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UMBRAL MOONSHINE AND LINEAR CODES
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Abstract

We exhibit each of the finite groups of umbral moonshine as a distinguished subgroup of
the automorphism group of a distinguished linear code, each code being defined over a different
quotient of the ring of integers. These code constructions entail permutation representations
which we use to give a description of the multiplier systems of the vector-valued mock modular

forms attached to the conjugacy classes of the umbral groups by umbral moonshine.

1 Introduction

In 2010 Eguchi-Ooguri-Tachikawa made a remarkable observation [1] relating the elliptic genus
of a K3 surface to the largest Mathieu group Mz, via a decomposition of the former into a linear
combination of characters of irreducible representations of the small N = 4 superconformal

algebra. The elliptic genus is a topological invariant and for any K3 surface it is given by the

maro = (22a) +(Rza) + (za)) oo

of weight 0 and index 1. The 6; here denote Jacobi theta functions (cf. (B.3)). The decompo-

weak Jacobi form

sition into N = 4 characters leads to an expression
01(7, 2)? _ =
Zks3(T,2) = Ln((T):*)— (24u(T,z)+q 1/8(—2+Ztn ")) (1.2)
n=1

for some t,, € Z (cf. [2]) where 8;(7, z) and u(7, z) are defined in (B.3-B.4). By inspection, the
first five t,, are given by t; = 90, to = 462, t3 = 1540, t4 = 4554, and t5 = 11592; the observation
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of [1] is that each of these ¢, is twice the dimension of an irreducible representation of Ma4 (cf.
[3]).

Experience with monstrous moonshine [4, 5, 6], for example, leads us to conjecture that every
t, may be interpreted as the dimension of an Ms4-module K 7(;"_)1 /8 and that, assuming such a
module structure to be known, we may obtain interesting functions by replacing ¢, = tr| K@, 1

/8
with tr| . g for non-identity elements g € May. If we define H®(7) by requiring
n—-1/8

Zs(r, 2)n(7)° = 01(7, 2)* (ap(r,2) + HO (7)), (1.3)

then a = 24 and

H®(r)=q7V/8 (—2 +y tnq"> (1.4)

n>0

is a slight modification of the generating function of the ¢,,. The inclusion of the term —2 and
the factor g~1/8 = e~2717/8 has the effect of improving the modularity: H®)(r) is a (weak)
mock modular form for SLy(Z) with multiplier e =3 (cf. (B.2)), weight 1/2, and shadow 247> (cf.
(B.1)), meaning that if we define the completion H®(7) of the holomorphic function H®(r)
by setting -

A®(r) = HO(r) 4 24 (40)~1/2 / (2 + 7)~Y2(=5dz, (1.5)
then H®)(7) transforms as a modular form of weight 1 /2 on SLy(Z) with multiplier system

conjugate to that of ()3, so that we have
() HO r)j(a,m)? = HO(r)

for v € SLy(Z) where j{v,7) = (et + d)~! when (c,d) is the lower row of 1.
The McKay-Thompson series ng) for g € My, is now defined—assuming knowledge of the
Mz4-module structure on K@ = @_K, ,(12_)1 /s~ by setting

(o o)
HP) (1) = —2¢7Y8 4+ trlk, _, 4 (9)g" /" (1.6)

n=1

where g = e(r) = 27, Actually the functions H{> are more accessible than Mp,-module K®
(for which no concrete construction is yet known) since one only needs to know tr|g, _, /89 for
a few values of n if one assumes the function Héz) to have good modular properties. Concrete
proposals made in {7, 8, 9, 10] entail the prediction that Hf) should be a certain concretely
defined (cf. [2]) mock modular form of weight 1/2 for T'g(n,) with shadow proportional to e~3
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where ng is the order of g € Ma4, and the existence of a compatible Ma4-module K (?) has now
been established by Gannon [11].

In {12] it was shown that the observation of Eguchi-Ooguri-Tachikawa belongs to a family of
relationships—umbral moonshine—between finite groups G® and vector-valued mock modular
forms Hél) = (H ;2, ceey Héfg_l) for g € G®, that support the existence of infinite-dimensional
bi-graded G®)-modules

£
K®= P @Kﬁy,’l_ﬂ Ja (1.7)

o<r<f n

where the G®-module structure on K is conjectured to be related to the vector-valued mock

modular form H? = (HY) via

HO() = -2 V4 + Y o  (9)g" /% (1.8)

The cases of umbral moonshine presented in [12] are indexed by the positive integers £
such that £ — 1 divides 12. In this note we give constructions of the umbral groups G® as
automorphisms of linear codes over rings Z/¢, and we show, as an application, how to use the
resulting permutation representations to describe the multiplier systems of the umbral McKay—

Thompson series H, ,S‘) .

Table 1: The groups of umbral moonshine.

