

154



GLOBAL COEFFICIENTS

Theorem 1. Let $n,$ $d\in \mathbb{Z}_{\geq 1}$ . There exist non-negative constants $\kappa=\kappa(n, d)$ and $C=C(n, d)$
such that for every number field $F$ of degree $[F:\mathbb{Q}]=d$ and absolute discriminant $D_{F}$ the
following holds: For every finite set of places $S$ of $F$ with $S\supseteq S_{\infty}$ , all $M\in \mathcal{L}$ , and all
unipotent orbits $\mathcal{V}\in \mathfrak{U}^{M}$ , we have

(3)
$|a^{M}( \mathcal{V}, S)|\leq CD_{F}^{\kappa}\sum_{\Sigma s_{v}=\eta}\prod_{vs_{v}\in \mathbb{Z}_{\geq 0},v\in S_{f}:\in S_{f}}|\frac{\zeta_{F,v}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|$

with respect to the measures described above. The sum here runs over tuples of integers $s_{v}\geq 0$

for $v\in S_{f}$ such that the sum $\sum_{v\in S_{f}}s_{v}$ equals $\eta=\dim \mathfrak{a}_{0}^{M}$ , the semisimple $mnk$ of $M.$

Remarks.. The term $| \frac{\zeta_{Fv}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|$ in (3) is of the same order as $\frac{(\log q_{v})^{S}v}{q_{v}-1}$ for $q_{v}$ the cardinality of the residue
field of the local field $F_{v}$ . In particular, the sum over the logarithmic derivatives of the zeta
functions in (3) could be replaced by

$s_{v} \in \mathbb{Z}v\in S_{f}:v\Sigma^{\geq 0\prime}s_{v}>0\sum_{s_{v}=\eta}\prod_{\in s_{f}}. \frac{(\log q_{v})^{s_{v}}}{q_{v}-1}.$

However, the examples discussed below suggest that it is more canonical to use the logarithmic
derivatives of the zeta function.. At least for the examples $G=GL_{2}$ and $G=GL_{3}$ the logarithmic factor is sharp, cf. \S 4.. If one keeps track of all constants occurring in the proof of the theorem, one can at least
extract a polynomial upper bound for $\kappa$ in $n$ and $d.$

It is natural to as$k$ for the minimal possible $\kappa$ in (3) and the examples in \S 4 suggest that
any $\kappa>0$ will do. More precisely, we conjecture the following about the actual size of the
coefficients.

Conjecture 2. For every $\kappa>0$ and all $n,$ $d\in \mathbb{Z}_{\geq 1}$ there exists a constant $C=C(n, d, \kappa)\geq 0$

such that
(i)

(4) $|a^{M}( \mathcal{V}, S)|\leq CD_{F}^{\kappa}\sum_{>s_{v}0}\prod_{v\in S_{f}}|\frac{\zeta_{F,v}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|,$

$\Sigma^{-}s_{v}=\eta$

(ii)

(5)
$| \frac{a^{M}(\mathcal{V},S)}{a^{M_{M,\mathcal{V}}}(1^{M_{M,\mathcal{V}}},S)}|\leq CD_{F}^{\kappa}\sum_{\Sigma s_{v}=\eta}\prod_{vs_{v}\in \mathbb{Z}_{\geq 0)}v\in S_{f}.\in S_{f}}|\frac{\zeta_{F,v}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|$

for all $M\in \mathcal{L},$ $\mathcal{V}\in \mathfrak{U}^{M}$ , all number fields $F$ of degree $[F:\mathbb{Q}]=d$ , and all finite set of
places $S$ of $F$ with $S\supseteq S_{\infty}$ . Here for a unipotent conjugacy class $\mathcal{V}\in \mathfrak{U}^{M}$ the Levi subgroup
$M_{M,\mathcal{V}}\subseteq M$ is chosen such that $\mathcal{V}\subseteq M$ is induced from the trivial conjugacy class $1^{M_{M,\mathcal{V}}}$ in
$M_{M,\mathcal{V}}.$
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Remarks.
$\bullet$ Every unipotent conjugacy class in $M$ is induced in such a way, ae in $GL(n)$ all unipotent

conjugacy classes are Richardson classes.. The denominator $a^{M_{M,\mathcal{V}}}(1^{M_{M,\mathcal{V}}}, S)$ on the left hand side of (5) equals the volume of the
quotient $M_{M,\mathcal{V}}(F)\backslash M_{M,\mathcal{V}}(\mathbb{A}_{F})^{1}$ (cf. [1, Corollary 8.5]) and is in particular independent of
the set $S$ . It is conceivable that the quotient on the left hand side of (5) is independent of
the choice of global measure on the various groups involved, but only depends on the local
measures.

