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1. INTRODUCTION

This paper is based on joint work with Marc C\’amara, Edwin van Dam and
Jongyook Park and it is a preliminary version of [7] which we are still working on.
In [7], you can find all the details. Walk-regular graphs were introduced by Godsil
and McKay [26] in their study of cospectral graphs. They showed that the property
that the vertex-deleted subgraphs of a graph $\Gamma$ are all cospectral is equivalent to the
property that the number of closed walks of a given length $\ell$ in $\Gamma$ is independent
of the starting vertex, for every $\ell$ . They also observed that walk-regular graphs
generalize both vertex-transitive graphs and distance-regular graphs. Distance-
regular graphs [5, 16] play a crucial role in the area of algebraic combinatorics, and
it was shown by Rowlinson [33] that such graphs can be characterized in terms of
the numbers of walks between two vertices; in particular that this number only
depends on their length and the distance between the two vertices. Motivated by
this characterization, Dalf\’o, Fiol, and Garriga [22, 11] introduced t-walk-regular
graphs; such graphs have the property of Rowlinson’s characterization at least for
those vertices that are at distance at most $t$ . These t-walk-regular graphs were
further studied by Dalf\’o, Fiol, and coauthors [12, 13, 14, 15]. Dalf\’o, Van Dam,
and Fiol [14] characterized t-walk-regular graphs in terms of the cospectrality of
certain perturbations, thus going back to the roots of walk-regular graphs. Dalf\’o,
Van Dam, Fiol, Garriga, and Gorissen $[15]$ among others raised the question of
when t-walk-regularity implies distance-regularity.

Our motivation for studying t-walk-regular graphs lies in the generalization of
distance-regular graphs. In order to better understand the latter, we would like to
know which results for these graphs can be generalized to t-walk-regular graphs. In
this way, we aim to have a better understanding of which properties of distance-
regular graphs are most relevant.

Here we will focus on 1- and in particular 2-walk-regular graphs. We will for
example generalize Delsarte’s clique bound [17] to l-walk-regular graphs. It seems
however that l-walk-regularity is still far away from distance-regularity, but go-
ing to 2-walk-regularity is an important step (or jump) forward. Indeed, we will
see that several important results on distance-regular graphs have interesting gen-
eralizations to 2-walk-regular graphs (but not to l-walk-regular graphs), such as
Godsil’s multiplicity bound [23] and Terwilliger’s analysis of the local structure
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[36]. On the other hand, there are very basic construction methods for l-walk-
regular graphs that cannot be generalized to 2-walk-regular graphs; indeed, most
know examples of the latter come from groups as graphs that are obtained in an
elementary way (such as the line graph and halved graph) from s-arc-transitive
graphs. We will indeed show that 2-walk-regular graphs have a much richer combi-
natorial structure than l-walk-regular graphs. We will show that there are finitely
many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given
diameter (a geometric graph is the point graph of a special partial hnear space); a
result that is analogous to a result on distance-regular graphs. In fact, this result
shows that the class of 2-walk-regular graphs is quite limited. Again, such a result
does not hold for l-walk-regular graphs, as our construction methods (Proposition
3.5, in particular) will show.

This paper is organized as follows: in the next section, we give some technical
background. In Section 3, we give elementary construction methods for t-walk-
regular graphs that we will use in the remaining sections. In Section 4, God-
sil’s multiplicity bound for distance-regular graphs is generalized to 2-walk-regular
graphs. Similarly we generalize in Section 5 Terwilliger’s analysis of local graphs.
In Section 6, we study t-walk-regular graphs with an eigenvalue with small mul-
tiplicity. Finally, in Section 7, we generalize Delsarte’s clique bound and study
geometric 2-walk-regular graphs.

2. PRELIMINARIES

Let $\Gamma$ be a connected graph with vertex set $V=V(\Gamma)$ and denote $x\sim y$ if
the vertices $x,$ $y\in V$ are adjacent. The distance $dist_{\Gamma}(x, y)$ between two vertices
$x,$ $y\in V$ is the length of a shortest path connecting $x$ and $y$ (we omit the index $\Gamma$

when this is clear from the context). The maximum distance between two vertices
in $\Gamma$ is the diameter $D=D(\Gamma)$ . We use $\Gamma_{i}(x)$ for the set of vertices at distance $i$

from $x$ and write, for the sake of simplicity, $\Gamma(x)$ $:=\Gamma_{1}(x)$ . The degree of $x$ is the
number $|\Gamma(x)|$ of vertices adjacent to it. $A$ graph is regular with valency $k$ if the
degree of each of its vertices is $k.$

For a connected graph $\Gamma$ with diameter $D$ , the distance-i graph $\Gamma_{i}$ of $\Gamma(1\leq$

$i\leq D)$ is the graph whose vertices are those of $\Gamma$ and whose edges are the pairs
of vertices at mutual distance $i$ in $\Gamma$ . In particular, $\Gamma_{1}=\Gamma$ . The distance-i matrix
$A_{i}=A_{i}(\Gamma)$ is the matrix whose rows and the columns are indexed by the vertices of
$\Gamma$ and the $(x, y)$-entry is 1 whenever dist$(x, y)=i$ and $0$ otherwise. The adjacency
matrix $A$ of $\Gamma$ equals $A_{1}.$

The eigenvalues of the graph $\Gamma$ are the eigenvalues of $A$ . We use $\{\theta_{0}>\ldots>\theta_{d}\}$

for the set of distinct eigenvalues of $\Gamma$ . The multiplicity of an eigenvalue $\theta$ is denoted
by $m(\theta)$ . Note that if $\Gamma$ is connected and regular with valency $k$ , then $\theta_{0}=k$

and $m(\theta_{0})=1$ . Let $\{v_{1}, \ldots, v_{m(\theta)}\}$ be an orthonormal basis of eigenvectors with
eigenvalue $\theta$ , and let $U$ be a matrix whose columns are these vectors. Then the
matrix $E_{\theta}=UU^{T}$ is called a minimal idempotent associated to $\theta$ . We abbreviate
$E_{\theta_{:}}$ by $E_{i}(i=0,1, \ldots,d)$ .