£ | 2 3 4 5 7 13
GO | My 2.Mi2 2.AGL3(2) GL2(5)/2 SL2(3) Z/AZ

It is striking that the codes arising all appear in the article [13] written in connection with
the Leech lattice. One consequence is that each of the umbral groups G may be regarded
as a subgroup of the Conway group Cog, this being the automorphism group of the Leech
lattice. Another consequence is the suggestion that there might be analogous cases of umbral
moonshine for the remaining 17 codes (or equivalently, Niemeier root systems) appearing in [13].

Confirmation of this suggestion will be demonstrated in a forthcoming article [14].
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2 Codes

In this section we review the notion of linear code over a ring Z/m and define a distinguished
linear code G over Z/Z for each £ such that £ — 1 divides 12.

A (linear) code over Z/m of length n is a Z/m-submodule of (Z/m)". Let {e; | i € Q}
denote the standard basis for (Z/m)", the index set 2 having cardinality n. We equip (Z/m)"
with a Z/m-valued Z/m-bilinear form by setting (C,C’) = ¥, ¢i¢} in case C = ¥, cie; and
C' = Y ,cq ciei, and given S C (Z/m)™ we define S+ = {D € (Z/m)" | (C,D) =0, VC € S}.
We say that a code C < (Z/m)™ is self-orthogonal in case C C C* and we say that C is self-dual if
it is maximally self-orthogonal, meaning that C = C1. Given a code C of length n over Z/m we
define Aut(C) to be the subgroup of GL,(Z/m) that stabilizes the subspace C < (Z/m)", and
we define Aut*(C) to be the subgroup of Aut(C) consisting of signed coordinate permutations,

meaning that
Aut*(C) = {y € GL,(Z/m) | 7(C) c Candv(B) C B} (2.1)

where B denotes the set {+e; | ¢ € 2}. Observe that Aut(C) and Aut(C) coincide when
m € {2,3,4}, but are generally different otherwise.

We now identify a distinguished linear code G over Z/¢ for each £ such that ¢ — 1 divides
12. The code G® will have length 24/(¢ — 1) and the construction we give will be either a
rephrasing or direct reproduction of a construction given (much earlier) in [13]. In particular, it
will develop that G is the extended binary Golay code and G® is the extended ternary Golay
code. The remaining G(®) are visible, in a certain sense, inside the Leech lattice (cf. [13]) and
may be regarded as natural analogues of the extended binary and ternary Golay codes defined
over larger quotients of the ring of integers.

To define G equip (Z/2)?* with the standard basis {e;} and index this basis with the set
Q® = {00} UZ/23. Let N be the subset of 2(2) consisting of the elements of Z/23 that are not
squares in Z/23, so that N = {5,7,10,11,14,15,17,19,20, 21,22}, and define

Ci=ect Y enyi € (Z/2)% (2.2)

neN
for i € Z/23. Then the subspace of (Z/2)?* generated by the set {C; | i € Z/23} is a self-dual
linear code over Z/2 of length 24 which we denote G(®). In fact, G is a copy of the extended
binary Golay code (see various chapters in [15] for more details) and the automorphism group

of @ is isomorphic to the largest Mathieu group, M2,. The group G® defined in [12] is also
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isomorphic to Mg so we have Aut¥(G®) = Aut(G?) ~ GP.

To define G® equip (Z/3)!2 with the standard basis {e;} and take the index set to be
Q® = {oo} UZ/11. The set of non-squares in Z/11 is N = {2,6,7,8, 10}. Let Q be the
complement of N in Z/11, so that @ = {0,1,3,4,5,9}, and define C; € (Z/3)'? for i € Z/11 by
setting

Ci=20+ Y 2nti+ ) ensi € (Z/3)". (2.3)
neN neQ

Then the code G generated by the C; is a copy of the extended ternary Golay code (cf.
[15]) and the automorphism group of G®) is isomorphic to a group 2.M;o, being the unique
(up to isomorphism) non-trivial double cover of the Mathieu group Mia (cf. [3]). Again we
have Aut*(G®) = Aut(G®) and the group G® defined in [12] is also isomorphic to 2.Mis, so
Aut¥(G®) ~ GO,

For £ = 4 equip (Z/4)® with the standard basis, indexed by (4) = {00} UZ/7, let N denote
the set {3,5,6} of non-squares in Z/7, and define C; € (Z/4)8 for i € Z/7 by setting

Ci =3¢ +2ei+ Y enti € (Z/4)%. (2.4)
nenN

Define G to be the Z/4-submodule of (Z/4)® generated by the set {C; | i € Z/7}. Then G
is a copy of the octacode [16] (see also [17, §3.2]). The automorphism group of G™ has a central
subgroup of order 2, generated by the symmetry C = (c;) — (—¢;), and modulo this central
subgroup we obtain the affine general linear group of degree 3 over a field with 2 elements, which
is the same as the stabilizer in GL4(2) of a line in (Z/2)*. Comparing with the definition of
G given in [12] we find that Autt(GW) = Aut(GW) ~ GW.

