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Abstract

We exhibit each of the finite groups of umbral moonshine as a distinguished subgroup of

the automorphism group of a distinguished linear code, each code being defined over a different

quotient of the ring of integers. These code constructions entail permutation representations

which we use to give a description of the multiplier systems of the vector-valued mock modular

forms attached to the conjugacy classes of the umbral groups by umbral moonshine.

1 Introduction

In 2010 Eguchi-Ooguri-Tachikawa made a remarkable observation [1] relating the elliptic genus

of a $K3$ surface to the largest Mathieu group $M_{24}$ via a decomposition of the former into a linear

combination of characters of irreducible representations of the small $N=4$ superconformal

algebra. The elliptic genus is a topological invariant and for any $K3$ surface it is given by the

weak Jacobi form

$Z_{K3}( \tau, z)=8((\frac{\theta_{2}(\tau,z)}{\theta_{2}(\tau,0)})^{2}+(\frac{\theta_{3}(\tau,z)}{\theta_{3}(\tau,0)})^{2}+(\frac{\theta_{4}(\tau,z)}{\theta_{4}(\tau,0)})^{2})$ (1.1)

of weight $0$ and index 1. The $\theta_{i}$ here denote Jacobi theta functions (cf. ( $B$ .3)). The $decomp\infty$

sition into $N=4$ characters leads to an expression

$Z_{K3}( \tau, z)=\frac{\theta_{1}(\tau,z)^{2}}{\eta(\tau)^{3}}(24\mu(\tau, z)+q^{-1/8}(-2+\sum_{n=1}^{\infty}t_{n}q^{n}))$ (1.2)

for some $t_{n}\in \mathbb{Z}$ (cf. [2]) where $\theta_{1}(\tau, z)$ and $\mu(\tau, z)$ are defined in ( $B$ .3-B.4). By inspection, the

first five $t_{n}$ are given by $t_{1}=90,$ $t_{2}=462,$ $t_{3}=1540,$ $t_{4}=4554$ , and $t_{5}=11592$ ; the observation
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of [1] is that each of these $t_{n}$ is twice the dimension of an irreducible representation of $M_{24}$ (cf.

[3] $)$ .
Experience with monstrous moonshine [4, 5, 6], for example, leads us to conjecture that every

$t_{n}$ may be interpreted as the dimension of an $M_{24}$-module $K^{(2)}$

$n-1/8$ , and that, assuming such a
module structure to be known, we may obtain interesting functions by replacing $t_{n}=$ tr $|_{K_{n-1/8}^{(2)}}1$

with tr $|_{K_{n-1/8}^{(2)}}g$ for non-identity elements $g\in M_{24}$ . If we define $H^{(2)}(\tau)$ by requiring

$Z_{K3}(\tau, z)\eta(\tau)^{3}=\theta_{1}(\tau, z)^{2}(a\mu(\tau, z)+H^{(2)}(\tau))$ , (1.3)

then $a=24$ and

$H^{(2)}( \tau)=q^{-1/8}(-2+\sum_{n>0}t_{n}q^{n})$ (1.4)

is a slight modification of the generating function of the $t_{n}$ . The inclusion of the term-2 and
the factor $q^{-1/8}=e^{-2\pi i\tau/8}$ has the effect of improving the modularity: $H^{(2)}(\tau)$ is $a$ (weak)

mock modular fonn for $SL_{2}(\mathbb{Z})$ with multiplier $\epsilon^{-3}$ (cf. ( $B$ .2)), weight 1/2, and shadow $24\eta^{3}$ (cf.