$\bullet$ If we consider the trivial conjugacy class $1^{M}$ in some Levi subgroup $M\in \mathcal{L}$ , then the
associated Levi subgroup $M_{M,1^{M}}$ is contained in the $G$-conjugacy class of $M$ . Therefore,
Conjecture 2(ii) is trivially true for the trivial conjugacy class in any Levi subgroup because
of $a^{M_{M,V}}(1^{M_{M,\mathcal{V}}}, S)=a^{M}(1^{M}, S)$ . The coefficient for the trivial conjugacy class is given by
a volume [1, Corollary 8.5], which in our normalisation of measures is given by a product of
residues and values at integers of the Dedeking zeta function attached to $F$ . Hence also in
this case Conjecture 2(i) holds because of the upper bound provided by the Brauer-Siegel
Theorem.. Conjecture 2(i) also holds for all Levi subgroups and unipotent conjugacy classes in $GL_{2}$

and $GL_{3}$ (see below). However, all examples so far suggest that the second inequality (5)
has the more canonical form.. Both parts of the conjecture are equivalent if the lower bound of the Brauer-Siegel Theorem
holds for $F$ $(for$ example, $if F is a$ normal extension $of \mathbb{Q}, or if we$ assume $GRH)$ .. There is a more structural reason, why $a^{M_{M,\mathcal{V}}}(1^{M_{M,\mathcal{V}}}, S)$ should appear as the “main”
part of $a^{M}(\mathcal{V}, S)$ : In the cases where an exact formula for the coefficients is known, these
coefficients are given in terms of derivatives of certain (local) zeta functions associated with
the unipotent orbits. This should be possible more generally, suggesting that there are

indeed ternrs of the form $\sum_{s_{v}}\prod_{v}|\frac{\zeta_{Fv}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|$ , but also that $a^{M_{M},v}(1^{M_{M,\mathcal{V}}}, S)$ should occur

naturally in an exact formula for $a^{M}(\mathcal{V}, S)$ .

Coefficients for arbitrary elements. If $\gamma\in M(F)$ is arbitrary, the coefficient $a^{M}(\gamma, S)$ is
defined in terms of coefficients $a^{H}(u, S)$ for $H\subseteq M$ certain reductive subgroups and $u\in \mathcal{U}_{H}(F)$

unipotent (see [2, (8.1)]). From our main result we can deduce the following bound for general
coefficients. By definition, $a^{M}(\gamma, S)=0$ if the semisimple part $\gamma_{s}\in M(F)$ of $\gamma$ in its Jordan
decomposition is not elliptic in $M(F)$ .

Corollary 3. For any $n,$ $d\in \mathbb{Z}_{\geq 1}$ there exist $\kappa=\kappa(n, d)\geq 0$ and $C=C(n, d)\geq 0$ such that
the following holds. Let $F$ and $S$ be as in Theorem 1. Let $M\in \mathcal{L}$ and $\gamma\in M(F)$ , and suppose
that all eigenvalues of $\gamma$ are algebmic integers (in some algebmic closure of $\mathbb{Q}$). Further, let
$M_{1}(F)\subseteq M(F)$ be the unique Levi subgroup such that $\gamma_{s}\in M_{1}(F)$ is regular elliptic in $M_{1}(F)$ .
Then, if $\gamma_{s}$ is elliptic in $M(F)$ ,

(6) $|a^{M}( \gamma, S)|\leq C|discr^{M_{1}}(\gamma_{s})|_{\infty}^{\kappa}\sum_{\Sigma s_{v}=\eta}\prod_{vs_{v}\in \mathbb{Z}_{\geq 0},v\in S_{f}:\in S_{f}}|\frac{\zeta_{F,v}^{(s_{v})}(1)}{\zeta_{F,v}(1)}|$

with respect to the measures defined above. Here $|discr^{M_{1}}(\gamma_{s})|_{\infty}i_{s}s$ the norm of the discriminant

of $\gamma_{s}$ in $M_{1}(F)$ as an element of $F$ over $\mathbb{Q}$ , and $\eta=\dim \mathfrak{a}_{M_{1,\gamma_{8}}}^{M_{\gamma_{s}}}$

One can of course also formulate an analogue of Conjecture 2 for arbitrary coefficients.
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Remarks.
$\bullet$ Although equahty (1) only holds if the set $S$ is sufficiently large with respect to $\mathfrak{o}$ in the

sense of [2, p. 203], the coefficients $a^{M}(\gamma, S)$ are well-defined for any finite set $S$ containing
the archimedean places.. In view of our anticipated application to the Weyl law for Hecke operators, the most
important property of the bound (6) is the explicit dependence on the set $S$ and the
discriminant of $\gamma$ , cf. also \S 5.

$\bullet$ The $co$efficients are invariant under scaling by scalars, i.e., $a^{M}(\alpha\gamma, S)=a^{M}(\gamma, S)$ for every
$\alpha\in F^{\cross}$ , so that Corollary 3 in fact gives a bound for every $\gamma\in M(F)$ .

