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ABSTRACT. We describe a generalization of Borcherds’s two constructions of the Monster Lie al-
gebra by producing, for each element of the monster simple group, a pair of infinite dimensional
Lie algebras. We outline a proof of the fact that most cases of Norton’s Generalized Moonshine
Conjecture for twisted modules can be reduced to the existence of an isomorphism between the Lie
algebras in a pair.
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1. INTRODUCTION

In this paper, we outline some recent work concerning the construction of Lie algebras related
to Monstrous Moonshine and Generalized Moonshine. Monstrous Moonshine is the study of how
the largest sporadic finite simple group, called the monster $\mathbb{M}$ , is related to modular functions,
i.e., certain holomorphic functions on the complex upper half-plane $\mathfrak{H}$ . Conway and Norton, in
formulating the Monstrous Moonshine conjecture [Conway-Norton-1979], produced a list of modular
functions indexed by conjugacy classes in $\mathbb{M}$ , and asserted that there exists an infinite dimensional
graded representation $\oplus V_{n}$ of the monster, such that the graded character $\sum_{n}Tr(g|V_{n+1})q^{n}$ of
each element g, viewed as a power series (called the McKay-Thompson series), is equal to the Fourier
expansion of the corresponding modular function. The candidate functions $T_{g}$ are Hauptmoduln,
that is, they are invariant under an infinite discrete group $\Gamma_{g}\subset SL_{2}(\mathbb{R})$ , such that $T_{g}$ generates
the function field of the quotient space $\mathfrak{H}/\Gamma_{g}$ . The quotient space is then necessarily a sphere with
finitely many punctures, i.e., genus zero. A candidate representation called $V^{\natural}$ was constructed
by Frenkel, Lepowsky, and Meurman in [Frenkel-Lepowsky-Meurman-1988], and the Monstrous
Moonshine conjecture for $V\natural$ was proved by Borcherds in [Borcherds-1992].

Here is a diagram outlining Borcherds’s proof of the Conway-Norton conjecture:
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$\downarrow$ Recursion relations

The blocks in this diagram are mathematical objects that had to be constructed, and the arrows
are roughly ways to pass from one object to the construction of another. As you can see, the
proof involves the construction of two Lie algebras. The Lie algebra $\mathfrak{m}$ is distinguished by the
fact that it has a natural, faithful action of the Monster simple group, and the Lie algebra $L$ is
distinguished by the property that its homology (in particular, its simple roots) are encoded by
the normalized modular function $J(\tau)=q^{-1}+196884q+21493760q^{2}+\cdots$ . By establishing an
isomorphism between these Lie algebras and using transport de structure, one obtains a Lie algebra
with both a faithful action of the monster and explicitly described homology. This combination of
information is essential to establishing the recursion relations that prove the Hauptmodul property
of the McKay-Thompson series.

The Lie algebra $L$ and the comparison step (indicated in the ellipse) are rarely noticed, but
they are very useful. Indeed, the main theorem of [Cummins-Gannon-1997] implies that any group
action on $L$ satisfying a certain compatibility condition on root spaces will yield characters that are
Hauptmoduln. That is, we don’t strictly need an isomorphism with $m$ to get a modularity result for
characters. However, it is in general quite difficult to construct an interesting group action on an
infinite dimensional Lie algebra by diagram automorphisms. That is why $V^{\natural}$ and $m$ are necessary
in a practical sense.

Because the Lie algebras $m$ and $L$ are isomorphic, it is reasonable to say that Borcherds gave
two constructions of a single Lie algebra, known as the Monster Lie Algebra. Indeed, this is the
description in the Wikipedia “Monster Lie algebra” article [Wikipedia]. However, in the review
literature one often finds an additional simplification: because the part in the ellipse is buried in
the proof of [Borcherds-1992] Theorem 7.2, this part of Borcherds’s argument is outhned as a single
Lie algebra construction, followed by a computation of the simple roots. While such a description
outlines a mathematically correct proof, $I$ have found it to be somewhat inconvenient to generalize.