($B$ .1) $)$ , meaning that if we define the completion $\hat{H}^{(2)}(\tau)$ of the holomorphic function $H^{(2)}(\tau)$

by setting
$\hat{H}^{(2)}(\tau)=H^{(2)}(\tau)+24(4i)^{-1/2}\int_{-\overline{\tau}}^{\infty}(z+\tau)^{-1/2}\overline{\eta(-\overline{z})^{3}}dz$, (1.5)

then $\hat{H}^{(2)}(\tau)$ transforms as a modular form of weight 1/2 on $SL_{2}(\mathbb{Z})$ with multiplier system

conjugate to that of $\eta(\tau)^{3}$ , so that we have

$\epsilon(\gamma)^{-3}\hat{H}^{(2)}(\gamma\tau)j(\gamma,\tau)^{1/2}=\hat{H}^{(2)}(\tau)$

for $\gamma\in SL_{2}(\mathbb{Z})$ where $j(\gamma, \tau)=(c\tau+d)^{-1}$ when $(c, d)$ is the lower row of $\gamma.$

The $McKay$-Thompson series $H_{g}^{(2)}$ for $g\in M_{24}$ is now defined–assuming knowledge of the
$M_{24}$-module structure on $K^{(2)}=\oplus_{n}$ $K_{n-1/8}^{(2)}$–by setting

$H_{g}^{(2)}( \tau)=-2q^{-1/8}+\sum_{n=1}^{\infty}$ tr $|_{K_{n-1/8}}(g)q^{n-1/8}$ (1.6)

where $q=e(\tau)=e^{2\pi i\tau}$ . Actually the functions $H_{g}^{(2)}$ are more accessible than $M_{24}$-module $K^{(2)}$

(for which no concrete construction is yet known) since one only needs to know tr $|_{K_{n-1/8}}g$ for
a few values of $n$ if one assumes the function $H_{g}^{(2)}$ to have good modular properties. Concrete
proposals made in [7, 8, 9, 10] entail the prediction that $H_{g}^{(2)}$ should be a certain concretely

defined (cf. [2]) mock modular form of weight 1/2 for $\Gamma_{0}(n_{g})$ with shadow proportional to $\epsilon^{-3}$
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where $n_{g}$ is the order of $g\in M_{24}$ , and the existence of a compatible $M_{24}$-module $K^{(2)}$ has now

been established by Gannon [11].

In [12] it was shown that the observation of $Egucharrow Ooguri$-Tachikawa belongs to a family of

relationships–umbral moonshine between finite groups $G^{(\ell)}$ and vector-valued mock modular

forms $H_{g}^{(\ell)}=(H_{g,1}^{(\ell)}, \ldots, H_{g,\ell-1}^{(\ell)})$ for $g\in G^{(\ell)}$ , that support the existence of infinite-dimensional

bi-graded $G^{(l)}$-modules

$K^{(\ell)}= \bigoplus_{0<r<\ell}\bigoplus_{n}K_{r,n-r^{2}/4\ell}^{(\ell)}$
, (1.7)

where the $G^{(\ell)}$ -module structure on $K^{(\ell)}$ is conjectured to be related to the vector-valued mock

modular form $H_{g}^{(\ell)}=(H_{g,r}^{(\ell)})$ via

$H_{g,r}^{(\ell)}( \tau)=-2\delta_{r,1}q^{-1/4\ell}+r^{2}-4n\ell<0\sum_{n\in Z}tr|_{K_{r,n-r^{2}/4\ell}^{(\ell)}}(g)q^{n-r^{2}/4\ell}$

. (1.8)

The cases of umbral moonshine presented in [12] are indexed by the positive integers $\ell$

such that $\ell-1$ divides 12. In this note we give constructions of the umbral groups $G^{(\ell)}$ as

automorphisms of linear codes over rings $\mathbb{Z}/\ell$ , and we show, as an application, how to use the

resulting permutation representations to describe the multiplier systems of the umbral McKay-

Thompson series $H_{g}^{(\ell)}.$

Table 1: The groups of umbral moonshine.

$\underline{\frac{\ell|2345713}{G^{(\ell)}|M_{24}2.M_{12}2.AGL_{3}(2)GL_{2}(5)/2SL_{2}(3)\mathbb{Z}/4\mathbb{Z}}}$

It is striking that the codes arising all appear in the article [13] written in connection with

the Leech lattice. One consequence is that each of the umbral groups $G^{(\ell)}$ may be regarded

as a subgroup of the Conway group $Co_{0}$ , this being the automorphism group of the Leech

lattice. Another consequence is the suggestion that there might be analogous cases of umbral

moonshine for the remaining 17 codes (or equivalently, Niemeier root systems) appearing in [13].