3. SKETCH OF PROOF

The proof of Theorem 1 is by induction on the semisimple rank of $M$ . The initial case is
$M=T_{0}$ . So $\mathfrak{U}^{T_{0}}=\{1^{T_{0}}\}$ and $a^{T_{0}}(1^{T_{0}}, S)=vol(T_{0}(F)\backslash T_{0}(\mathbb{A}_{F})^{1})=(\lambda_{-1}^{F})^{n}$ by [1, Corollary
8.5] $)$ giving our desired bound by the Brauer-Siegel Theorem. Here $\zeta_{F}(s)$ is the Dedekind
zeta function attached to $F$ and $\zeta_{F}(s)=\lambda_{-1}^{F}(s-1)^{-1}+\lambda_{o}^{F}+\lambda_{1}^{F}s+\ldots$ its Laurent-expansion
around $s=1.$

For the induction step we use (2) with respect to $M$ instead of $G$ . We rewrite it as

(7)
$\sum_{\nu\in \mathfrak{U}^{M}}a^{M}(\mathcal{V}, S)J_{M}^{M}(\mathcal{V}, f)=J_{unip}^{M}(f)-\sum_{L\subsetneq M}\frac{|W^{L}|}{|W^{M}|}\sum_{\mathcal{V}\in 51^{L}}a^{L}(\mathcal{V}, S)J_{L}^{M}(\mathcal{I}_{L}^{M}\mathcal{V}, f)$.

By the induction hypothesis an upper bound of the desired form for the absolute value of the
coefficients $a^{L}(\mathcal{V}, S)$ appearing on the right hand side is known. To make (7) usable, we first
need to choose good test functions.

Choice of test functions. The $co$efficients on the left hand side can be separated by the
use of appropriate test functions: The distributions $J_{M}^{M}(\nu, f)$ are unweighted orbital integrals,
more precisely,

$J_{M}^{M}( \mathcal{V}, f)=\int_{U_{\mathcal{V}}^{M}(Fs)}\int_{Ks}f(k^{-1}xk)dkdx,$

where $P_{\mathcal{V}}^{M}=L_{\mathcal{V}}^{M}U_{\mathcal{V}}^{M}\subseteq M$ is the standard parabolic subgroup in $M$ such that the conjugacy
class in $M(F)$ of the orbit of $L_{\mathcal{V}}^{M}(F)$ on $U_{\mathcal{V}}^{M}(F)$ is $\mathcal{V}$ . Such a parabolic subgroup exists,
since in $GL(n)$ (and hence also in every $M\in \mathcal{L}$ ) every unipotent conjugacy class is a
Richardson class. If $f= \prod_{v\in S}f_{v}\in C_{c}^{\infty}(G(F_{S}))$ , the integral giving $J_{M}^{M}(\mathcal{V}, f)$ factorises as
a product of local orbital integrals $J_{M,v}^{M}(\mathcal{V}, f_{v})$ . In particular, if $J_{M,v}^{M}(\mathcal{V}, f_{v})=0$ for one $v,$

then $J_{M}^{M}(\mathcal{V}, f)=0$ . Let $J_{M,\infty}^{M}( \mathcal{V}, \cdot)=\prod_{v\in S_{\infty}}J_{Mv}^{M}(\mathcal{V}, \cdot)$. Note that $F_{S_{\infty}}\simeq \mathbb{R}^{r_{1}}\oplus \mathbb{C}^{r_{2}}$ for
$r_{1}$ the number of real embeddings and $r_{2}$ the number of pairs of complex embeddings of $F.$

Now the set of distributions $\{J_{M,\infty}^{M}(\mathcal{V}, \cdot)\}_{\mathcal{V}\in 11^{M}}$ is independent over $C_{c}^{\infty}(G(F_{S_{\infty}}))$ . Hence we
can fix functions $f_{\mathcal{V},\infty}\in C_{c}^{\infty}(G(F_{S_{\infty}}))$ only depending on the signature $(r_{1}, r_{2})$ of $F$ such
that $J_{M,\infty}^{M}(\mathcal{V}_{1}, f_{\mathcal{V}_{2},\infty})=0$ unless $\mathcal{V}_{1}=\mathcal{V}_{2}$ in which case it equals 1. We then define the test
functi\‘ons by $f_{\mathcal{V}}=f_{\mathcal{V}}\cdot 1_{K_{S_{f}}}\in C_{c}^{\infty}(G(F_{S})),$ $K_{S_{f}}$ $:= \prod_{v\in S_{f}}K_{v}$ , so that $J_{M}^{M}(\mathcal{V}_{1}, f_{\mathcal{V}_{2}})=0$ unless
$\mathcal{V}_{1}=\mathcal{V}_{2}$ . Thus this set of test functions separates the coefficients on the left hand side of (2).

Estimating the unipotent weighted orbital integrals. To get an upper bound on the
absolute value of the coefficients, we still need to find an appropriate upper bound for the
right hand side of (7) for the set of test functions just fixed. To that end, one first bounds
the weighted orbital integrals $J_{L}^{M}(\mathcal{I}_{L}^{M}\mathcal{V}_{1}, f_{\mathcal{V}_{2}})$ for $\mathcal{V}_{1}\in \mathfrak{U}^{L},$ $\mathcal{V}_{2}\in \mathfrak{U}^{G}$ . In contrast to $L=M,$
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the weighted orbital integrals do not factor as a product of local integrals, but using Arthur’s
descent formula for $(M, L)$-families, it suffices to consider the local distributions, which for
$GL_{n}$ are of the form