1.1. Generalized moonshine. There is a good reason why we want to generalize Borcherds’s
Lie algebra constructions: Norton proposed a generalization of the Conway-Norton conjecture
[Norton-1987], based on numerical evidence computed by Queen [Queen-1981] and himself. One of
the principal claims is that certain characters of a graded representation of a group form Haupt-
moduln, much like the original conjecture. This claim is the target of my study. If we view the
outline of Borcherds’s proof as a blueprint for a Hauptmodul-making machine, it is reasonable to
try to construct analogues of $\mathfrak{m}$ and $L$ that suit Norton’s conjecture. In particular, for each element
$g$ in the monster $\mathbb{M}$ , we want:

(1) a Lie algebra $m_{g}$ with a projective action of the centralizer $C_{M}(g)$ .
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(2) a Borcherds-Kac-Moody Lie algebra $L_{g}$ with a good description of simple roots.
Then, we want to show $m_{g}\cong L_{g}$ . If we can show that $m_{g}$ is Borcherds-Kac-Moody, then the

isomorphism will follow from an equality of root multiplicities. By a suitable generalization of the
methods in [Cummins-Gannon-1997], proved in [Carnahan-2010], such an isomorphism can then
be used to show that certain characters are Hauptmoduln.

Hoehn [H\"oehn-2003] already proved that this method works for the case when $g$ lies in conjugacy
class $2A$ . Since Hoehn’s argument used some explicit information about the Baby monster and its
distinguished representation that we don’t have in the general case, we need to replace his exphcit
calculations with structural theorems.

Here is a diagram of my program for a proof:

$\downarrow$ Hecke operators

Much like the special case of Borcherds’s theorem, the size of any given piece of this diagram is
not representative of its difficulty. Frenkel, Lepowsky, and Meurman’s construction of the vertex
operator algebra $V^{\natural}$ was a very substantial undertaking, and the top left corner of this diagram also
requires much technical work. In contrast, the construction of $L_{g}$ from an infinite product formula
only requires a page or two of proof.

2. CONSTRUCTION OF $m_{g}$

The construction of $\mathfrak{m}_{g}$ can be broken into two steps:
(1) Construct a generalized vertex algebra of central charge 24 from irreducible twisted modules

of $V\natural$ and intertwining operators between them.
(2) Apply a functor Quant to a conformal vertex algebra of central charge 26, to get a Lie

algebra.
The second step is well-established, dating back to the early $1970s$ , but I feel that its significance

is still poorly appreciated in mathematics.

2.1. The functor Quant. Recall that Borcherds constructed $m$ from $V\natural$ using a functor. The
monster action is then automatically transferred by functoriality. We will use the same functor to
construct the Lie algebras $m_{g}.$

Let $V$ be a Virasoro representation with central charge $c\in \mathbb{C}$ , and a Virasoro-invariant bilinear
form $\langle-,$ $-\rangle$ . That is, in addition to the vector space structure on $V$ , we are given operators
$\{L_{n}\}_{n\in \mathbb{Z}}$ , satisfying $[L_{m}, L_{n}]=(m-n)L_{m+n}+ \frac{m^{3}-m}{12}\delta_{m+n,0}c\cdot Id_{V}$, and a symmetric bilinear form
such that $L_{n}$ and $L_{-n}$ are adjoint for all integers $n.$

Then, the quotient $V/rad\langle-,$ $-\rangle$ by the singluar subspace has a natural bilinear form induced
by $\langle-,$ $-\rangle$ . If we restrict to the “primary weight 1” subspace $P^{1}V\subset V$ , whose vectors satisfy
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$L_{0}v=v$ and $L_{n}v=0$ for all $n>0$ , then we may construct the quotient Quant(V):$=P^{1}V/(P^{1}V\cap$

$rad\langle-,$ $-\rangle)$ . This yields our functor Quant:

There is more than one valid choice for defining the morphisms in these categories, but for the

purposes of our construction, we may restrict to Virasoro-module isomorphisms that preserve the

form.
The functor Quant has two compelling properties that we need:

(1) First, Quant is compatible with certain products, in the sense that it refines to a functor:

The Lie bracket is given by $[u, v]=u_{0}v$ , i.e., the $z^{-1}$-coefficient of the vertex algebra
product $Y(u, z)v.$

(2) Second, at critical dimension, Quant satisfies an oscillator-cancellation property: if $V\cong$

$W\otimes\pi_{\lambda}^{1,1}$ for $W$ unitarizable of central charge 24, then

Quant $(V)\cong\{$
$W_{1}\oplus W_{0}^{\oplus 2}$ $\lambda=0$

$W_{1-\lambda^{2}}$
$\lambda\neq 0^{\cdot}$

Here, $\pi_{\lambda}^{1,1}$ is the irreducible Heisenberg module with central charge 2 attached to the vec-
tor $\lambda\in \mathbb{R}^{1,1}$ , and $W_{\alpha}$ denotes the subspace of $W$ on which $L_{0}$ acts by $\alpha\in \mathbb{R}$ . This

oscillator-cancellation property was conjectured by Lovelace in 1971 [Lovelace-1971] and
proved (under some unnecessary hypotheses) by Goddard and Thorn in 1972 as part of

the no-ghost theorem [Goddard-Thorn-1972]. At critical dimension, Quant is naturally
isomorphic to the cohomology functor $H_{BRST}^{1}$ (see [D’Hoker-1997] for a nice explanation),

so we have an alternative conceptual foundation.