Confirmation of this suggestion will be demonstrated in a forthcoming article [14].
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2 Codes

In this section we review the notion of linear code over a ring $\mathbb{Z}/m$ and define a distinguished
linear code $\mathcal{G}^{(\ell)}$ over $\mathbb{Z}/\ell$ for each $\ell$ such that $\ell-1$ divides 12.

$A$ (linear) code over $\mathbb{Z}/m$ of length $n$ is a $\mathbb{Z}/m$-submodule of $(\mathbb{Z}/m)^{n}$ . Let $\{e_{i}|i\in\Omega\}$

denote the standard basis for $(\mathbb{Z}/m)^{n}$ , the index set $\Omega$ having cardinality $n$ . We equip $(\mathbb{Z}/m)^{n}$

with a $\mathbb{Z}/m$-valued $\mathbb{Z}/m$-bilinear form by setting $(C, C’)= \sum_{i\in\Omega}c_{i}d_{i}$ in case $C= \sum_{i\in\Omega}c_{\tau}e_{i}$ and
$C’= \sum_{i\in\Omega}d_{i}e_{i}$ , and given $S\subset(\mathbb{Z}/m)^{n}$ we define $S^{\perp}=\{D\in(\mathbb{Z}/m)^{n}|(C, D)=0, \forall C\in S\}.$

We say that a code $C<(\mathbb{Z}/m)^{n}$ is self-orthogonal in case $C\subset C^{\perp}$ and we say that $C$ is self-dual if
it is maximally self-orthogonal, meaning that $C=C^{\perp}$ . Given a code $C$ of length $n$ over $\mathbb{Z}/m$ we
define Aut $(C)$ to be the subgroup of $GL_{n}(\mathbb{Z}/m)$ that stabilizes the subspace $C<(\mathbb{Z}/m)^{n}$ , and
we define Aut $\pm(C)$ to be the subgroup of Aut $(C)$ consisting of signed coordinate permutations,
meaning that

Aut$\pm(C)=\{\gamma\in GL_{n}(\mathbb{Z}/m)|\gamma(C)\subset C$and $\gamma(B)\subset B\}$ (2.1)

where $B$ denotes the set $\{\pm e_{i}|i\in\Omega\}$ . Observe that Aut $(C)$ and Aut$\pm(C)$ coincide when
$m\in\{2,3,4\}$ , but are generally different otherwise.

We now identify a distinguished linear code $\mathcal{G}^{(\ell)}$ over $\mathbb{Z}/\ell$ for each $P$ such that $\ell-1$ divides
12. The code $\mathcal{G}^{(\ell)}$ will have length $24/(\ell-1)$ and the construction we give will be either a
rephrasing or direct reproduction of a construction given (much earlier) in [13]. In particular, it
will develop that $\mathcal{G}^{(2)}$ is the extended binary Golay code and $\mathcal{G}^{(3)}$ is the extended ternary Golay
code. The remaining $\mathcal{G}^{(\ell)}$ are visible, in a certain sense, inside the Leech lattice (cf. [13]) and
may be regarded as natural analogues of the extended binary and ternary Golay codes defined
over larger quotients of the ring of integers.

To define $\mathcal{G}^{(2)}$ equip $(\mathbb{Z}/2)^{24}$ with the standard basis $\{e_{i}\}$ and index this basis with the set
$\Omega^{(2)}=\{\infty\}\cup \mathbb{Z}/23$ . Let $N$ be the subset of $\Omega^{(2)}$ consisting of the elements of $\mathbb{Z}/23$ that are not
squares in $\mathbb{Z}/23$ , so that $N=\{5,7,10,11,14,15,17,19,20,21,22\}$ , and define