Fiol and Garriga [22] introduced t-walk-regular graphs as a generalization of both
distance-regular and walk-regular graphs. $A$ graph is t-walk-regular if the number
of walks of every given length $\ell$ between two vertices $x,$ $y\in V$ only depends on the
distance between them, provided that dist$(x, y)\leq t$ (where it is implicitly assumed
that the diameter of the graph is at least $t$ ). The ‘Spectral Decomposition Theorem’
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leads immediately to

$A^{\ell}= \sum_{i=0}^{d}\theta_{i}^{\ell}E_{i}.$

$\mathbb{R}om$ that, we obtain that a graph is t-walk-regular if and only if for every minimal
idempotent the $(x, y)$-entry only depends on dist $(x,y)$ , provided that the latter is
at most $t$ (see Dalf\’o, Fiol, and Garriga [11]). In other words, for a fixed eigenvalue
$\theta$ with minimal idempotent $E$ , there exist constants $\alpha_{j}$

$:=\alpha_{j}(\theta)(0\leq j\leq t)$ , such
that $A_{j}oE=\alpha_{j}A_{j}$ , where $0$ is the entrywise product.

Given a vertex $x$ in a graph $\Gamma$ and a vertex $y$ at distance $j$ from $x$ , we consider
the numbers $a_{j}(x, y)=|\Gamma(y)\cap\Gamma_{j}(x)|,$ $b_{j}(x, y)=|\Gamma(y)\cap\Gamma_{j+1}(x)|$ , and $c_{j}(x, y)=$

$|\Gamma(y)\cap\Gamma_{j-1}(x)|.$ $A$ graph $\Gamma$ with diameter $D$ is distance-regular if these parameters
do not depend on $x$ and $y$ , but only on $j$ , for $0\leq j\leq D$ . If this is the case then
these numbers are denoted simply by $a_{j},$ $b_{j}$ , and $c_{j}$ , for $0\leq j\leq D$ , and they
are called the $inter\mathcal{S}$ection numbers of $\Gamma$ . Also, if a graph $\Gamma$ is t-walk-regular, then
the intersection numbers are well-defined for $0\leq j\leq t$ , as they do not depend
neither on $x$ nor on the chosen $y\in\Gamma_{j}(x)$ (see Dalf\’o et al. [15, Prop. 3.15]). More
generally, let $x$ and $y$ be two vertices at distance $h$ in a t-walk-regular graph. Then
the numbers $p_{ij}^{h}=|\Gamma_{i}(x)\cap\Gamma_{j}(y)|$ exist $(i.e., they only$ depend $on h, i and j)$
for nonnegative integers $h,$ $i,j\leq t$ . This follows from working out the product
$A_{i}A_{j}\circ A_{h}$ , for example; see also Dalf\’o, Fiol, and Garriga [13, Prop. 1]. Moreover, if
$k_{h}=|\Gamma_{h}(x)|$ , then relations such as $k_{h}p_{ij}^{h}=k_{i}p_{hj}^{i}$ hold. From the above it is clear
that a D-walk-regular graph is distance-regular.

Let $E$ denote the idempotent associated to an eigenvalue $\theta$ of a t-walk-regular
graph with adjacency matrix $A$ . By looking at an $(x, y)$-entry with dist $(x, y)=j$
in the equation $AE=\theta E$ we obtain the following relations:
(1) $k\alpha_{1}=\theta\alpha_{0}$

(2) $c_{j}\alpha_{j-1}+a_{j}\alpha_{j}+b_{j}\alpha_{j+1}=\theta\alpha_{j} (1\leq j\leq t-1)$

Let $\theta$ be an eigenvalue of $\Gamma$ and recall the matrix $U$ whose columns form an
orthonormal basis of the eigenspace of $\theta$ . For every vertex $x\in V$ we denote by $\hat{x}$

the x-th row of $U$ . From $AU=\theta U$ , it follows that

(3)
$\theta\hat{x}=\sum_{y\sim x}\hat{y}.$

The map $x\mapsto\hat{x}$ is called a representation (associated to $\theta$ ) of $\Gamma$ . Note that if we
assume t-walk-regularity with $t\geq 0$ , then the vectors $\hat{x}(x\in V)$ all have the same
length (the square of which is $E_{xx}=\alpha_{0}$); in this case we call the representation
spherical. Given two vertices $x,$ $y\in V$ , we will often refer to $u_{xy}$ $:=E_{xy}/\alpha_{0}$ as
the $xy$-cosine of the eigenvalue $\theta$ , as it can be interpreted as the cosine of the
angle between the vectors $\hat{x}$ and $\hat{y}$ . We remark that if $\Gamma$ is t-walk-regular and
dist$(x, y)=s\leq t$ , then $u_{xy}=\alpha_{S}/\alpha_{0}$ does not depend on $x$ and $y$ , but only on $s.$