$J_{L,v}^{M}( \mathcal{I}_{L}^{M}\mathcal{V}, f_{v})=\int_{U_{\mathcal{I}_{L}^{M}\nu}^{M}(F_{v})}\int_{K_{v}}f(k^{-1}xk)w_{L,\mathcal{V},v}^{M}(x)dkdx,$

where $w_{L,\mathcal{V},v}^{M}$ : $\mathcal{I}_{L}^{M}\mathcal{V}(F_{v})arrow \mathbb{C}$ is a certain (logarithmic) weight function described in [3]. Now
the fact that $G=GL(n)$ , and hence also $M$ , is $\mathbb{Q}$-split, implies that the weight functions vary
“functorially” in non-archimedean $v$ so that we can bound these integrals in a way depending
explicitly on $F$ and $S$ for our special test functions $f_{\mathcal{V}_{2},v}=1_{K_{v}}$ if $v$ is non-archimedean. The
fact that the set of archimedean parts of the test functions depends only on the signature of
$F$ (of which there are of course only finitely many for fixed degree $d=[F$ : $\mathbb{Q}]$ ), allows us to
find estimates uniform in $F$ of fixed degree.

Estimating the unipotent contribution. It remains to find an upper bound for $|J_{unip}^{M}(f)|$

for $f$ varying in the set of test functions as before. For that one basically uses the ideas of [1],
but one has to make the dependence on the field $F$ explicit. This constitutes the main and
most technical part of the proof. It involves an explicit version of reduction theory for $GL(n)$

over number fields and solving a certain lattice point problem over the adele ring of $F.$

Remark. $A$ more careful choice and analysis of the special test functions $f_{\mathcal{V}}$ might lead to a
better upper bound on the contribution of $J_{L}^{M}(\mathcal{I}_{L}^{M}\mathcal{V}, f)$ too the exponent $\kappa$ in (3). However,
it is doubtful that with our methods one can get much closer to Conjecture 2. The main
reason is that in order to estimate the global distributions $J_{unip}^{M}(f)$ in the last step, we bound
integrals over $M(F)\backslash M(A_{F})^{1}$ by integrals over large compact sets which inevitably leads to
the addition of non-trivial powers of $D_{F}$ on the right hand side of (7).

4. EXAMPLES: COEFFICIENTS FOR GL(2) AND GL(3)

Coefficients for $GL_{2}$ . There are two unipotent conjugacy classes in $GL_{2}(\mathbb{Q})$ : The trivial
class $\mathcal{V}_{triv}=1^{GL_{2}}$ , and the regular class $\mathcal{V}_{1eg}$ generated by $(_{01}^{11})$ . Moreover, $\mathcal{L}$ consist of only
$T_{0}$ and $G$ , and an explicit formula for the coefficients can be found for example in [7, \S 16]. In
particular,

$a^{T_{0}}(\mathcal{V}_{triv}, S)=vol(T_{0}(F)\backslash T_{0}(\mathbb{A}_{F})^{1})=(\lambda_{-1}^{F})^{2},$

$a^{G}(\nu_{triv}, s)=vol(G(F)\backslash G(\mathbb{A}_{F})^{1})=\lambda_{-1}^{F}\zeta_{F}(2)$ .
The only non-trivial case belongs to the pair $(G, \mathcal{V}_{reg})$ in which case, $M_{GL_{2},\mathcal{V}_{reg}}=T_{0}$ and

$a^{GL_{2}}( \mathcal{V}_{reg}, S)=vol(T_{0}(F)\backslash T_{0}(\mathbb{A}_{F})^{1})\frac{\lambda_{0}^{S}}{\lambda^{\underline{S}_{1}}}=a^{T_{0}}(1^{T_{0}}, S)\frac{\lambda_{0}^{S}}{\lambda_{-1}^{S}}.$

Now

(8) $\frac{\lambda_{0}^{S}}{\lambda^{\underline{S}_{1}}}=\frac{\lambda_{0}^{F}}{\lambda_{-1}^{F}}-\sum_{v\in S_{f}}\frac{\zeta_{F,v}’(1)}{\zeta_{F,v}(1)}=\frac{\lambda_{0}^{F}}{\lambda_{-1}^{F}}+\sum_{v\in S_{f}}|\frac{\zeta_{F,v}’(1)}{\zeta_{F,v}(1)}|$

so that

$|a^{G}( \mathcal{V}_{reg}, S)|=\lambda_{-1}^{F}\lambda_{0}^{F}+(\lambda_{-1}^{F})^{2}\sum_{v\in S_{f}}|\frac{\zeta_{F,v}’(1)}{\zeta_{F,v}(1)}|.$
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The coefficients $\lambda_{-1}^{F}$ and $\lambda_{0}^{F}$ can be bounded by $\ll dD_{F}^{\epsilon}$ for every $\epsilon>0$ (for $\lambda_{-1}^{F}$ this is part
of the Siegel-Brauer Theorem, and in general follows from Cauchy’s formula and estimates on
$\zeta_{F}(s)$ in the critical strip) so that in this case the first part (4) of Conjecture 2 holds.