Now consider the case that £ = 5. Index the standard basis of (Z/5)® with the set Q) =
{00} U {0,1,2,3,4} and define

C; = exo + €14i +4eayi +4esyi + €44 € (Z/5)6 (2.5)

for i € Z/5. Then the C; generate a self-dual code G® < (Z/5)8. We see that Autt(G®) is a
proper subgroup of Aut(G (5)) since the latter contains the central element e; — 2e;, for example,
which does not preserve B = {+e;}. The group Autt(G®) is a double cover of S5, regarded
as a permutation group on 6 points via the isomorphism S5 =~ PGLy(5). The particular double
cover arising is perhaps a little unfamiliar in that it does not contain the Schur double cover of

As as a subgroup; it can be realized explicitly as the quotient of GL3(5) by its unique central
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subgroup of order 2. (Note that the centre of GLy(5) is cyclic of order 4.) Upon comparison
with [12] we conclude that Aut*(G(®)) ~ G©®),

For £ = 7 we take Q") = {00} UZ/3 as an index set for the standard basis of (Z/7)* and we
define C; € (Z/7)* by setting

Ci = eco + 26; + €14i + beay; € (Z/7)* (2.6)

for ¢ € Z/3. We define G to be the Z/7-submodule generated by the C; for i € Z/3 and
observe that G() is a self-dual code over Z/7 with Aut*(G(") a double cover of PSLs(3) ~ As.
In fact the double cover arising is SL2(3) and we have Aut*(G(") ~ G,

The remaining code is G*¥ which has length 2 = 24/(13 — 1) and which we may take to
be generated by e. + 5eg € (Z/13)2. (In this case we set Q3 = {00} UZ/1.) The code
G193 is self-dual (since 12 + 52 = 0 (mod 13)) and Aut=(G() is cyclic of order 4, generated
explicitly by (ceo,c0) + (€0, —Cxo). Once again we find Aut®(G(13)) ~ G(3 and we conclude
that Aut®(G®) ~ G® for all £ (such that £ — 1 divides 12).

3 Automorphy

We now take G = Aut*(G®) for ¢ € {2,3,4,5,7, 13} and give an explanation of how these
constructions may be used to describe the automorphy of the vector-valued mock modular forms
Hél) attached (in [12]) to the elements of G¥ via umbral moonshine.

Observe that G(¥ is a code of length 24/(¢ — 1) over Z/£ for each £. Thus we obtain a

permutation representation of degree 24 for G¥) by considering its action on the set
{cei | i€ QB cez/e, c+ 0} (3.1)

of non-zero multiplies of the basis vectors e;. Write fIg for the cycle shape attached to g € G©
arising from this permutation representation and write g ~— %, for the corresponding character
of G®. Then, for example, I:Ig = 212 if g is the central involution in G®) and £ # 4. (For each £
the group G® contains the transformation e; —» —e;, which is the unique central involution of
GY if £>2.) In the case that £ =4 and g is the central involution of G we have I1, = 1828,

Define a second permutation representation of degree 24/(¢ — 1) for G by considering the
action of G® on the sets E; = {ce; | c € Z/£, ¢ # 0} for i € 2, which constitute a system of
imprimitivity for the degree 24 permutation representation of G(® just defined. Write II, for

the corresponding cycle shapes and g — ¥, for the character, and observe that this permutation
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representation is generally not faithful, for the central involution e; +> —e; acts trivially. We
write g — g for the natural map from G (®) to its quotient G(® by the central subgroup generated
by e; = —e;. (We have GO ~ G® when £ = 2 since e; = —¢; for i € 9(2).)

Observe that the smaller permutation representation ¥ is an irreducible constituent of the
larger one ¥. Indeed, the latter contains [£/2] copies of the former, and [(¢— 1)/2] copies of
a faithful representation of degree 24/(¢ — 1), whose character we denote g — x4, Which is just
that which you obtain by taking the matrices representing the action of GW = Aut*(G0) as
elements of GL,(Z/f)—these matrices having exactly one non zero entry +1 in each row and

column—and regarding them as elements of GL,(C). (Here n = 24/(£ —1).)

X9 = 14/2]%q + L = 1)/2]xq (3.2)

Tt is now easy to describe the shadow of the vector-valued mock modular form H, 8 = (H, @,
for it is given by Ss(,e) = (Ss(,fl where Séf,z = Xg¢St¢,» for r odd, and S;? = Xg¢S¢,r for r even,

where Sp, - denotes the unary theta series

Simyr(r) = 3 (2km + r)g(hm+n)*/4m, (3.3)
keZ
Note that Sy, = (Sm.r) is & vector-valued cusp form of weight 3/2 for the modular group SLo(Z).