Oscillator cancellation will allow us to identify root spaces of Borcherds-Kac-Moody Lie algebras

as homogeneous spaces in generalized vertex algebras.
To get a Lie algebra with projective $C_{M}(g)$ action from Quant, we therefore need:

(1) a conformal vertex algebra $V$ with projective $C_{M}(g)$ action by conformal vertex algebra
automorphisms.

(2) a decomposition of $V$ as a sum of tensor products $\oplus_{\lambda}(V_{\lambda}\otimes\pi_{\lambda}^{1,1})$ , with each $V_{\lambda}$ a unitarizable
Virasoro representation of central charge 24.

If the set $\{\lambda\}$ is a submonoid of $\mathbb{R}^{1,1}$ , then the Heisenberg modules $\pi_{\lambda}^{1,1}$ naturally assemble into

a generalized vertex algebra (more precisely, an abelian intertwining algebra in the sense of Dong-

Lepowsky [Dong-Lepowsky-1993] $)$ . In fact, to form our conformal vertex algebra, it is necessary

and sufficient to put a generalized vertex algebra structure on $\oplus_{\lambda}V_{\lambda}$ , with opposite braiding. To

this end, we need to figure out a way to assemble generalized vertex algebras out of parts.

2.2. Making generalized vertex algebras. Shortly after Norton formulated the Generalized
Moonshine Conjecture, Dixon, Ginsparg, and Harvey gave a physical interpretation in terms of

twisted sectors of a conformal field theory with monster symmetry [Dixon-Ginsparg-Harvey1988].
In mathematical language, the candidate representation of $C_{M}(g)$ is an irreducible g-twisted $V^{\mathfrak{h}_{-}}$

module. We will refer to these irreducible twisted modules by the notation $V^{\natural}(g)-$ it is unambiguous,

because they are known to be unique up to isomorphism by [Dong-Li-Mason-2000].
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Following the physical interpretation, we expect our generalized vertex algebra to be built from
the twisted $V\natural$ -modules. In particular, the pieces $V_{\lambda}$ mentioned earlier are eigenspaces in twisted
modules $V^{\natural}(g^{i})$ under a lifted action of $g$ . Because the action of $C_{M}(g)$ is projective, this action is
a priori only defined up to a scalar. However, the decomposition into summands parametrized by
a $\mu_{|g|}$ -torsor of eigenvalues is canonical.

To assemble a generalized vertex algebra from these pieces, we need to define a multiplication
operation, i.e., a set of compatible intertwining operators $V^{\natural}(g^{i})\otimes V^{\natural}(g^{j})arrow V^{\natural}(g^{i+j})((z^{1/|g|}))$ .

We split this problem into two parts:
(1) Show that for each $i,j$ the vector space $I_{i,j}^{i+j}$ of intertwining operators is one dimensional,

and that composition induces appropriate isomorphisms between tensor products of these
vector spaces.

(2) Show that a good choice $\{m^{i,j}(z)\in I_{i,j}^{i+j}\}_{i,j=0}^{|g|-1}$ can be drawn from these spaces.
The first part is sketched in my doctoral dissertation [Carnahan-2007], and a full treatment is in

preparation. The one-dimensionality follows from a calculation using conformal blocks, combining
the theorems of [Nagatomo-Tsuchiya-2005] and $[\mathbb{R}enkel-Szczesny-2004].$

The second part, choosing elements from one-dimensional spaces of multiplication maps, is a
homological algebra problem that is solved in [Carnahan$\geq 2013$]. It is similar to the construction
of a group ring from one-dimensional subspaces, but with an additional complication coming from
monodromy. By some power series manipulations, we obtain the following:

Theorem 1. Given an abelian group $A$ , a vertex algebra $V=M^{0}$ , a family $\{M^{i}\}_{i\in A}$ of V-
modules, and one-dimensional spaces $I_{i,j}^{i+j}$ of intertwining operators whose composition maps are
compatible with associativity and skew-symmetry, any choice of nonzero intertwining operators
$\{m^{i,j}(z)\in I_{i,j}^{i+j}\}_{i,j=0}^{|g|-1}$ defines an abelian intertwining algebra structure on $\oplus_{\lambda}V_{\lambda}$ for a 4-cocycle
on the Eilenberg-MacLane complex $K(A, 2)$ with coefficients in $\mathbb{C}^{\cross}$ (see [Eilenberg-Mac Lane-1954]
section 26). Furthermore, changing the choice of elements $m^{i,j}(z)$ will change the cocycle by a
coboundary, so the cohomology class in $H^{4}(K(A, 2), \mathbb{C}^{\cross})$ is invariant. The cohomology class of
the 4-cocycle determines the braiding, and is determined, up to an “evenness” ambiguity, by the

$L_{0}$ -spectrum.