In this case, we write $u_{s}$ $:=\alpha_{s}/\alpha_{0}$ . For a distance-regular graph $\Gamma$ , the sequence
$(u_{0}, u_{1}, \ldots, u_{D})$ is known as the standard sequence of $\Gamma$ with respect to $\theta.$

A graph $\Gamma$ is called bipartite if it has no odd cycle. For a connected graph $\Gamma$ , the
bipartite double $\tilde{\Gamma}$ of $\Gamma$ is the graph whose vertices are the symbols $x^{+},$ $x^{-}(x\in V)$

and where $x^{+}$ is adjacent to $y^{-}$ if and only of $x$ is adjacent to $y$ in F.
Let $\overline{\Gamma}$ be a graph with vertex set $V(\overline{\Gamma})$ . Let $\Gamma$ be a graph whose vertices are

partitioned in $|V(\overline{\Gamma})|$ classes of the same size. We say that $\Gamma$ is a cover of $\overline{\Gamma}$ if the
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following three properties hold: The vertices of each class induce an empty graph
in $\Gamma$ ; the classes give an equitable partition in $\Gamma$ (that is, for every two classes,
every vertex in one of these classes has the same number of neighbors in the other
class); and the quotient graph provided by the classes (that is, the graph on the
classes, where two classes are adjacent if there are edges (of $\Gamma$ ) between them) is
isomorphic to $\overline{\Gamma}$ . This quotient graph is also called the folded graph of $\Gamma.$

Given a graph $\Gamma$ and $x\in V$ , the local graph $\Delta(x)$ at vertex $x$ is the subgraph
of $\Gamma$ induced on the vertices that are adjacent to $x$ . When all the local graphs are
isomorphic, we simply write $\Delta$ , and say that $\Gamma$ is locally $\Delta.$

3. CONSTRUCTION METHODS

Highly symmetric examples of t-walk-regular graphs exist for $t\leq 7$ in the form of
t-arc-transitive graphs. For example, the infinite family of 3-arc-transitive graphs
constructed by Devillers, Giudici, Li, and Praeger [19] is also an infinite family of
3-walk-regular graphs. Indeed, every t-arc-transitive graph with diameter at least
$t$ is t-walk-regular. By a covering construction due to Conway (see [2, Ch. 19]) and
independently Djokovi\v{c} [21], infinite families of 5-arc-transitive graphs with valency
3 and 7-arc-transitive graphs with valency 4 were constructed. Conder and Walker
[9] also constructed infinitely many 7-arc-transitive graphs with valency 4. In turn,
these give rise to infinite families of cubic 5-walk-regular graphs and 7-walk-regular
graphs with valency 4. The validity of the Bannai-Ito conjecture [1] (in particular
the fact that there are finitely many distance-regular graphs with valency four [6] $)$

for example implies that there are infinitely many 7-walk-regular graphs that are
not distance-regular.

It is worth mentioning that less-known (and less restrictive) concepts such as t-
geodesic-transitivity and t-distance-transitivity have been introduced by Devillers,
Jin, Li, and Praeger [20], and both concepts are stronger than t-walk-regularity.

It is rather straightforward to show that the bipartite double of a t-arc-transitive
graph is again t-arc-transitive. This could for example be applied to the infinite
family of non-bipartite 2-arc-transitive graphs constructed by Nochefranca [32], to
obtain also an infinite family of bipartite such graphs. For t-walk-regular graphs, a
similar result holds, but we have to take into account the odd-girth (note that for
t-arc-transitive graphs with diameter at least $t$ , the odd-girth is at least $2t+1$).

Proposition 3.1. Let $\Gamma$ be a t-walk-regular graph with odd-girth $2s+1$ . Then the
bipartite double of $\Gamma$ is $\min\{s, t\}$ -walk-regular.

The graph on the flags of the 11-point biplane as described by Dalf\’o, Van Dam,
Fiol, Garriga, and Gorissen [15] and characterized by Blokhuis and Brouwer [3] is
3-walk-regular with odd-girth 5, so its bipartite double is 2-walk-regular (and it is
not 3-walk-regular). Proposition 3.1 also shows that the bipartite double of the
dodecahedral graph is 2-walk-regular because the dodecahedral graph is 5-walk-
regular with odd-girth 5. This bipartite double is even 3-walk-regular, however.

Proposition 3.2. Let $t\geq 2$ , and let $\Gamma$ be a t-walk-regular graph with valency $k$

and odd-girth $2s+1$ . If $\Gamma$ is not complete multipartite, then the distance-2 graph
$\Gamma_{2}$ of $\Gamma$ is $\min\{\lfloor s/2\rfloor, \lfloor t/2\rfloor\}$ -walk-regular.

For example, the distance-2 graph of the dodecahedral graph is l-walk-regular
but not 2-walk-regular. Another example comes from the Biggs-Smith graph, whose
distance-2 graph is 2-walk-regular.
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We remark that the halved graphs of a bipartite graph are degenerate cases of
the distance-2 graph. We thus obtain the following.
Corollary 3.3. Let $t\geq 2$ , and let $\Gamma$ be a t-walk-regular bipartite graph. Then the
halved graphs of $\Gamma$ are $\lfloor t/2\rfloor$ -walk-regular.