Given a cycle shape Il = m{“-'-m:" withn; >0for1<i<kand m; <mg <--- <mg
call my the largest factor of II and call m; the smallest factor. For each g € G® define ngy to
be the largest factor of II; (this turns out to be the same as the order of g) and define Ny to
be the product of the smallest and largest factors of fIg. The significance of these values for
the automorphy of H éc) is that ng is the level of Hy)_i.e., the smallest positive integer such
that the vector-valued mock modular form Hée) is a mock modular form for I'g(ng)—and N,
is the smallest positive integer such that the multiplier system for Hy) coincides with that of
S¢ = (Se,r) when restricted to To(Ng).

The expression for Ss(,l) just given determines the multiplier system of Hél)—since the mul-
tiplier system of a mock modular form is the inverse of the multiplier system of its shadow (cf.
[18])—in the case that ¥, and x, are both non-zero. The multiplier system of H_(gl) may be
described as follows in the case that Ygxg = 0.

Define v® = £+ 2 in case £ is odd (i.e. £ € {3,5,7,13}), and set v() = £— 1 when £ is even
(i.e. £ € {2,4}). Let o(® denote the inverse of the multiplier system of the cusp form Se = (S¢,r)



UMBRAL MOONSHINE AND LINEAR CODES

and define 1/)1(3 : Po(n) = GLy—1(C) for positive integers n and h by setting

© (6 b)_ (_wed) o[e b 4
1/}n‘h . 4 e(v nhd I (3.4)

in case h divides n, and otherwise

b h b
'lﬁ,(ﬁl (a d) “e (“”(Z)S_Z(_n;r)) o® (a d) Jeld+1)/n pre/n (3.5)
c (o4

where J is the diagonal matrix J = diag(1,—1,1,---) with alternating +1 along the diagonal,

and K is the “reverse shuffle” permutation matrix corresponding to the permutation

(1,6—1)(2,£ - 2)(3,£—3) - (3.6)
of the standard basis {e1,...,e,_1} of C*~1. Now the multiplier system of Hy) is given by w,(ﬂ
for n = ng and h = hy = Ny/ngy when xgx, = 0.
Note that the factor (n,h)/n can usually be ignored in practice, for there is just one case in
which Xgxy = 0 and h = hy does not divide n = n, and (n,h) # n; viz., the case that £ = 3
and g € G®) satisfies TT, = 210! and 11, = 4120!.
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Table 5: Characters and cycle shapes at £ =15
[9] |1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB
nglhg |11 1|4 2)2 2|1 3|3 3[12 5|1 54 2|8 41 624
)'(9‘66220011020

6 -6 -2 2 0 0 1 -1 0 0 0

Xg
f, |15 16 1222 1222 32 3% 1'5! 1!5' 28 1%l 6
T, |12¢ 212 212 1828 32 6% 1%5% 22107 4% 1%2%4* 12°

Table 6: Characters and cycle shapes at £ =7
(9] | 1A 2A 4A 3AB 6AB
nglhg | 1 114 218 3  3/4
Xg 4 4 0 1 1
Xg 4 -4 0 1 -1
14 14 22 113t 113!
124 212 46 1636 2363

g
g

jom (e

Table 7: Characters and cycle shapes at £ = 13
lg) | 1A 2A 4AB
nglhg | 1 1]4 28

X | 2 2 0
Xg 2 -2 0
m, | 12 12 2!
ﬁg 124 912 46
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B Special Functions

The Dedekind eta function, denoted 7(7), is a holomorphic function on the upper half-plane
defined by the infinite product

n(r) = ¢*/** H(l -q") (B.1)

n>0

where g = e(7) = €*™'". It is a modular form of weight 1/2 for the modular group SLy(Z) with
multiplier € : SL2(Z) — C so that

n(yr)e() (v, )2 = n(7) (B.2)

for all vy € SLy(Z), where j(vy,7) = (c7 + d)~! in case (c,d) is the lower row of 7.
Setting ¢ = e(7) and y = e(z) we use the following conventions for the four standard Jacobi

theta functions.

01(,2) = —ig" By 2 T (1 — ¢™)(1 — yg™) (1 — y~1¢"Y)

n=1
02(r,2) = ¢y 2 ] (1 = ") A+ yg™) (1 + 5~ 2¢"7Y)
- =t (B.3)
03(r,2) = [[(1 - A +y " VA +y 1" 1/?)
n=1
Ou(r,2) = [[(1 - g")(1 —y g /2)(1 -y~ 2q" /)
n=1

We write u(7, z) for the Appell-Lerch sum defined by setting

_1/2 1), l(E+1)/2
iy (=1)*y"q

2) = ) B.4
u(T, 2) 57 2) ) 1o (B4)
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