Coefficients for $GL_{3}$ . Up to conjilgation, there are three Levi subgroups in $\mathcal{L}:T_{0},$ $M_{1}$ , and
$GL_{3}$ , where $M_{1}=GL_{2}\cross GL_{1}\hookrightarrow GL_{3}$ (diagonally embedded). There are three different orbits
in $\mathfrak{U}^{GL_{3}}$ : the trivial conjugacy class $1^{GL_{3}}$ , the subregular $\mathcal{V}_{s-r}$ , and the regular conjugacy class
$\mathcal{V}_{reg}$ . The relations between the Levi subgroups and the conjugacy classes are as follows:

$\frac{L\mathcal{V}\in \mathfrak{U}^{L}\mathcal{I}_{L}^{GL_{3}}\mathcal{V}\in \mathfrak{U}^{GL_{3}}M_{L,\mathcal{V}}}{T_{0}1^{T_{0}}\mathcal{V}_{reg}T_{0}}$

$M_{1} 1^{M_{1}} \mathcal{V}_{s-r} M_{1}$

$M_{1} \mathcal{V}_{s-r}^{M_{1}} \mathcal{V}_{reg} T_{0}$

$GL_{3} 1^{GL_{3}} 1^{GL_{3}} GL_{3}$

$GL_{3} \mathcal{V}_{s-r} \mathcal{V}_{s-r} M_{1}$

$GL_{3} \mathcal{V}_{reg} \mathcal{V}_{reg} T_{0}$

The first, second and fourth case are trivial so that we are left with the remaining cases
$\mathcal{V}_{reg}\subseteq GL_{3},$ $\mathcal{V}_{reg^{1}}^{M}\subseteq M_{1}$ , and $\mathcal{V}_{s-r}\subseteq GL_{3}.$ For them we get from [5, Lemma 4] and [9, Lemma
9$]$ that

$a^{GL_{3}}( \mathcal{V}_{reg}, S)=vol(T_{0}(F)\backslash T_{0}(\mathbb{A}_{F})^{1})((\frac{\lambda_{0}^{S}}{\lambda^{\underline{S}_{1}}})^{2}+\frac{\lambda_{1}^{S}}{\lambda^{\underline{S}_{1}}})=a^{T_{0}}(1^{T_{0}}, S)((\frac{\lambda_{0}^{S}}{\lambda_{-1}^{S}})^{2}+\frac{\lambda_{1}^{S}}{\lambda^{\underline{S}_{1}}})$ ,

$a^{M_{1}}( \mathcal{V}_{reg^{1}}^{M}, S)=vol(T_{0}(F)\backslash T_{0}(\mathbb{A}_{F})^{1})\frac{\lambda_{0}^{S}}{\lambda_{-1}^{S}}=a^{T_{0}}(1^{T_{0}}, S)\frac{\lambda_{0}^{S}}{\lambda^{\underline{S}_{1}}},$

and

$a^{GL_{3}}( \mathcal{V}_{s-r}, S)=vol(M_{1}(F)\backslash M_{1}(\mathbb{A}_{F})^{1})\frac{\zeta_{F}^{S\prime}(2)}{\zeta_{F}^{S}(2)}=a^{M_{1}}(1^{M_{1}}, S)\frac{\zeta_{F}^{S\prime}(2)}{\zeta_{F}^{S}(2)}.$

The second $co$efficient is already covered by the considerations for $GL_{2}$ . For the coefficient
associated with the subregular conjugacy class in $GL_{3}$ , we get

$| \frac{a^{GL_{3}}(\mathcal{V}_{s-r},S)}{vol(M_{1}(F)\backslash M_{1}(\mathbb{A}_{F})^{1})}|=|\frac{\zeta_{F}^{S\prime}(2)}{\zeta_{F}^{S}(2)}|\ll d1$

so that for this coefficient both parts of Conjecture 2 hold without any condition on the
field. For the coefficient associated with the regular conjugacy class in $GL_{3}$ , the first part of
Conjecture 2 follows from a similar computation as (8) by using the upper bounds for the
coefficients $\lambda_{-1}^{F},$ $\lambda_{0}^{F}$ , and $\lambda_{1}^{F}.$

5. WEYL LAW FOR HECKE OPERATORS

A main motivation for finding an upper bound for the coefficients $a^{M}(\gamma, S)$ is its prospected
applicability in the proof of a Weyl law for Hecke operators on $G=GL(n)$ . We want to sketch
the main idea how our bound could be used. We work over $\mathbb{Q}$ from now on and write $\mathbb{A}=\mathbb{A}_{\mathbb{Q}}.$