$C_{i}=e_{\infty}+ \sum_{n\in N}e_{n+i}\in(\mathbb{Z}/2)^{24}$ (2.2)

for $i\in \mathbb{Z}/23$ . Then the subspace of $(\mathbb{Z}/2)^{24}$ generated by the set $\{C_{i}|i\in \mathbb{Z}/23\}$ is a self-dual
linear code over $\mathbb{Z}/2$ of length 24 which we denote $\mathcal{G}^{(2)}$ . In fact, $\mathcal{G}^{(2)}$ is a copy of the extended
binary Golay code (see various chapters in [15] for more details) and the automorphism group
of $\mathcal{G}^{(2)}$ is isomorphic to the largest Mathieu group, $M_{24}$ . The group $G^{(2)}$ defined in [12] is also
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isomorphic to $M_{24}$ so we have Aut$\pm(\mathcal{G}^{(2)})=$ Aut $(\mathcal{G}^{(2)})\simeq G^{(2)}.$

To define $\mathcal{G}^{(3)}$ equip $(\mathbb{Z}/3)^{12}$ with the standard basis $\{e_{i}\}$ and take the index set to be

$\Omega^{(3)}=\{\infty\}\cup \mathbb{Z}/11$ . The set of non-squares in $\mathbb{Z}/11$ is $N=\{2,6,7,8,10\}$ . Let $Q$ be the

complement of $N$ in $\mathbb{Z}/11$ , so that $Q=\{0,1,3,4,5,9\}$ , and define $C_{i}\in(\mathbb{Z}/3)^{12}$ for $i\in \mathbb{Z}/11$ by

setting

$C_{i}=2e_{\infty}+ \sum_{n\in N}2e_{n+i}+\sum_{n\in Q}e_{n+t}\in(\mathbb{Z}/3)^{12}$
. (2.3)

Then the code $\mathcal{G}^{(3)}$ generated by the $C_{i}$ is a copy of the extended ternary Golay code (cf.

[15] $)$ and the automorphism group of $\mathcal{G}^{(3)}$ is isomorphic to a group $2.M_{12}$ , being the unique

(up to isomorphism) non-trivial double cover of the Mathieu group $M_{12}$ (cf. [3]). Again we

have Aut $\pm(\mathcal{G}^{(3)})=$ Aut $(\mathcal{G}^{(3)})$ and the group $G^{(3)}$ defined in [12] is also isomorphic to $2.M_{12}$ , so

Aut $\pm(\mathcal{G}^{(3)})\simeq G^{(3)}.$

For $\ell=4$ equip $(\mathbb{Z}/4)^{8}$ with the standard basis, indexed by $\Omega_{(4)}=\{\infty\}\cup \mathbb{Z}/7$ , let $N$ denote

the set {3, 5, 6} of non-squares in $\mathbb{Z}/7$ , and define $C_{i}\in(\mathbb{Z}/4)^{8}$ for $i\in \mathbb{Z}/7$ by setting

$C_{i}=3e_{\infty}+2e_{i}+ \sum_{n\in N}e_{n+}. \in(\mathbb{Z}/4)^{8}$
. (2.4)

Define $\mathcal{G}^{(4)}$ to be the $\mathbb{Z}/$ -submodule of $(\mathbb{Z}/4)^{8}$ generated by the set $\{C_{t}|i\in \mathbb{Z}/7\}$ . Then $\mathcal{G}^{(4)}$

is a copy of the octacode [16] (see also [17, \S 3.2]). The automorphism group of $\mathcal{G}^{(4)}$ has a central

subgroup of order 2, generated by the symmetry $C=(c_{2})\mapsto(-c_{2})$ , and modulo this central

subgroup we obtain the affine general hnear group of degree 3 over a field with 2 elements, which

is the same as the stabihzer in $GL_{4}(2)$ of a line in $(\mathbb{Z}/2)^{4}$ . Comparing with the definition of

$G^{(4)}$ given in [12] we find that Aut$\pm(\mathcal{G}^{(4)})=$ Aut $(\mathcal{G}^{(4)})\simeq G^{(4)}.$

Now consider the case that $\ell=5$ . Index the standard basis of $(\mathbb{Z}/5)^{6}$ with the set $\Omega^{(5)}=$