Using that the minimal idempotents of the line graph of a regular graph are easily
deduced from the minimal idempotents of the graph, we obtain the following.
Propositiori 3.4. Let $t\geq 0$ . Let $\Gamma$ be $a$ $(t+1)$ -walk-regular graph with valency $k$

and girth larger than $2t+1$ . Then the line graph of $\Gamma$ is t-walk-regular.
An example is the already mentioned graph on the flags of the 11-point biplane.

Since this graph has girth 5 and it is 3-walk-regular (and therefore 2-walk-regular),
its line graph is $1-walk$-regular (and not 2-walk-regular). This shows that the
condition on the girth is necessary. Also the line graphs of s-arc-transitive graphs
(with large girth) provide new examples of t-walk-regular graphs. Note by the way
that the line graph of $a$ $(t+1)$-arc-transitive graph with valency at least 3 is not
t-arc-transitive $($ for $t\geq 2)$ , since it has triangles.

We will finish this section with a straightforward construction method for 1-
walk-regular graphs. Let us first recall the coclique extension of a graph $\Gamma$ , that
is, the graph with adjacency matrix $A\otimes J$ , where $A$ is the adjacency matrix of $\Gamma,$

$J$ is a square all-ones matrix and $\otimes$ stands for the Kronecker product. It is fairly
easy to see (combinatorially) that if $\Gamma$ is a l-walk-regular graph, then also every
coclique extension of $\Gamma$ is l-walk-regular. $A$ variation on the coclique extension
is the Kronecker product $\Gamma\otimes\Gamma’$ of two graphs $\Gamma$ and $\Gamma’$ , that is, the graph with
adjacency matrix $A\otimes B$ , where $A$ and $B$ are the adjacency matrices of $\Gamma$ and $\Gamma’.$

Proposition 3.5. Let $\Gamma$ and $\Gamma’$ be two l-walk-regular graphs. Then the Kronecker
product $\Gamma\otimes\Gamma’$ is l-walk-regular.

Finally, we remark that the sum [10] $\Gamma\oplus\Gamma’$ – also called Cartesian product –
of two l-walk-regular graphs $\Gamma$ and $\Gamma’$ , that is, the graph with adjacency matrix
$A\otimes I+I\otimes B$ , is in general not l-walk-regular. However, the particular case $\Gamma\oplus\Gamma$ is
again l-walk-regular, as one can easily show (the idempotents are $E_{i}\otimes E_{j}+E_{j}\otimes E_{i}$

$(i\neq j)$ and $E_{i}\otimes E_{i}$ ).

4. $GoDSIL’ S$ MULTIPLICITY BOUND

Let $m\geq 2$ and let $\Gamma$ be a connected regular graph with an eigenvalue $\theta\neq\pm k$

with multiplicity $m$ . Godsil [23] proved that if such a graph is distance-regular and
not complete multipartite, then both its diameter and its valency are bounded by a
function of $m$ . In particular, this assures that there are finitely many such distance-
regular graphs. In this section we extend some of Godsil’s results and reasonings
to the class of $2-walk$-regular graphs. The main difference with distance-regular
graphs is that we are not able to bound the diameter.

We start by pointing out that, as it happens with distance-regular graphs, the
images of two vertices at distance at most 2 under a representation associated to
$\theta\neq\pm k$ cannot be colhnear. The following lemma can indeed be read between the
hnes in a proof by Godsil [23].

Lemma 4.1. Let $\Gamma$ be a 2-walk-regular graph different from a complete multipartite
graph, with valency $k\geq 3$ and eigenvalue $\theta\neq\pm k$ . Let $x$ and $y$ be vertices of $\Gamma$ and
consider a representation associated to $\theta$ . If $\hat{x}=\pm\hat{y}$ , then dist$(x, y)>2.$
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An immediate corollary is the following.

Corollary 4.2. Let $\Gamma$ be a 2-walk-regular graph different from a complete multi-
partite graph, with valency $k\geq 3$ and eigenvalue $\theta\neq k$ , and consider the associated
representation. If $u_{2}=\pm 1$ , then $\theta=-k$ and $\Gamma$ is bipartite.

Let $\theta\neq\pm k$ be an eigenvalue with multiplicity $m$ of a 2-walk-regular graph $\Gamma$

(with valency $k$), and consider the associated (spherical) representation. Let $x$ be
a vertex of $\Gamma$ and consider the set of vectors $\{\hat{y}|y\in\Gamma(x)\}$ . These vectors he in
the hyperplane of all vectors having inner product $\alpha_{1}$ with $\hat{x}$ , so they lie in an
$(m-1)$-dimensional sphere (in $\mathbb{R}^{m}$ ). Lemma 4.1 ensures that the cardinality of the
set is $k$ . Also, the inner product between two of its elements is either $\alpha_{1}$ or $\alpha_{2}$ , so it
is $a$ (spherical) 2-distance set. As pointed out by Godsil [23, Lemma 4.1], Delsarte,
Goethals, and Seidel [18, Ex. 4.10] provide a bound for the size of such a set, and
we have the following:

Theorem 4.3. (cf. [23, Thm. 1.1]) Let $\Gamma$ be a 2-walk-regular graph, not complete
multipartite, with valency $k\geq 3$ . Assume that $\Gamma$ has an eigenvalue $\theta\neq\pm k$ with
multiplicity $m$ . Then $k \leq\frac{(m+2)(m-1)}{2}.$

This bound will be key in Section 7, as well as for the study of 2-walk-regular
graphs with an eigenvalue with multiplicity 3 in Section 6.3. In both cases we will
also use properties of the local graph of 2-walk-regular graphs; we will study these
in the next section. Note that also some of the results in Terwilliger’s ‘tree bound’
paper [35] on t-arc-transitive graphs and in Hiraki and Koolen’s paper [27] with
improvements of Godsil’s bound can be generahzed to t-walk-regular graphs with
large enough girth.