Let $\Pi_{cusp}(G(\mathbb{A})^{1})$ denote the set of irreducible unitary representations occurring discretely in
$L^{2}(G(\mathbb{Q})\backslash G(\mathbb{A})^{1})$ . If $\pi\in\Pi_{cusp}(G(\mathbb{A})^{1})$ , then $\pi$ occurs with multiplicity 1 in $L^{2}(G(\mathbb{Q})\backslash G(\mathbb{A})^{1})$

and can be written as $\pi=\pi_{\infty}\otimes\pi_{f}$ with $\pi_{\infty}$ $(resp., \pi_{f})$ an irreducible unitary representation
of $G(\mathbb{R})$ $(resp., G(\mathbb{A}_{f})$ ). Let $\mathcal{H}_{\pi_{\infty}}$ $(resp., \mathcal{H}_{\pi_{f}})$ denote the Hilbert space attached to $\pi_{\infty}$ (resp.,
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$\pi_{f})$ . Let $K_{f}\subseteq G(\mathbb{A}_{f})$ be an open compact subgroup, and let $\sigma\in\hat{K_{\infty}}$ be a $K_{\infty}$-type $(\hat{K_{\infty}}=$

unitary dual of $K_{\infty}$ ). Let $V_{\sigma}$ denote the (finite-dimensional) Hilbert space on which $\sigma$ acts,

and let $\Pi_{cusp}(G(\mathbb{A})^{1})_{\sigma}$ be the set of all $\pi\in\Pi(G(\mathbb{A})^{1})$ for which $(\mathcal{H}_{\pi_{\infty}}\otimes V_{\sigma})^{K_{\infty}}\neq 0$ , i.e., for

which $\sigma$ is a $K_{\infty}$ -type of $\pi$ . Here $(\mathcal{H}_{\pi_{\infty}}\otimes V_{\sigma})^{K_{\infty}}$ denotes the space of $K_{\infty}$-fixed vectors in
$\mathcal{H}_{\pi_{\infty}}\otimes V_{\sigma}$ . Let $T\in C_{c}^{\infty}(K_{f}\backslash G(\mathbb{A}_{f})/K_{f})$ be an element of the Hecke algebra. Then one wants
to find an asymptotic for the sum

(9) $\sum$
$\dim(\mathcal{H}_{\pi_{\infty}}\otimes V_{\sigma})^{K_{\infty}}$ tr $T(\pi_{f})$

$\pi\in\Pi_{cusp}(G(A)^{1})_{\sigma}$

$\Vert\lambda_{\pi}\infty\Vert\leq X$

as $Xarrow\infty$ , where $\lambda_{\pi}$ $\in(\mathfrak{a}_{0}^{G})^{*}$ denotes the Casimir eigenvalue of $\pi_{\infty}$ . Moreover, for intended
applications of this $(namely\infty, to the$ theory $of low-$lying zeros $of L-$functions) , a sufficiently

good error term in $X$ and $\deg T=\int_{G(A_{f})}|T(x)|dx$ is needed.

The “trivial” Hecke operator. If $T=1_{K_{f}}$ is the characteristic function of $K_{f}$ , an asymp-
totic for the above equation was found in [11] for arbitrary $K_{\infty}$-type $\sigma$ , but without error
term. In [8] an asymptotic with error estimate was proven for $T=1_{K_{f}}$ and $\sigma=$ id under a
mild restriction on $K_{f}$ . More precisely, the main result in [8] says that

(10)
$\pi\in\Pi_{cusp}(G(A)^{1})_{id}\lambda_{\pi}\in t\Omega\sum_{\infty}\dim \mathcal{H}_{\pi}^{K}=\frac{vol(G(\mathbb{Q})\backslash G(\mathbb{A})^{1}/K_{f})}{|W^{G}|}\int_{t\Omega}\beta(\lambda)d\lambda+O(t^{d-1}(\log t)^{\max\{n,3\}})$

as $tarrow\infty$ , where $\Omega\subseteq i(\mathfrak{a}_{0}^{G})^{*}$ is a $W^{G}$-invariant compact domain with piecewise $C^{2}$ -boundary,
$\mathcal{H}_{\pi}=\mathcal{H}_{\pi_{\infty}}\otimes \mathcal{H}_{\pi}f’ K=K_{\infty}K_{f},$

$\beta(\lambda)$ is the Plancherel measure belonging to $GL_{n}(\mathbb{R})$ , and
$d=\underline{n(n-1)}$ is the dimension of the symmetric space $G(\mathbb{R})^{1}/K_{\infty}.$

Let $us2$ recall the main ideas of the proof of this result from [8]: The main tool is Arthur’s

trace formula. Thus one has to find a good test function $f$ , or rather a family of test functions
$f_{\lambda}$ depending on the continuous parameter $\lambda\in(a_{0}^{G})^{*}$ $A$ natural choice is to take $1_{K_{f}}$ as the
non-archimedean part and a compactly supported spherical function $F_{\lambda}$ as the archimedean
part. The support of $F_{\lambda}$ can be chosen such that on the geometric side of the trace formula
only the unipotent contribution survives, i.e., $J_{geom}(f_{\lambda})=J_{unip}(f_{\lambda})$ for $f_{\lambda}=F_{\lambda}\cdot 1_{K_{f}}$ . Hence
the trace formula has the form