$\{\infty\}\cup\{0,1,2,3,4\}$ and define

$C_{t}=e_{\infty}+e_{1+i}+4e_{2+i}+4e_{3+i}+e_{4+i}\in(\mathbb{Z}/5)^{6}$ (2.5)

for $i\in \mathbb{Z}/5$ . Then the $C_{1}$ generate a self-dual code $\mathcal{G}^{(5)}<(\mathbb{Z}/5)^{6}$ . We see that Aut $\pm(\mathcal{G}^{(5)})$ is a

proper subgroup of Aut $(\mathcal{G}^{(5)})$ since the latter contains the central element $e_{i}\mapsto 2e_{i}$ , for example,

which does not preserve $B=\{\pm e_{i}\}$ . The group Aut $\pm(\mathcal{G}^{(5)})$ is a double cover of $S_{5}$ , regarded

as a permutation group on 6 points via the isomorphism $S_{5}\simeq PGI_{\lrcorner Q}(5)$ . The particular double

cover arising is perhaps a little unfamiliar in that it does not contain the Schur double cover of

$A_{5}$ as a subgroup; it can be realized explicitly as the quotient of $GL_{2}(5)$ by its unique central
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subgroup of order 2. (Note that the centre of $GL_{2}(5)$ is cyclic of order 4.) Upon comparison
with [12] we conclude that Aut $\pm(\mathcal{G}^{(5)})\simeq G^{(5)}.$

For $\ell=7$ we take $\Omega^{(7)}=\{\infty\}\cup \mathbb{Z}/3$ as an index set for the standard basis of $(\mathbb{Z}/7)^{4}$ and we
define $C_{i}\in(\mathbb{Z}/7)^{4}$ by setting

$C_{i}=e_{\infty}+2e_{i}+e_{1+i}+6e_{2+i}\in(\mathbb{Z}/7)^{4}$ (2.6)

for $i\in \mathbb{Z}/3$ . We define $\mathcal{G}^{(7)}$ to be the $\mathbb{Z}/7$-submodule generated by the $C_{i}$ for $i\in \mathbb{Z}/3$ and
observe that $\mathcal{G}^{(7)}$ is a self-dual code over $\mathbb{Z}/7$ with Aut $\pm(\mathcal{G}^{(7)})$ a double cover of $PSL_{2}(3)\simeq A_{4}.$

In fact the double cover arising is $SL_{2}(3)$ and we have Aut$\pm(\mathcal{G}^{(7)})\simeq G^{(7)}.$

The remaining code is $\mathcal{G}^{(13)}$ which has length $2=24/(13-1)$ and which we may take to
be generated by $e_{\infty}+5e_{0}\in(\mathbb{Z}/13)^{2}$ . (In this case we set $\Omega^{(13)}=\{\infty\}\cup \mathbb{Z}/1.$ ) The code
$\mathcal{G}^{(13)}$ is self-dual $($ since $1^{2}+5^{2}\equiv 0(mod 13))$ and Aut$\pm(\mathcal{G}^{(13)})$ is cyclic of order 4, generated

explicitly by $(c_{\infty}, c_{0})\mapsto(c_{0}, -c_{\infty})$ . Once again we find Aut$\pm(\mathcal{G}^{(13)})\simeq G^{(13)}$ and we conclude
that Aut $\pm(\mathcal{G}^{(\ell)})\simeq G^{(\ell)}$ for all $\ell$ (such that $\ell-1$ divides 12).

3 Automorphy

We now take $G^{(\ell)}=$ Aut $\pm(\mathcal{G}^{(\ell)})$ for $\ell\in\{2,3,4,5,7,13\}$ and give an explanation of how these
constructions may be used to describe the automorphy of the vector-valued mock modular forms
$H_{g}^{(\ell)}$ attached (in [12]) to the elements of $G^{(\ell)}$ via umbral moonshine.

