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Abstract

We consider the map $p$ between the sets of numerical semigroups sending a numerical
semigroup to the one whose genus is decreased by 1, We prove that the semigrop $p(H)$ ,
which is called the parent of $H$ , of a Weierstrass (resp. non-Weierstrass) numerical
semigroup $H$ is Weierstrass(resp. non-Weierstrass) in some cases.

1 Notations and terminologies
Let $\mathbb{N}_{0}$ be the additive monoid of non-negative integers. $A$ submonoid $H$ of $\mathbb{N}_{0}$ is called
a numerical $\mathcal{S}$ emigroup if the complement $\mathbb{N}_{0}\backslash H$ is finite. The cardinality of $\mathbb{N}_{0}\backslash H$ is
called the genus of $H$ , denoted by $g(H)$ . For a numerical semigroup $H$ we set

$m(H)= \min\{h\in H|h>0\},$

which is called the multiplicity of $H$ . In this case, the semigroup $H$ is called an m-
semigroup where we set $m=m(H)$ . For any $i$ with $1\leqq i\leqq m-1$ we set

$s_{i}= \min\{h\in H|h\equiv imod m\}.$

The set $S(H)=\{m, s_{1}, \ldots, s_{m-1}\}$ is called the standard basis for $H$ . We set

$s_{\max}= \max\{s_{i}|i=1, . . , , m-1\}.$

For a numerical semigroup $H$ we set

$c(H)= \min\{c\in \mathbb{N}_{0}|c+\mathbb{N}_{0}\subseteqq H\},$

which is called the conductor of $H$ . We note that $c(H)-1\not\in H$ . We set $p(H)=$
$H\cup\{c(H)-1\}$ , which is a numerical semigroup of genus $g(H)-1$ . The numerical
semigroup $p(H)$ is called the parent of $H.$

A curve means a complete non-singular irreducible algebraic curve over an alge-
braically closed field $k$ of characteritic $0$ . For a pointed curve $(C, P)$ we set

$H(P)=\{n\in \mathbb{N}_{0}|\exists f\in k(C)$ such that $(f)_{\infty}=nP\},$

where $k(C)$ is the field of rational functions on $C$ and $(f)_{\infty}$ denotes the polar divisor
of $f.$ $A$ numerical semigroup $H$ is said to be Weierstrass if there exists a pointed curve
$(C, P)$ with $H(P)=H.$

$\overline{lThis}$paper is an extended abstract and the details will appear elsewhere.
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2 The parents of non-Weierstrass semigroups

Let $H$ be a numerical semigroup. For any integer $m\geqq 2$ we set

$L_{m}(H)=\{l_{1}+\cdots+l_{\tau n}|l_{i}\in \mathbb{N}_{0}\backslash H$ , all $i\}.$

A numerical semigroup $H$ is said to be Buchweitz if there exists an integer $m$ such
that $\# L_{m}(H)\geqq(2m-1)(g(H)-1)+1$ . Buchweitz [1] showed that every Buchweitz
semigroup $H$ is non-Weierstrass. We showed the following in Lemma 4.2 of [5]:

Remark 2.1 Let $H$ be a primitive $n$ -semigroup, i. e., $2n> \max\{l|l\not\in H\}=c(H)-1,$

with $g(H)\geqq n+5$ . Let $\overline{H}$ be a primitive $2n$ -semigroup with

$\mathbb{N}_{0}\backslash \overline{H}=\{1, \ldots, 2n-1\}\cup\{2\ell_{n}, 2\ell_{n+1}, \ldots, 2\ell_{g(H)}\}\cup\{4n-3,4n-1\}$

where
$\mathbb{N}_{0}\backslash H=\{1, \ldots, n-1,\ell_{n}<\ldots<l_{g(H)}\}.$

Assume that $\# L_{2}(H)\geqq 3g(H)-2$ . Then we have

$\# L_{2}(\overline{H})\geqq 3g(\overline{H})-2$ and $\# L_{2}(p(\overline{H}))\geqq 3g(p(\overline{H}))-2.$

In Example 4.2 in [5] we give the following example:

Example 2. 1 Let $t$ and $n$ be integers with $t\geqq 5$ and $n\geqq 4t+1$ . Let $H$ be a primitive
$n$-semigroup whose complement $\mathbb{N}_{0}\backslash H$ is

$\{1, \ldots, n-1\}\cup\{2n-2t-1,2n-2t-1+2\cdot 1, \ldots, 2n-2t-1+2\cdot(t-2)\}\cup\{2n-2,2n-1\}.$

Then $H$ satisfies $\# L_{2}(H)=3g(H)-2$ . For example, if we set $t=5$ and $n=21$ , we
have

$\mathbb{N}_{0}\backslash H=\{1, \ldots 20\}\cup\{31,33,35,37,40,41\}.$

Example 2. 2 Let $H$ be as in the above example with $t=5$ and $n=21$ . Let $\overline{H}$ be

as in Remark 2.1. In fact, we have

$\overline{H}=\{1arrow 41\}\cup\{62,66,70,74,80,82\}\cup\{81,83\}$

and
$p(\overline{H})=\{1arrow 41\}\cup\{62,66,70,74,80,82\}\cup\{81\}.$

Then the semigroups fi and $p(\overline{H})$ are Buchweitz, hence non-Weierstrass,

Let $\tilde{H}$ be a non-Weierstrass numerical semigroup. We consider the sequence

$\tilde{H}arrow p(\tilde{H})arrow p^{2}(\tilde{H})arrow\cdotsarrow p^{g(\tilde{H})-8}(\tilde{H})$ .
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Since $g(p^{g(\tilde{H})-8}(\tilde{H}))=8,$ $p^{g(\tilde{H})-8}(\tilde{H}J$ is Weierstrass (see [8]). Hence, there exists $i$ with
$0\leqq i\leqq g(\tilde{H})-7$ such that $p^{i}(H)=H$ is non-Weierstrass and $p^{i+1}(\tilde{H})=p(H)$ is
Weierstrass. In fact, we have the following example with $i=0$ :

Example 2. 3 The numerical semigroup $H=\langle 8,12,8\ell+2,8\ell+6,$ $n,n+4\rangle$ with $\ell\geqq 2$

and odd $n\geqq 16\ell+19$ is non-Weierstrass (see [6]). The parent $p(H)=H+(n+8\ell-2)\mathbb{N}_{0}$

is Weierstrass (See [7]).