In particular, there always exists a lattice $\Lambda$ of signature $(1, 1)$ , such that the fractional part of the
$L_{0}$-spectrum of twisted $V\natural$ modules is cancelled by that of Heisenberg modules in $\oplus_{\lambda\in\Lambda}(V_{\lambda}\otimes\pi_{\lambda}^{1,1})$.
The tensor product then has trivial braiding.

This yields a conformal vertex algebra structure on $\oplus_{\lambda\in\Lambda}(V_{\lambda}\otimes\pi_{\lambda}^{1,1})$ , and we obtain the Lie
algebra $m_{g};=$ Quant $(\oplus_{\lambda\in\Lambda}(V_{\lambda}\otimes\pi_{\lambda}^{1,1}))$ . $A$ second homological manipulation shows that our
conformal vertex algebra has a projective $C_{M}(g)$-action by conformal vertex algebra automorphisms,
so $m_{g}$ has a projective action by Lie algebra automorphisms. It is not particularly difficult to check
that $m_{g}$ is a Borcherds-Kac-Moody Lie algebra, and oscillator cancellation identifies its root spaces
(as projective $C_{M}(g)$ -modules) with certain $L_{0}$-eigenspaces in $g$-eigenspaces $V_{\lambda}$ of twisted modules.

3. CONSTRUCTION OF $L_{g}$

We now outline how we construct Borcherds-Kac-Moody Lie algebras using automorphic infinite
products (known as Borcherds products) for $O(2,2)$ . In Borcherds’s proof of the Conway-Norton
Monstrous Moonshine conjecture, the necessary infinite product identity was the Koike-Norton-
Zagier identity:

$J(w)-J(z)=p^{-1} \prod_{m>0,n\in \mathbb{Z}}(1-p^{m}q^{n})^{c(mn)},$
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where $p=e^{2\pi iw}$ and $q=e^{2\pi iz}$ are Fourier series variables, and the $c$ in the exponent is defined
by $J(z)= \sum_{n\geq-1}c(n)q^{n}=q^{-1}+196884q+21493760q^{2}+\cdots$ . The infinite product on the right
converges when $w$ and $z$ have sufficiently large imaginary part, and the identity holds on this
domain.

Borcherds used this infinite product identity to construct a Borcherds-Kac-Moody Lie algebra
$L$ . The Lie algebra $L$ is then distinguished up to isomorphism by the property that its Weyl-Kac-
Borcherds denominator formula is given by the Koike-Norton-Zagier identity.

To generalize this to the construction of Lie algebras $L_{g}$ , we need analogues of the Koike-Norton-
Zagier formula, and in particular a way to identify the exponents in an infinite product expansion
of an automorphic function.

3.1. From products to Lie algebras. We wish to construct Lie algebras from infinite products,
using generators and relations. This is not hard to do in general: Given any non-negative formal
power series $f(q)\in q^{-1}+\mathbb{Z}_{\geq 0}[[q]]$ , one has a product expansion:

$f(p)-f(q)=p^{-1} \prod_{m>0,n\in Z}(1-p^{m}q^{n})^{c(m,n)}$

where the exponents $c(m, n)$ are non-negative integers. This product expansion is the Weyl-Kac-
Borcherds denominator formula for a generalized Kac-Moody Lie algebra. For each $m$ and $n$ , the
integer $c(m, n)$ gives the multiplicity of the degree $(m, n)$ root space. The Cartan matrix, while
infinitely large in general, is straightforward to describe in terms of the power series $f.$

The hard part is finding the right power series $f$ and the right infinite product in the first place.
Recall that for generating $L$ , we used the product expansion of $J(w)-J(z)$ . For generalized
moonshine, it is natural to replace $J(z)$ with the McKay-Thompson series $T_{g}(z)$ . Indeed, in 1992,
Borcherds showed that the product expansions of $T_{g}(w)-T_{g}(z)$ at the cusp $(\infty, oo)$ of $\mathfrak{H}\cross \mathfrak{H}$

have exponents that are linear combinations of coeffiicients of Hauptmoduln. However, when $T_{g}(z)$

has negative coefficients, the products cannot describe Lie algebras, because the root multiplicities
become negative. The standard solution to the problem of negative multiplicities is to count them
as a contribution of odd roots of a Lie superalgebra, but as far as we can tell, these superalgebras
are not helpful for Generalized Moonshine.