Observe that $\mathcal{G}^{(\ell)}$ is a code of length $24/(\ell-1)$ over $\mathbb{Z}/\ell$ for each $\ell$ . Thus we obtain a
permutation representation of degree 24 for $G^{(\ell)}$ by considering its action on the set

$\{ce_{i}|i\in\Omega^{(\ell)}, c\in \mathbb{Z}/\ell, c\neq 0\}$ (3.1)

of non-zero multiplies of the basis vectors $e_{i}$ . Write $\tilde{\Pi}_{g}$ for the cycle shape attached to $g\in G^{(\ell)}$

arising from this permutation representation and write $g\mapsto\tilde{\chi}_{g}$ for the corresponding character
of $G^{(\ell)}$ . Then, for example, $\tilde{\Pi}_{g}=2^{12}$ if $g$ is the central involution in $G^{(\ell)}$ and $\ell\neq 4$ . (For each $\ell$

the group $G^{(\ell)}$ contains the transformation $e_{i}\mapsto-e_{i}$ , which is the unique central involution of
$G^{(\ell)}$ if $\ell>2.)$ In the case that $\ell=4$ and $g$ is the central involution of $G^{(4)}$ we have $\tilde{\Pi}_{g}=1^{8}2^{8}.$

Define a second permutation representation of degree $24/(\ell-1)$ for $G^{(\ell)}$ by considering the
action of $G^{(\ell)}$ on the sets $E_{i}=\{ce_{i}|c\in \mathbb{Z}/\ell, c\neq 0\}$ for $i\in\Omega^{(\ell)}$ , which constitute a system of
imprimitivity for the degree 24 permutation representation of $G^{(\ell)}$ just defined. Write $\overline{\Pi}_{g}$ for
the corresponding cycle shapes and $g\mapsto\overline{\chi}_{g}$ for the character, and observe that this permutation
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representation is generally not faithful, for the central involution $e_{i}\mapsto-e_{i}$ acts trivially. We

write $g\mapsto\overline{g}$ for the natural map from $G^{(\ell)}$ to its quotient $\overline{G}^{(\ell)}$ by the central subgroup generated

by $e_{i}\mapsto-e_{i}$ . (We have $G^{(\ell)}\simeq\overline{G}^{(\ell)}$ when $\ell=2$ since $e_{i}=-e_{i}$ for $i\in\Omega^{(2)}.$ )

Observe that the smaller permutation representation $\overline{\chi}$ is an irreducible constituent of the

larger one $\tilde{\chi}$ . Indeed, the latter contains $\lfloor\ell/2\rfloor$ copies of the former, and $\lfloor(P-1)/2\rfloor$ copies of

a faithful representation of degree $24/(\ell-1)$ , whose character we denote $g\mapsto\chi_{g}$ , which is just

that which you obtain by taking the matrices representing the action of $G^{(\ell)}=$ Aut$\pm(\mathcal{G}^{(\ell)})$ as

elements of $GL_{n}(\mathbb{Z}/\ell)$ –these matrices having exactly one non zero entry $\pm 1$ in each row and

column–and regarding them as elements of $GL_{n}(\mathbb{C})$ . $($Here $n=24/(\ell-1).)$

$\tilde{\chi}_{g}=\lfloor\ell/2\rfloor\overline{\chi}_{g}+\lfloor(\ell-1)/2\rfloor\chi_{g}$ (3.2)

It is now easy to describe the shadow of the vector-valued mock modular form $H_{g}^{(\ell)}=(H_{g,r}^{(\ell)})$ ,

for it is given by $S_{g}^{(\ell)}=(S_{g,r}^{(\ell)})$ where $S_{g,r}^{(\ell)}=\overline{\chi}_{g}S\ell_{r}$ for $r$ odd, and $S_{g,r}^{(\ell)}=\chi_{g}Sp_{r}$ for $r$ even,

where $S_{m,r}$ denotes the unary theta series

$S_{m,r}( \tau)=\sum_{k\in Z}(2km+r)q^{(2km+r)^{2}/4m}$ . (3.3)

Note that $S_{m}=(S_{m,r})$ is a vector-valued cusp form of weight 3/2 for the modular group $SL_{Q}(\mathbb{Z})$ .