5. THE LOCAL STRUCTURE OF $2$-WALK-REGULAR GRAPHS

In [36] Terwilliger gave bounds for the eigenvalues of the local graphs of a
distance-regular graph. We start this section showing that these bounds also hold
for 2-walk-regular graphs. We follow the proof as given by Godsil [24, Ch. 13].

Proposition 5.1. (cf. [5, Thm. 4.4.3] and [24, Cor. 4.3, p. 269]) Let $\Gamma$ be a 2-
walk-regular graph with distinct eigenvalues $k=\theta_{0}>\theta_{1}>\ldots>\theta_{d}$ . Let $x$ be
a vertex of $\Gamma$ and let $\Delta$ be the subgraph of $\Gamma$ induced on the neighbors of $x$ . Let
$a_{1}=\eta_{0}\geq\eta_{1}\geq\ldots\geq\eta_{k-1}$ be the eigenvalues of $\Delta$ . Then

$\eta_{k-1}\geq-1-\frac{b_{1}}{\theta_{1}+1},$

$\eta_{1}\leq-1-\frac{b_{1}}{\theta_{d}+1}.$

We remark that the 2-cochque extensions of the lattice graphs $L_{2}(n)$ provide
examples of l-walk-regular graphs for which the upper bound for the eigenvalues of
the local graphs in the above proposition is not valid. In this case $\eta_{1}=a_{1}=2n-4$

(the local graph consists of 2 cocktailparty graphs), $b_{1}=2n-1$ , and $\theta_{d}=-4.$

In what follows the symbol $\delta_{x,y}$ stands for the Kronecker delta, that is, $\delta_{x,y}=1$

if $x=y$ and $0$ otherwise.

Proposition 5.2. Let $\Gamma$ be a 2-walk-regular graph with distinct eigenvalues $k=$

$\theta_{0}>\theta_{1}>\ldots>\theta_{d}$ and local graph $\Delta$ . Let $\theta\neq k$ be an eigenvalue of $\Gamma$ with
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multiplicity $m$ . If $m<k$ , then $\theta\in\{\theta_{1}, \theta_{d}\}$ and $b$ $:=-1- \frac{b}{\theta+}\overline{1}$ is an eigenvalue of
$\Delta$ with multiplicity at least $k-m+\delta_{b,a_{1}}.$

In the next part we are going to derive the ‘fundamental bound’ for 2-walk-
regular graphs. This bound was obtained for distance-regular graphs by Juri\v{s}i\v{c},
Koolen, and Terwilliger [29]. We start with the following lemma.
Lemma 5.3. [28, Thm. 2.1] Let $\Delta$ be a regular graph with valency $k$ and $n$ vertices.
Let $k=\eta_{0}\geq\eta_{1}\geq\ldots\geq\eta_{n-1}$ be the eigenvalues of $\Delta$ . Let $\sigma$ and $\tau$ be numbers
such that $\sigma\geq\eta_{1}\geq\eta_{n-1}\geq\tau$ . Then $n(k+\sigma\tau)\leq(k-\sigma)(k-\tau)$ , with equality if
and only if $\eta_{i}\in\{\sigma, \tau\}(1\leq i\leq n-1)$ . In particular, if equality holds then $\Delta$ is
empty, complete, or strongly regular.

As a consequence of Proposition 5.1 and Lemma 5.3 we obtain the following
‘fundamental bound’.

Theorem 5.4. (cf. [29, Thm. 6.2] and [28, Thm. 2.1]) Let $\Gamma$ be a 2-walk-regular
graph with distinct eigenvalues $k=\theta_{0}>\theta_{1}>\ldots>\theta_{d}$ . Then

$( \theta_{1}+\frac{k}{a_{1}+1})(\theta_{d}+\frac{k}{a_{1}+1})\geq-\frac{ka_{1}b_{1}}{(a_{1}+1)^{2}}.$

If $a_{1}\neq 0$ , then equality holds if and only if every local graph $\Delta$ is strongly regular
with eigenvalues $a_{1},$ $-1- \frac{b}{\theta_{d}}\overline{+1},$ $and-1- \frac{b_{1}}{\theta_{1}+1}$ . If $a_{1}=0$ , then equality holds if
and only if $\Gamma$ is bipartite.

6. SMALL MULTIPLICITY

This section is devoted to study t-walk-regular graphs having eigenvalues with
small multiplicity. We start by answering the following question: How small can
the multiplicity of an eigenvalue be of a t-walk-regular graph that is not distance-
regular? Afterwards, in Sections 6.2 and 6.3, we will use this answer and the
results in the previous sections to describe 1- and 2-walk-regular graphs having
an eigenvalue (with absolute value smaller than the spectral radius) with small
multiplicity.