When I started this project, Borcherds suggested I compute some expansions of $T_{g}(w)-T_{g}(z)$ at
different cusps in $\mathfrak{H}\cross \mathfrak{H}$ to get an idea of how they behave. Some experimentation suggested that
one always gets non-negative exponents by expanding $T_{g}(w)-T_{g}(z)$ at the $(\infty, 0)$ cusp in $\mathfrak{H}\cross \mathfrak{H},$

i.e., forming a product from the Fourier expansion of $T_{g}(w)-T_{g}(-1/z)$ . This is consistent with the
construction of $L$ , since $J(z)=J(-1/z)$ . Furthermore, $I$ later realized that it is a natural choice,

because Norton’s conjecture leads to the prediction that the twisted module $V^{\natural}(g)$ has character
given by $T_{g}(-1/z)$ . That is, if we want a Lie algebra related to a twisted module, it is a good $sign$

when the simple root multiplicities are given by the character of the twisted module. We end up
with the following dichotomy:

(1) The Fricke case: $T_{g}(z)$ is invariant under a Fricke involution $z\mapsto 1/Nz$ for some $N$ , and
has non-negative integer coefficients. Then the expansion of $T_{g}(w)-T_{g}(-1/z)$ is essentially
the same as the expansion of $T_{g}(w)-T_{g}(z)$ computed by Borcherds in [Borcherds-1992],
and yields a Lie algebra with one real simple root.

(2) The non-Fricke case: $T_{g}(z)$ is not invariant under any Fricke involutions. By the Haupt-

modul property, this means $T_{g}(z)$ is regular at the $0$ cusp. The product expansion is
substantially different from what Borcherds computed, and the corresponding Lie algebra
has no real simple roots.

3.2. Identification of root multiplicities. It remains to identify the root multiplicities in the
Lie algebras described by the infinite product expansions of $T_{g}(w)-T_{g}(-1/z)$ . There are a few
reasons why we should expect the multiplicities $c(m, n)$ to be coefficients of modular functions:
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First, that was the case for the Lie algebra $L$ . Second, by looking to the construction of $m_{g}$ , we
know that the root multiplicities should be related to subspaces of twisted $V\natural$-modules, and the
dimensions of such subspaces should come from modular forms by general modularity considerations
in conformal field theory, and specffically a compatibility asserted in Norton’s conjecture. Third,
Borcherds developed a theory of automorphic infinite products that describe infinite dimensional
Lie algebras with root multiplicities given by coefficients of modular forms, and $T_{g}(w)-T_{g}(z)$ is an
example of an automorphic function on $\mathfrak{H}\cross \mathfrak{H}$ . With this evidence in hand, the question of what
modular function provides the root multiplicities of $L_{g}$ becomes a natural one. In [Carnahan-2012],
we establish that the exponents $c(m, n)$ are the $co$efficients of a vector-valued modular function $F$

built from McKay-Thompson series.
Our vector-valued function $F$ is constructed by a two-step process due to Borcherds (derived from

[Borcherds-1998] Lemma 2.6). We begin with a set of functions $\{f^{(m)}\}_{m|N}$ , with $f^{(m)}$ invariant
under $\Gamma(N/m)$ , and define $f^{(k)}=f^{(k,N)}$ for all integers $k$ . For our purposes, we will set $f^{(m)}$ to be
the McKay-Thompson series $T_{g^{m}}$ for our chosen element $g$ in the Monster.

(1) First step: We construct an $N\cross N$ matrix of functions:

$\hat{F}_{i,j}(\tau)=f^{((i,j))}(\frac{*\tau+*}{\frac{i}{(i,j)}\tau+\frac{j}{(i,j)}})$ .

The asterisks in the numerator do not need to be specified, because of the $\Gamma(N/m)-$

invariance of $f^{((i,j))}$ . The components of $\hat{F}$ then form a complete list of images of all
$f^{(m)}$ under $SL_{2}(\mathbb{Z})$ transformations.