Given a cycle shape $\Pi=m_{1}^{n_{1}}\cdots m_{k}^{n_{k}}$ with $n_{i}>0$ for $1\leq i\leq k$ and $m_{1}<m_{2}<\cdots<m_{k}$

call $m_{k}$ the largest factor of $\Pi$ and call $m_{1}$ the smallest factor. For each $g\in G^{(\ell)}$ define $n_{g}$ to

be the largest factor of $\overline{\Pi}_{g}$ (this turns out to be the same as the order of g) and define $N_{g}$ to

be the product of the smallest and largest factors of $\tilde{\Pi}_{g}$ . The significance of these values for

the automorphy of $H_{g}^{(\ell)}$ is that $n_{g}$ is the level of $H_{g}^{(\ell)}-i.e.$ , the smallest positive integer such

that the vector-valued mock modular form $H_{g}^{(\ell)}$ is a mock modular form for $\Gamma_{0}(n_{g})$–and $N_{g}$

is the smallest positive integer such that the multiplier system for $H_{g}^{(\ell)}$ coincides with that of

$S_{\ell}=(S_{\ell,\tau})$ when restricted to $\Gamma_{0}(N_{g})$ .

The expression for $S_{g}^{(\ell)}$ just given determines the multiplier system of $H_{g}^{(\ell)}$ –since the mul-

tiplier system of a mock modular form is the inverse of the multiplier system of its shadow (cf.

$[18])$–in the case that $\overline{\chi}_{g}$ and $\chi_{g}$ are both non-zero. The multiplier system of $H_{g}^{(\ell)}$ may be

described as follows in the case that $\overline{\chi}_{g}\chi_{g}=0.$

Define $v^{(\ell)}=\ell+2$ in case $\ell$ is odd $(i.e. \ell\in\{3,5,7,13\})$ , and set $v^{(\ell)}=\ell-1$ when $\ell$ is even
$(i.e. \ell\in\{2,4\})$ . Let $\sigma^{(\ell)}$ denote the inverse of the multiplier system of the cusp form $S\ell=(S_{\ell,r})$

100



UMBRAL MOONSHINE AND LINEAR CODES

and define $\psi_{n|h}^{(\ell)}$ : $\Gamma_{0}(n)arrow GL_{l-1}(\mathbb{C})$ for positive integers $n$ and $h$ by setting

$\psi_{n|h}^{(\ell)}(\begin{array}{ll}a bc d\end{array})= e(-v^{(\ell)}\frac{cd}{nh})\sigma^{(\ell)}(\begin{array}{ll}a bc d\end{array})$ (3.4)

in case $h$ divides $n$ , and otherwise

$\psi_{n|h}^{(\ell)}(\begin{array}{ll}a bc d\end{array})= e(-v^{(\ell)}\frac{cd}{nh}\frac{(n,h)}{n})\sigma^{(\ell)}(\begin{array}{ll}a bc d\end{array})J^{c(d+1)/n}K^{c/n}$ (3.5)

where $J$ is the diagonal matrix $J=$ diag$(1, -1,1, \cdots)$ with alternating $\pm 1$ along the diagonal,
and $K$ is the “reverse shuffle” permutation matrix corresponding to the permutation

$(1, \ell-1)(2,\ell-2)(3, \ell-3) \cdots$ (3.6)

of the standard basis $\{e_{1}, \ldots, e\ell-1\}$ of $\mathbb{C}^{\ell-1}$ . Now the multiplier system of $H_{g}^{(\ell)}$ is given by $\psi_{n|h}^{(\ell)}$

for $n=n_{g}$ and $h=h_{g}=N_{g}/n_{g}$ when $\overline{\chi}_{g}\chi_{g}=0.$

Note that the factor $(n, h)/n$ can usually be ignored in practice, for there is just one case in
which $\overline{\chi}_{g}\chi_{g}=0$ and $h=h_{g}$ does not divide $n=n_{g}$ and $(n, h)\neq n$ ; viz., the caee that $\ell=3$

and $g\in G^{(3)}$ satisfies $\overline{\Pi}_{g}=2^{1}10^{1}$ and $\tilde{\Pi}_{g}=4^{1}20^{1}.$
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$\underline{\frac{Tabe5yp}{}\frac{[g]|1A2A2B2C3A6A5A10A4AB4CD12AB1:Charactersandcc1eshaesat\ell=5}{n_{g}|h_{g}|1|11|42|22|13|33|125|15|42|84|16|24}}$