6.1. Distance-regularity from a small multiplicity. Dalf\’o, Van Dam, Fiol,
Garriga and Gorissen $[15]$ posed the following problem: What is the smallest $t$ such
that every t-walk-regular graph is distance-regular? More precisely, they considered
$t$ as a function of either the diameter $D$ of $\Gamma$ or the number $d+1$ of distinct
eigenvalues. We will give an answer to this question, but in terms of the minimum
multiplicity of an eigenvalue $\theta\neq\pm k$ of $\Gamma$ (where $k$ is the valency). Notice that
this minimum multiplicity is related to $d$ and the number of vertices. The following
result follows from revisiting the proof of a result by Godsil [23, Thm. 3.2].

Proposition 6.1. Let $t\geq 2$ and let $\Gamma$ be a t-walk-regular graph with valency $k\geq 3$

and diameter $D>t$ . If $\Gamma$ has an eigenvalue $\theta\neq\pm k$ with multiplicity at most $t,$

then $b_{t}=1.$

Proposition 6.2. Let $\Gamma$ be a t-walk-regular graph. If $b_{t}=1$ , then $\Gamma$ is distance-
regular.

The following result now follows immediately.

Theorem 6.3. Let $\Gamma$ be a t-walk-regular graph with an eigenvalue $\theta\neq\pm k$ with
multiplicity at most $t$ . If $t\geq 2$ , then $\Gamma$ is distance-regular.
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Note that we can extend this result with $t=1$ , as we will show next that
l-walk-regular graphs with an eigenvalue $\theta\neq\pm k$ with multiplicity 1 do not exist.

6.2. $1-Walk$-regular graphs with a small multiplicity. Let $\Gamma$ be a l-walk-
regular graph, and suppose that it has an eigenvalue $\theta$ with multiplicity 1. Let $x$

and $y$ be two adjacent vertices. Since the matrix $E_{\theta}$ has rank 1, by considering
the determinant of the $2\cross 2$ principal submatrix of $E_{\theta}$ on $x$ and $y$ , it follows that
$\alpha_{1}=\pm\alpha_{0}$ , and hence by (1) we obtain that $\theta=\pm k$ . In other words, a l-walk-
regular graph has no eigenvalues different from $\pm k$ with multiphcity 1. In the
following proposition we consider l-walk-regular graphs with an eigenvalue with
multiplicity 2.

Proposition 6.4. Let $\Gamma$ be a l-walk-regular graph with an eigenvalue with multi-
plicity 2. Then $\Gamma$ is a cover of a cycle.

Every coclique extension of a cycle is l-walk-regular (see Section 3), and it has
eigenvalues with multiplicity 2, except for coclique extensions of the 4-cycle (which
are complete bipartite graphs). But this certainly does not cover all the possibilities.

Indeed, let $\Gamma$ be any l-walk-regular graph (for example, a strongly regular graph)
and let $\Gamma’$ be any cycle, except the 4-cycle. Then by applying Proposition 3.5 one
obtains a l-walk-regular graph, which typically has an eigenvalue with multiphcity
2. Indeed, if $k$ is the valency of $\Gamma$ and $\theta\neq 0$ is an eigenvalue of $\Gamma’$ with multiplicity
2, then the product $k\theta$ is a good candidate eigenvalue with multiplicity 2 of $\Gamma\otimes\Gamma’$ ;
sometimes however this eigenvalue coincides with other (product) eigenvalues. The
latter clearly happens when $\Gamma’$ is the -cycle, because its only eigenvalue with
multiplicity 2 is $\theta=0.$

We end this section by observing that the smallest multiplicity of an eigenvalue
different from $\pm k$ in a l-walk-regular graph provides a bound for its clique number.

Proposition 6.5. Let $\Gamma$ be a l-walk-regular graph with valency $k$ . Let $\theta\neq k$ be
an eigenvalue of $\Gamma$ with multiplicity $m$ . Then every clique of $\Gamma$ has at most $m+1$

vertices.

The coclique extensions of the triangle satisfy the bound with equality (with
$m=2)$ , for example.

6.3. $2-Walk$-regular graphs with a small multiplicity. Let $\theta\neq k$ be an eigen-
value of a 2-walk-regular graph $\Gamma$ with valency $k$ . Recall that $\theta$ , as proven in
Section 6.2, cannot have multiplicity one. If $\theta$ has multiplicity 2, then by Thex
rem 6.3 we know that $\Gamma$ is distance-regular, and the only distance-regular graphs
with an eigenvalue with multiplicity 2 are the polygons and the regular complete
tripartite graphs (cf. [5, Prop. 4.4.8]). In Theorem 6.7, we will discuss the case of
multiplicity 3. For that we use the following lemma, which is interesting on its own.

Lemma 6.6. (cf. [35, Thm. 1]) Let $\Gamma$ be a 2-walk-regular graph with valency $k$ . Let
$\theta\neq\pm k$ be an eigenvalue of $\Gamma$ with multiplicity $m$ . If $m<k$ , then the intersection
number $a_{1}$ is positive.

Theorem 6.7. Let $\Gamma$ be a 2-walk-regular graph different from a complete multipar-
tite graph, with valency $k\geq 3$ and eigenvalue $\theta\neq\pm k$ with multiplicity 3. Then $\Gamma$

is a cubic graph with $a_{1}=a_{2}=0$ or a distance-regular graph. Moreover, if $\Gamma$ is
distance-regular, then $\Gamma$ is the cube, the dodecahedron, or the icosahedron.
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Notice that the complete multipartite graph $K_{(m+1)\cross\omega}$ has eigenvalue $-\omega$ with
multiplicity $m$ , and hence the complete multipartite graph $K_{4\cross\omega}$ has an eigenvalue
with multiplicity 3. The only complete multipartite graph having eigenvalue $0$ with
multiplicity 3 is the earlier mentioned $K_{3\cross 2}$ . Examples of other 2-walk-regular
graphs (not being distance-regular) with an eigenvalue with multiplicity 3 can be
found in the Foster census of symmetric cubic graphs [34], such as the graphs
$F056A,$ $F104A,$ $F112C$, as well as the generalized Petersen graphs $G(12,5)$ and
$G(24,5)$ , which correspond to graphs $F24A$ and $F48A$, respectively. It would be
interesting to know whether there are infinitely many 2-walk-regular graphs with a
multiplicity 3.