(2) Second, we apply a discrete Fourier transform on the rows of the matrix to get the vector-
valued modular function:

$F_{i,k}= \frac{1}{N}\sum_{j=0}^{N-1}e^{-2\pi ijk}\hat{F}_{i,j}$

The vector-valued function $F$ transforms according to Weil’s representation, and one can
check that this is equivalent to the modular invariance properties of the components of $\hat{F}$

by a straightforward use of the discrete Fourier transform.
The construction of $F$ is best motivated by passing to conjectural interpretations of the compo-

nents of $F$ and $F$ in moonshine. Recall that we constructed a generalized vertex algebra structure
on $V_{g}=\oplus_{i=1}^{N}V^{\mathfrak{h}}(g^{i})$ , the sum of twisted modules along a cyclic group. If we assume a refined ver-
sion of Generalized Moonshine for cyclic subgroups of $\mathbb{M}$ (proved to hold up to a constant ambiguity
in [Dong-Li-Mason-2000] $)$ , there is a linear (not just projective) action of some cychc extension $H$

of $\langle g\rangle$ on $V_{g}$ , where we write $g$ for a distinguished generator of $H$ , such that the graded trace of $g^{j}$

on the $g^{i}$-twisted module is given by the expansion of $\hat{F}_{i,j}(\tau)$ . That is, $\hat{F}$ conjecturally describes
the traces of elements of $H$ on twisted modules whose twisting ranges among elements of $H$ . For
example, $\hat{F}_{0,0}$ is the graded trace of 1 on the untwisted module $V\natural$ , so it is equal to $J$ . We can call
$\hat{F}$ the vector-valued character of $H$ acting on $V_{g}.$

The discrete Fourier transform takes traces to eigenvalue multiplicities. More precisely, in this
interpretation, the $q^{k}$ coefficient of $F_{i,j}$ gives the dimension of the subspace of $V^{\natural}(g^{i})$ on which $g$

acts by $e^{2\pi ij/N}$ and $L_{0}$ acts by $k+1$ . We can call $F$ the vector-valued dimension of $V_{g}$ under the $H$-

character decomposition. While this interpretation of $\hat{F}$ and $F$ in terms of traces and multiplicities
is conjectural, and in fact equivalent to the assertion that $L_{g}\cong m_{g}$ , we can still use the functions
themselves to produce automorphic products.

3.2.1. Hecke operators. In [Carnahan-2012], the root multiplicities in the Lie algebra $L_{g}$ are identi-
fied with coefficients of $F$ in two ways. Both methods use the “finite order Hecke-monic” property
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of the McKay-Thompson series, which is equivalent to being completely rephcable and finite level.
Here, the name Hecke shows up because we employ Hecke operators for elliptic curves equipped

with torsors (see e.g., [Ganter-2009]). Given a fimite group $G$ , one has a moduli space of elliptic

curves with $G$-torsors, which can be written as an analytic quotient of a disjoint umion of finitely

many complex upper half-planes $I1_{(g,h):ZxZarrow c^{\mathfrak{H}}}$ . The quotient map is given by the fact that any
$G$-torsor is determined up to isomorphism by its monodromy along a basis of $H_{1}$ , given by a con-
jugacy class of a pair of commuting elements of $G$ , and points on the upper half-plane parametrize
elliptic curves equipped with an oriented basis of $H_{1}$ (a more precise description of the moduli
problem can be found in [Carnahan-2012] section 3.1.1).

Given a function $f$ on this space, we can deflne a Hecke operator by setting:

$(T_{n}f)(P arrow E)=\frac{1}{n}\sum_{n-isogeni\infty\pi:E’arrow E}f(\pi^{*}Parrow E’)$

By lifting along the analytic quotient map, we can write $f$ as $f(g, h, \tau)$ for a commuting pair
$g,$ $h\in G$ , and the Hecke operator is:

$T_{n}f(g, h, \tau)=\frac{1}{n}\sum_{ad=n,0\leq b<d}f(g^{d},g^{-b}h^{a}, \frac{a\tau+b}{d})$

Given a function $f$ on $\mathcal{M}_{e}^{c_{\iota\iota}}$ , written as $f(g, h, \tau)$ for commuting elements $g,$ $h\in G$ , we define
“Hecke-monic” to be the property that for each fixed $g,$ $h$ , the function $n(T_{n}f)(g, h, \tau)$ is a monic
polynomial in $f(g, h, \tau)$ . We use the Hecke-monic property of the McKay-Thompson series to
identify $\log e^{2\pi iw}(T_{g}(w)-T_{g}(z))$ with $\sum_{n=1}^{\infty}e^{2\pi nw}T_{n}T_{g}(z)$ in an analytic neighborhood of the cusp
$(\infty, \infty)$ in $\mathfrak{H}\cross \mathfrak{H}$ . The proof is in fact quite similar to the proof of the KoikeNorton-Zagier identity

for the $J$ function.