$\frac{x_{g}\overline{x}_{g1_{6-6-22001-1000}^{66220011020}}}{\Pi_{g},\Pi_{g}-\sim 1_{1^{24}2^{12}2^{12}1^{8}2^{8}3^{2}6^{4}1^{4}5^{4}2^{2}10^{2}4^{6}1^{4}2^{2}4^{4}12^{2}}^{1^{6}1^{6}1^{2}2^{2}1^{2}2^{2}3^{2}3^{2}1^{1}5^{1}1^{1}5^{1}2^{3}1^{2}4^{1}6^{1}}}$

Table 6: Characters and cycle shapes at $\ell=7$

$[g] | IA 1A 2A 4A 3AB 6AB$

$\frac{g}{}\frac{n|h11|42|833|4\overline{\chi}_{g}44011\chi_{g}4-401-1}{\Pi_{g}-1^{4}1^{4}2^{2}1^{1}3^{1}1^{1}3^{1},\Pi_{g}24^{6}1^{6}3^{6}2^{3}6^{3}\sim}$

Table 7: Characters and cycle shapes at $\ell=13$

$[g]|1A 2A 4AB$

$\frac{}{}\frac{n_{g}|h_{g}|11|42|8\chi_{g}\overline{\chi}_{g1}2202-20}{\prod_{\sim\Pi_{g}}^{-}g1_{1^{24}2^{12}4^{6}}^{1^{2}1^{2}2^{1}}}$
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B Special Functions

The Dedekind $eta$ function, denoted $\eta(\tau)$ , is a holomorphic function on the upper half-plane
defined by the infinite product

$\eta(\tau)=q^{1/24}\prod_{n>0}(1-q^{n})$ ( $B$ .1)

where $q=e(\tau)=e^{2\pi i\tau}$ . It is a modular form of weight 1/2 for the modular group $SL_{2}(\mathbb{Z})$ with
multiplier $\epsilon$ : $SL_{2}(\mathbb{Z})arrow \mathbb{C}$ so that

$\eta(\gamma\tau)\epsilon(\gamma)j(\gamma, \tau)^{1/2}=\eta(\tau)$ ( $B$ .2)

for all $\gamma\in SL_{2}(\mathbb{Z})$ , where $j(\gamma, \tau)=(c\tau+d)^{-1}$ in case $(c, d)$ is the lower row of $\gamma.$

Setting $q=e(\tau)$ and $y=e(z)$ we use the following conventions for the four standard Jacobi
theta functions.

$\theta_{1}(\tau, z)=-iq^{1/8}y^{1/2}\prod_{n=1}^{\infty}(1-q^{n})(1-yq^{n})(1-y^{-1}q^{n-1})$

$\theta_{2}(\tau, z)=q^{1/8}y^{1/2}\prod_{n=1}^{\infty}(1-q^{n})(1+yq^{n})(1+y^{-1}q^{n-1})$

( $B$ .3)
$\theta_{3}(\tau, z)=\prod_{n=1}^{\infty}(1-q^{n})(1+yq^{n-1/2})(1+y^{-1}q^{n-1/2})$

$\theta_{4}(\tau, z)=\prod_{n=1}^{\infty}(1-q^{n})(1-yq^{n-1/2})(1-y^{-1}q^{n-1/2})$

We write $\mu(\tau, z)$ for the Appdl-Lerch sum defined by setting

$\mu(\tau, z)=\frac{-iy^{1/2}}{\theta_{1}(\tau,z)}\sum_{\ell\in \mathbb{Z}}\frac{(-1)^{\ell}y^{n}q^{\ell(\ell+1)/2}}{1-yq^{\ell}}$ . ( $B$ .4)
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