7. THE DELSARTE BOUND AND GEOMETRIC GRAPHS

In this section we start by observing that the Delsarte bound [17] for the size
of a clique also holds for l-walk-regular graphs. We will in fact prove a somewhat
stronger statement and study the cases when equality is attained. After that, we
will focus our attention on the highly related notion of geometric graphs. We
will show that there are finitely many non-geometric 2-walk-regular graphs with
bounded smallest eigenvalue and fixed diameter.

7.1. The Delsar$te$ bound.

Proposition 7.1. Let $\Gamma$ be a connected $k$ -regular graph with an eigenvalue $\theta<0$

and corresponding minimal idempotent $E$ satisfying $EoI=\alpha_{0}I$ and $EoA=\alpha_{1}A.$

If $C$ is a clique in $\Gamma$ with $characteri_{\mathcal{S}}tic$ vector $\chi$ , then $|C| \leq 1-\frac{k}{\theta}$ , with equality if
and only if $E\chi=0.$

We call a clique with size attaining this bound a Delsarte clique. Note that if the
multiplicity of $\theta$ equals $|C|-1$ , that is, the bound of Proposition 6.5 is tight, then
$C$ is a Delsarte clique. Clearly, Proposition 7.1 apphes to l-walk-regular graphs, so
that we obtain the following Delsarte bound.

Theorem 7.2. Let $\Gamma$ be a l-walk-regular graph with valency $k$ and smallest eigen-
value $\theta_{d}$ . Then every clique of $\Gamma$ has at most $1- \frac{k}{\theta_{d}}$ vertices.

We remark that if the graph is l-walk-regular, then equality in Proposition 7.1
can only occur for $\theta=\theta_{d}$ . Line graphs of regular graphs with valency at least 3
constitute a class of graphs for which the bound is satisfied with equality. However,
the minimal idempotent corresponding to its smallest eigenvalue does not neces-
sarily satisfy the conditions of Proposition 7.1. On the other hand, the Cartesian
product $K_{m}\oplus K_{n}\oplus K_{p}$ of three complete graphs (a generahzed Hamming graph) is
0-walk-regular with maximal cliques of size $m,$ $n$ , and $p$ , while the Delsarte ‘bound’
equals $(m+n+p)/3$ , so for particular values of $m,$ $n$ , and $p$ , it has maximal chques
of size attaining the Delsarte bound, but also larger cliques. $A$ final remark is that
the same approach works for bounding the maximum number of vertices mutually
at distance $t$ in a t-walk-regular graph.

In a distance-regular graph with diameter $D$ , a Delsarte clique $C$ has covering
radius (that is, the maximum distance of a vertex to the clique) equal to $D-1$ (note
that in every connected graph with diameter $D$ , the covering radius of a clique is
either $D-1$ or $D$). Moreover, $C$ is completely regular in the sense that every vertex
at distance $i$ from $C$ is at distance $i$ from the same number of vertices $\phi_{i}$ of $C$ (and
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hence it is at distance $j$ from the same number of vertices $\phi_{i,j}$ of $C$ for every $j$ ),
for $i=0,1,$ $\ldots,$ $D-1$ We can generalize this as follows.

Proposition 7.3. Let $\Gamma$ be a connected $k$ -regular graph with $d+1$ distinct eigen-
values, and let $C$ be a Ddsarte clique. Then the covering radius of $C$ is at most
$d-1$ . Moreover, if $\Gamma$ is t-walk-regular, then every vertex at distance $i$ from $C$ is at
distance $i$ fivm the same number of vertices $\phi_{i}$ of $C$ , for $i=0,1,$ $\ldots,$ $t-1.$

7.2. Geometric graphs. $A$ graph is geometric if there exist a set of Delsarte
cliques such that every edge hes on exactly one of them. The notion of geomet-
ric graph in this sense was introduced by Godsil [25] for distance-regular graphs.
Examples of geometric graphs are bipartite graphs (trivially) and line graphs of a
regular graphs with valency at least 3.

Koolen and Bang [30] proved that there are only finitely many non-geometric
distance-regular graphs with smallest eigenvalue at $least-\omega$ and diameter at least
3. It is also possible to state a similar result for 2-walk-regular graphs. More
precisely, Koolen and Bang [30, Thm. 3.3] showed that there are finitely many
distance-regular graphs with smallest eigenvalue $-\omega$ , diameter $D\geq 3$ , and small
$c_{2}$ (compared with $a_{1}$ ). In order to prove this, they bound the valency $k$ using
Godsil’s multiplicity bound (the analogue of Theorem 4.3), using the multiplicity
of the second largest eigenvalue $\theta_{1}$ . In turn, a bound on $m(\theta_{1})$ is derived from the
analogue of Proposition 5.2, after showing that $m(\theta_{1})<k$ . One of the key points
for the latter inequality is to give an upper bound for the number of vertices in $\Gamma.$

Their argument, however, does not apply to 2-walk-regular graphs. The following
lemma intents to solve this problem.