3.2.2. First identification. The first method for identifying roots of $L_{g}$ is a straightforward analytic
continuation: The logarithm of the infinite product whose exponents are drawn from coefficients of
$F$ becomes a sum of $e^{2\pi inw}T_{n}T_{g}(z)$ expanded at the cusp $(\infty, 0)$ , and converges in a neighborhood
$U$ of that cusp. The region $U$ overlaps with the domain of convergence of the sum of $e^{2\pi inw}T_{n}T_{g}(z)$

expanded at the cusp $(\infty, \infty)$ . This yields the identification with $T_{g}(w)-T_{g}(-1/z)$ .

3.2.3. Second identification. The second method for identifying roots of $L_{g}$ is the Borcherds-
Harvey-Moore regularized theta-lift [Borcherds-1998]. Following a discovery by Harvey and Moore
[Harvey-Moore-1996] with string-theoretic motivation, Borcherds found a general method for de
scribing the expansions of certain automorphic functions at all cusps by infinite products. In the
case of interest to us, the machine takes in a vector-valued modular function $F$ , and produces a
function $\Psi$ on $\mathfrak{H}\cross \mathfrak{H}$ , invariant under $\Gamma_{0}(N)\cross\Gamma_{0}(N)$ modulo a possible correction term. This
function has the following key properties:

(1) The zeroes and poles of $\Psi$ he on quadratic divisors in $\mathfrak{H}\cross \mathfrak{H}$, and their multiplicity is
determined by the coefficients of poles of $F$ . In particular, we need the poles of $F$ to have
integer coefficients to make $\Psi$ a single-valued function.

(2) The weight of $\Psi$ as a modular form on $Y_{0}(N)\cross Y_{0}(N)$ is given by the constant term of $F_{0,0}.$

In our case, this term is zero (because the weight 1 subspace of $V^{\mathfrak{h}}$ is zero dimensional), so
we have an invariant function.

(3) At each cusp, $\Psi$ admits an infinite product expansion, and the exponents are given by the
coefficients of regular terms in $F.$

To show that the Borcherds-Harvey-Moore lift $\Psi$ is equal to $T_{g}(w)-T_{g}(-1/z)$ , we need only com-
pare product expansions at the cusp $(\infty, \infty)$ , where $\log e^{2\pi iw}\Phi$ simplifies to $\sum_{n=1}^{\infty}e^{2\pi tnw}T_{n}T_{g}(z)$ .
Then the product expansion at $(\infty, 0)$ is what we wanted.
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In summary, we have $T_{g}(w)-T_{g}(-1/z)=p^{-1} \prod_{m>0,n\in\frac{1}{N}\mathbb{Z}}(1-p^{m}q^{n})^{c(m,n)}$ with $c(m,n)$ equal to
the $q^{mn}$ coefficient of the vector-valued function $F_{m,Nn}$ for all $m\in \mathbb{Z},$ $n \in\frac{1}{N}\mathbb{Z}$ . In fact, we obtain
such an identification if we replace $T_{g}$ with any completely replicable function of finite level, but
McKay-Thompson series yield non-negative exponents (hence honest Lie algebras) in a particularly
natural way. With this identification of exponents, we identify the root multiphcities $c(m, n)$ of $L_{g}$

with coefficients of $F.$

4. COMPARISON
We now have a Lie algebra $L_{g}$ with automorphic denominator formula and known simple roots,

and a Lie algebra $\mathfrak{m}_{g}$ with a projective action of $C_{M}(g)$ . Both are Borcherds-Kac-Moody algebras.
As in Borcherds’s theorem, we need an isomorphism $L_{g}\cong m_{9}$ to get a Lie algebra with both

a finite group action, and known simple roots. Because Borcherds-Kac-Moody algebras have a
denominator formula, the Cartan matrix is determined by the root multiplicities. In particular, to
prove the existence of an isomorphism, it suffices to show that the two Lie algebras have the same
root multiplicities.

To compare root multiplicities, we must compare the multiplicity of each eigenspace of $g$ and $L_{0}$

on twisted modules $V^{\natural}(g^{i})$ with the coefficients of the vector-valued forms $F_{i,k}$ . Using the discrete
Fourier transform, this is equivalent to matching the traces of $g^{j}$ on $L_{0}$-eigenspaces of $V^{\natural}(g^{i})$ with
the coefficients of the matrix function $\hat{F}_{i,j}$ . The problem lies with the definition of $g$ : the canonical
action of $C_{M}(g)$ on $V^{\natural}(g^{i})$ is projective, so the eigenspaces have a cychc shift ambiguity, i.e., we
need a way to eliminate the constant ambiguity in the trace of each $g^{j}$ . This problem is partially
resolved by the fact that there is a preferred lift of $g$ on $V^{\natural}(g)$ , given by $e^{2\pi iL_{0}}$ . While there exists a
unique extension to a preferred lift of $g$ as a linear automorphism of the generalized vertex algebra
$\oplus_{i}V^{\natural}(g^{l})$ , $I$ do not know enough about this lift of $g$ to precisely determine the root multiplicities
when $g$ has composite order. However, when $g$ has prime order, the root-of-unity ambiguities do
not appear.