$J_{unip}(f_{\lambda})=J_{disc}(f_{\lambda})+J_{non-disc}(f_{\lambda})$ ,

where $J_{disc}(f_{\lambda})$
$(resp., J_{non-disc}(f_{\lambda})$ ) denotes the contribution of the discrete (resp. non-discrete)

part of $L^{2}(G(\mathbb{Q})\backslash G(\mathbb{A})^{1})$ to the spectral side $J_{spec}(f_{\lambda})$ : Then one shows that $\int_{t\Omega}J_{non}$-disc $(f_{\lambda})d\lambda$

is of order $o(t^{d-1}\log t)$ , and the difference of the left hand side of (10) and $\int_{t\Omega}J_{disc}(f_{\lambda})d\lambda$ is

of order $O(t^{d-1})$ as $tarrow\infty$ . Hence the remaining task is to show that as $tarrow\infty$

(11) $\int_{t\Omega}J_{unip}(f_{\lambda})d\lambda=\frac{vol(G(\mathbb{Q})\backslash G(\mathbb{A})^{1}/K_{f})}{|W^{G}|}\int_{t\Omega}\beta(\lambda)d\lambda+O(t^{d-1}(\log t)^{\max\{n,3\}})$.

To this end, one uses the fine expansion of the unipotent part (2), and shows that the

integrak $\int_{t\Omega}J_{M}^{G}(u, f_{\lambda})d\lambda$ are of order $O(t^{d-1}(\log t)^{\max\{n,3\}})$ if $(M, u)\neq(G, 1)$ . The size of

the constants $a^{M}(u, S)$ is not relevant in this case, since $S$ is fixed and there are only finitely
many constants. Noting that the first term on the right hand side of (11) essentially equals

the integral $vol(G(\mathbb{Q})\backslash G(A)^{1})\int_{t\Omega}f_{\lambda}(1)d\lambda$ then finishes the proof.
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General Hecke operators. Again, we want to use Arthur’s trace formula to find an asymp-
totic (with remainder) for (9). The main difference of the above case to our situation of an
arbitrary Hecke operator $T$ is that it is no longer possible to choose the archimedean part of
the test function such that all but the unipotent contribution on the geometric side vanish.
Instead there are finitely many $\mathfrak{o}\in \mathcal{O}$ for which the distributions $J_{\mathfrak{o}}(F_{\lambda}\cdot T)$ are non-zero,
and the set of such $\mathfrak{o}$ depends on $T$ . Let $\mathcal{O}_{T}\subseteq \mathcal{O}$ denote the set of all such $0$ . Some of
key properties of $\mathfrak{o}\in \mathcal{O}_{T}$ (e.g., the discriminant or determinant of the elements of o) can
be bounded in terms of the degree $\deg T=\int_{G(A_{f})}|T(x)|dx$ of the Hecke operator. It is not
difficult to see that we may assume $K_{f}=K_{f}$ , and further by Cartan decomposition that $T$

is equal to the characteristic function of a double coset $K_{f}a_{T}K_{f}$ for some diagonal element
$a_{T}\in T_{0}(\mathbb{Q})$ with integral entries.

Suppose for simplicity that our $K_{\infty}$ -type is trivial, $\sigma=$ id. We fix a family of spherical test
function $F_{\lambda},$ $\lambda\in(\mathfrak{a}_{0}^{G})^{*}$ , at the archimedean place as before (but without any constraints at its
support now), and set $f_{\lambda}=F_{\lambda}\cdot T$ . It follows similarly as for $T=1_{K_{f}}$ that there exist $a,$ $b\geq 0$

such that

$\int_{t\Omega}J_{spec}(f_{\lambda})d\lambda=\sum_{\pi\in\Pi_{cusp}(G(A)^{1})_{id}}$ tr $T(\pi f)+O((\deg T)^{a}t^{d-1}(\log t)^{b})$

$\lambda_{\pi}\infty\in t\Omega$

as $tarrow\infty$ . The main problem is to analyse the contribution from the geometric side. For this
purpose, one wants to use the fine geometric expansion (1) for $J_{\mathfrak{o}}(f_{\lambda})$ and $\mathfrak{o}\in \mathcal{O}_{T}$ . However,
the expansion (1) only holds if $S$ is sufficiently large with respect to $\mathfrak{o}$ . For $\mathfrak{o}\in \mathcal{O}_{T}$ this can
be made more precise as follows: Let $S_{T}$ consist of all non-archimedean places $v$ at which
$T_{v}\neq 1_{K_{v}}$ . There exists a finite set of places $S_{0}$ independent of $T$ such that $S^{T}$ $:=S_{0}\cup S_{T}$ is
sufficiently large in the sense that (1) holds for every $\mathfrak{o}\in \mathcal{O}_{T}$ . Hence,

$J_{geom}(f_{\lambda})= \sum_{0\in \mathcal{O}_{T}}\sum_{M\in \mathcal{L}}\frac{|W^{M}|}{|W^{G}|}\sum_{\gamma\in M(\mathbb{Q})\cap 0/\sim}a^{M}(\gamma, S^{T})J_{M}^{G}(\gamma, f_{\lambda})$ ,

where $\sim$ denotes $M(\mathbb{Q})$-conjugacy. As we want an error term depending on $T$ , we can not
assume that the coefficients $a^{M}(\gamma, S)$ are $bo$unded by an unknown constant anymore, but
need to know how the coefficients vary with $T$ . Our assumption on $T$ ensures that only $\gamma$ with
eigenvalues being algebraic integers may contribute non-trivially to the above sum, and there
exists a constant $a_{1}>0$ depending only on $n$ such that the absolute value of the discriminant
of every such element $\gamma$ is bounded by $O((\deg T)^{a_{1}})$ . In particular, there exist $a_{2},$ $c>0$
depending only on $n$ such that for every such $\gamma$ we have