Lemma 7.4. Let $\omega\geq 2$ be an integer. Let $\Gamma$ be a 2-walk-regular graph with valency
$k$ , diameter $D$ , and smallest eigenvalue at least -$\omega$ . If $\epsilon$ is such that $0<\epsilon<1$ and
$c_{2}\geq a_{1}\epsilon$ , then $|V|<( \frac{2\omega^{2}}{\epsilon})^{D}Dk.$

As a consequence of this lemma, the proof by Koolen and Bang [30] also apphes
to 2-walk-regular graphs, so we have the following result.
Theorem 7.5. (cf. [30, Thm. 3.3]) Let $0<\epsilon<1$ , and let $\omega\geq 2$ and $D\geq 3$

be integers. Let $\Gamma$ be a 2-walk-regular graph with valency $k$ , diameter $D$, smallest

eigenvalue at least -$\omega$ , and with $c_{2}\geq a_{1}\epsilon$ . Then $k<D^{2}( \frac{2\omega^{2}}{\epsilon})^{2D+4}$ In particular,
there are finitely many such graphs.

Next is to show, as it happens with distance-regular graphs (see Koolen and
Bang [30, Thm. 5.3] $)$ , that if $a_{1}$ is large enough (compared to $c_{2}$ ), then a 2-walk-
regular graph with smallest eigenvalue at least $-\omega$ is geometric. The next result
by Metsch [31] is a key point for that purpose.
Proposition 7.6. [31, Result 2.1] Let $k\geq 2,$ $\mu\geq 1,$ $\lambda\geq 0$ , and $s\geq 1$ . Suppose that
$\Gamma$ is a regular graph with valency $k$ such that every two non-adjacent vertices have at
most $\mu$ common neighbors, and every two adjacent vertices have exactly $\lambda$ common
neighbors. Define a line as a mavimal clique in $\Gamma$ with at least $\lambda+2-(s-1)(\mu-1)$

vertices. If $\lambda>(2s-1)(\mu-1)-l$ and $k<(s+1)(\lambda+1)-s(s+1)(\mu-1)/2$ , then
every vertex is in at most $s$ lines, and each edge lies in a unique line.
Proposition 7.7. Let $\omega\geq 2$ be an integer and let $\Gamma$ be a 2-walk-regular graph with
valency $k$ , diameter $D\geq 2$ , and smallest eigenvalue in the interval $[-\omega, 1-\omega)$ . If
$a_{1}>\omega^{4}c_{2}$ , then $\Gamma$ is geometric.
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As a consequence of Theorem 7.5 and Proposition 7.7, we have the following
result.

Theorem 7.8. Let $\omega\geq 2$ and $D\geq 3$ . There are finitely many non-geometric
2-walk-regular graphs with diameter $D$ and smallest eigenvalue at least -$\omega.$

Let us remark that we need to fix both $\omega$ and $D$ for the finiteness. Conder
and Nedela [8, Prop. 2.5] constructed infinitely many 3-arc-transitive cubic graphs
with girth 11. Because a geometric graph without triangles must be bipartite,
this shows that there are infinitely many non-geometric 3-walk-regular graphs with
smallest eigenvalue larger than-3. To show that we need to fix $\omega$ , we consider the
symmetric bilinear forms graph. This graph has as vertices the symmetric $n\cross n$

matrices over $\mathbb{F}_{q}$ , where two vertices are adjacent if their difference has rank 1; see
[5, Sec. 9. $5.D$]. For $q$ even and $n\geq 4$ , this graph is not distance-regular, but it is
2-walk-regular. For $n=4$, these graphs have diameter 5, and one can show using
the distance-distribution diagram (see [4, p. 22]) that the smallest eigenvalue equals
$-1-q^{3}$ . Because the valency equals $q^{4}-1$ , this graph cannot be geometric, even
though there are ‘hnes’ of size $q$ , but these are not Delsarte cliques.

On the other hand, we need 2-walk-regularity, because the earlier mentioned 2-
coclique extensions of the lattice graphs provide an infinite family of non-geometric
l-walk-regular graphs with diameter 2 and smallest eigenvalue $-4$ . Theorem 7.8
thus illustrates once more the important structural gap between 1-and 2-walk-
regular graphs.

Note finally that a geometric graph $\Gamma$ is the point graph of the partial linear
space of vertices and (some) Delsarte cliques, and that one can consider also the dual
graph on the cliques, that is, the point graph of the dual of this partial linear space.
In particular when $\Gamma$ is locally a disjoint union of cliques $(i.e., when k=-\theta_{d}(a_{1}+1))$ ,
this can be used to obtain new examples of t-walk-regular graphs, in the same spirit
as in Proposition 3.4, although now one has to consider the so-called geometric girth
instead of the usual girth. For example, the Hamming graphs have geometric girth
4 $(as c_{2}>1)$ , and the dual graphs of the Hamming graph (with diameter at least
three) are only l-walk-regular. The distance-regular near octagon coming from the
Hall-Janko group (see [5, Sec. 13.6]) has geometric girth 6 and its dual is 2-walk-
regular.

We finish by observing that besides distance-regular graphs and the above men-
tioned symmetric bilinear forms graphs, we do not know of many examples of
2-walk-regular graphs with $c_{2}\geq 2$ . We challenge the reader to construct more such
examples.
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