Theorem 2. If $g$ has prime order, or lies in conjugacy class $4B$, then $L_{g}\cong m_{g}.$

The extra case $4B$ is proved by appealing to the Borcherds-Kac-Moody structure of $m_{g}$ to resolve
a $sign$ ambiguity in the action of $g$ on the $g^{2}$-twisted module. Specifically, if the isomorphism did
not exist, then $m_{g}$ would have collinear real simple roots. Unfortunately, this trick only seems to
work once.

5. HAUPTMODULN
It remains to use the isomorphism $L_{g}\cong m_{g}$ to show that characters of twisted modules are

Hauptmoduln.
The denominator formula of $L_{g}$ is a manifestation of the isomorphism $\wedge^{*}E_{g}\cong H_{*}E_{g}$ of virtual

vector spaces, where $E_{g}$ is the positive subalgebra of $\mathfrak{m}_{g}$ . The projective action of $C_{M}(g)$ on $m_{g}$

promotes the isomorphism $\wedge^{*}E_{g}\cong H_{*}E_{g}$ to an equivariant map. The twisted denominator formula
then implies any character of a centralizing element is weakly Hecke-monic.

More precisely, for any commuting $g,$ $h\in \mathbb{M}$ , we choose a fixed lift of $h$ together with the
preferred lift of $g$ to hnear automorphisms of the generalized vertex algebra $V_{g}$ , and construct
orbifold partition functions:

$Z(g^{k}, g^{\ell}h^{m}, \tau)=\sum_{s\in\frac{1}{N}\mathbb{Z}r\in\frac{1}{N}\mathbb{Z}}\sum_{/\mathbb{Z},s\in kr+\mathbb{Z}}Tr(g^{\ell}h^{m}|V^{\mathfrak{h}}(g^{k})_{1+s}^{r})e^{2\pi is\tau}.$

Here, $V^{\natural}(g^{k})_{1+s}^{r}$ is the subspace of the irreducible $g^{k}$-twisted $V\natural$-module on which $L_{0}$ acts by
$1+s$ , and the preferred lift of $g$ acts by $e^{2\pi ir}$ . We define equivariant Hecke operators:

91



SCOTT CARNAHAN

$T_{n}Z(g, h, \tau)=\frac{1}{n}\sum_{ad=n,0\leq b<d}Z(g^{d},g^{-b}h^{a}, \frac{a\tau+b}{d})$

We say that $Z$ is weakly Hecke-monic at $(g, h)$ if for any $n\geq 1$ , there is a degree $n$ monic
polynomial $x\mapsto P_{n}^{g,h}(x)$ such that $nT_{n}Z(g, h, \tau)=P_{n}^{g,h}(Z(g, h, \tau))$ .

By following the analysis of Cummins and Gannon, we find that:

Theorem 3. MCarnahan-20101 Any weakly Hecke-monic function $Z$ with a pole at infinity, and
expansion coefficients that are algebraic integers, either has the fonn $aq^{-1}+b+cq$ , or is a Haupt-
modul.

The degenerate case is eliminated using the modularity work in [Dong-Li-Mason-2000]. Unfortu-
nately, we do not have a corresponding result for weakly Hecke-monic functions that are regular at
infinity, so for now we are limited to considering the case where the twisting element is Fricke. We
conclude that for the 141 Fricke classes, out of 194 total classes, an isomorphism of Monstrous Lie
algebras implies the Hauptmodul part of Norton’s Generalized Moonshine Conjecture for twisted
modules:

Theorem 4. $MCarnahan\geq 2013$] $)$ For any $\Pi\dot{\eta}ckeg$ for which $L_{g}\cong m_{g}$ , and any $h\in C_{M}(g)$ , the
function $Z(g, h, \tau)$ is a Hauptmodul.

In particular, we obtain a full proof for $g$ in 17 classes:

Corollary 5. If $g\in \mathbb{M}$ lies in a conjugacy class of type $4B$ or $3C$ or $pA$ for a prime $p$ , and
$h\in C_{M}(g)$ , then $Z(g, h, \tau)$ is a Hauptmodul.
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