$|a^{M}(\gamma, S^{T})|\leq c(\deg T)^{a2}.$

Hence, one is basically left to estimate the weighted orbital integrals $J_{M}^{G}(f_{\lambda})$ , or rather their
integral over $\lambda\in t\Omega$ (in a uniform way with respect to $\deg T$). This can be hopefully done by
using methods from [12, \S 6] for the non-archimedean, and from [8] for the archimedean case.

6. GENERALISATION To OTHER GROUPS

In the proof of Theorem 1 we used several things which are specffic to $GL(n)$ . However, some
of the problems arising for more general groups might be solved by more careful considerations.
We list the main differences and explain where the problem for general groups lie.
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$\mathbb{Q}$-split: The only crucial point where we used that $GL_{n}$ is $\mathbb{Q}$-split, was when we estimated
the $v$-adic weight functions in the weighted orbital integrals. If $G$ is $\mathbb{Q}$-split, the (finite) set of
weight functions at the archimedean places $v$ varies “functorially” with $v$ so that basically there
are only finitely many weight functions overall. This allows for uniform estimates. However, a
slight modification of the argument should still work at least for quasi-split groups.

$(G, S)$-equivalence classes: $A$ more serious problem is that of the $(G, S)$-equivalence relation
on $\mathcal{U}_{G}(F)$ . Recall that $\gamma_{1},$

$\gamma_{2}\in \mathcal{U}_{G}(F)$ are $(G, S)$-equivalent if $\gamma_{1}$ is $G(F_{S})$-conjugate to $\gamma_{2}.$

For $G=$ $GL(n)$ , it was already pointed out that, this is the same ae $G(F)$-conjugacy and
is in particular independent of $S$ . In general, however, this relation depends on $S$ , and the
set of $G(F_{S})$-conjugacy classes on $\mathcal{U}_{G}(F)$ might grow when $S$ becomes larger. Already for
$G=SL$(2), $F=\mathbb{Q}$ , the $(G, S)$ -equivalence and the conjugacy classes do not agree anymore.
For the induction step one would now need to use the general equation (1),

$\sum_{\mathcal{V}\in u_{c(F)/(G,S)}}a^{G}(\mathcal{V}, S)J_{G}^{G}(\nu, f)$

$=J_{unip}(f)- \sum_{M\in \mathcal{L},M\neq G}\frac{|W^{M}|}{|W^{G}|}\sum_{\mathcal{V}\in \mathcal{U}_{M}(F)/(M,S)}a^{M}(\mathcal{V}, S)J_{M}^{G}(\mathcal{I}_{M}^{G}\mathcal{V}, f)$ ,

where $\mathcal{U}_{M}(F)/(M, S)$ denotes the set of $(M, S)$-equivalence classes in $\mathcal{U}_{M}(F)$ .
Again, we want to find a finite set of test functions $f_{\mathcal{V}}\in C_{c}^{\infty}(G(F_{S}))$ indexed by equivalence

classes $\mathcal{V}\in \mathcal{U}_{G}(F)/(G, S)$ such that if we plug in $f=f_{\mathcal{V}}$ , only the term belonging to $\mathcal{V}$ survives
on the left hand side. For $G=GL(n)$ it was sufficient to choose functions separating the
weighted orbital integrals at the archimedean places only. This is in general not sufficient,
and one also has to fix test functions at the non-archimedean places in $S$ varying with
$\mathcal{V}\in \mathcal{U}_{M}(F)/(M, S)$ . One then also needs to estimate the non-archimedean weighted orbital
integrals for these fixed test functions which is considerably more difficuilt compared to finding
$a$ (trivial) bound for the non-archimedean weighted orbital integrals over $1_{Ks_{f}}$ , which was
sufficient for $GL(n)$ . Also, the estimation of the unipotent contribution $|J_{unip}^{M}(f)|$ will become
more difficuilt, since then the lattice point problem will also depend on $S.$

Richardson classes: To study the weighted orbital integrals $J_{L}^{M}(\mathcal{I}_{L}^{M}\mathcal{V}, f)$ , we expressed
them as integrals over the unipotent radical of a certain standard parabolic subgroup by using
the fact that all unipotent conjugacy classes in $GL(n)$ are Richardson classes. For a general
group, there might exist unipotent conjugacy classes which are not Richardson. However, it
should be possible to find a sufficiently explicit form of $J_{L}^{M}(\mathcal{I}_{L}^{M}\mathcal{V}, f)$ as an integral over the
unipotent radical of the Jacobson-Morozov parabolic subgroup associated with $\mathcal{I}_{L}^{M}\mathcal{V}$ (against
a certain measure which has to be determined).
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