3 The parents of Weierstrass semigroups

Problem 3. 1 Let $H$ be a numerical semigroup. When are the numerical semigroups
$H$ and $p(H)$ Weierstrass?

Let $\mathbb{N}_{0}\backslash H=\{l_{1}, \ldots, l_{g(H)}\}$ . We set $w(H)= \sum_{i=1}^{g(H)}(l_{i}-i)$ , which is called the weight

of $H$ . Then it is well-known that $0 \leqq w(H)\leqq\frac{(g(H)-1)g(H)}{2}.$

Proposition 3.1 If $w(H)= \frac{(g(H)-1)g(H)}{2}$ , then $H$ and $p(H)$ are Weierstrass. $In$

fact, we have $H=\langle 2,2g(H)+1\rangle$ and $p(H)=\langle 2,2(g(H)-1)+1\rangle$ , which are Weierstrass.

We have the following:

Remark 3.20) If $w(H) \leqq\frac{g(H)}{2}$ , then $H$ is primitive (see [2]).
i $)$ If $H$ is primitive and $w(H)\leqq g(H)-2$ , then $H$ is Weierstrass (see [2]).
ii) If $H$ is primitive and $w(H)=g(H)-1$ , then $H$ is Weierstrass (see [3]).

Moreover, we see the following:

Lemma 3.3 i) If $0<w(H)\leqq g-1$ , then we have $w(p(H))\leqq w(H)-1.$

ii) If $w(H)\geqq g$ , then we have $w(p(H))\leqq w(H)-2.$

By Lemma 3.3and Remark3.2we get the following:

Proposition 3.4 i) If $w(H) \leqq\frac{g(H)}{2}$ , then $H$ and $p(H)$ are Weierstrass.
ii) If $w(H)\leqq g(H)-1$ and $H$ is primitive, then $H$ and $p(H)$ are Weierstrass.
iii) If $w(H)=g(H)$ and $H$ is primitive, then $p(H)$ is Weierstrass,

We note the following:

Remark 3.5 We have $g(H)+1\leqq c(H)\leqq 2g(H)$ .
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If $c(H)=g(H)+1$ , then we obtain

$H=\langle g(H)+1arrow 2g(H)+1\rangle$ and $p(H)=\langle g(H)arrow 2g(H)-1\rangle,$

which are Weiersrass. Hence, we get the following:

Proposition 3.6 If $c(H)=g(H)+1$ , then $H$ and $p(H)$ are Weierstrass.

Moreover, we can prove the following:

Theorem 3.7 If we have $c(H)=g(H)+2$, then $H$ and $p(H)$ are $Weierstras\mathcal{S}.$

Proof. Since $c(H)=g(H)+2$, we have $\mathbb{N}_{0}\backslash H\subset\{1arrow g(H)+1\}$ . Assume that
$2m(H)\leqq g(H)+1$ . Since we have $m(H),$ $2m(H)\not\in \mathbb{N}_{0}\backslash H$ , we get

$\mathbb{N}_{0}\backslash H\subseteqq_{e}\{1arrow g(H)+1\}\backslash \{m(H), 2m(H)\}$

which is a contradiction. Hence, we get $2m(H)>g(H)+1$ , i.e., $H$ is primitive. We
may assume that $g(H)\geqq 3$ . Hence, we have some $i\geqq 3$ such that $i\in H$ . In this case,
we obtain

$\mathbb{N}_{0}\backslash H=\{1, \ldots i-1, i+1, \ldots g(H)+1\}.$

We have $w(H)=g(H)+1-i\leqq g(H)-2$ . By Remark 3.2 i), $H$ is Weierstrass.
Moreover, we have

$\mathbb{N}_{0}\backslash p(H)=\{1, \ldots i-1, i+1, \ldots g(H)\}.$

By the same method as in the above we can show that $p(H)$ is Weierstrass, $\square$

Problem 3. 2 Let $H$ be a Weierstrass numerical semigroup. Then is the numerical
semigroup $p(H)$ also Weierstrass?

Using the standard method constructing a double covering we can show the following
theorem:

Theorem 3.8 Let $c(H)=2g(H),$ $i.e_{Z}H$ is symmetric. If $g(H)\geqq 6g(d_{2}(H))+4$ and
$H$ is Weierstrass, then $p(H)$ is also Weierstrass.

We set
$d_{2}(H)=$ { $\frac{h}{2}|h\in H$ which is even},

which is also a numerical semigroup. If $\pi$ : $Carrow C’$ is a double covering with a
ramification point $P$ , then we have $H(\pi(P))=d_{2}(H(P))$ . We set

$n(H)= \min\{h\in H|h$ is odd $\}.$

Remark 3.9 Assume that $g(H)\geqq 6g(d_{2}(H))+4.$

i $)$ We have
$g’+ \frac{n-1}{2}\leqq g(H)\leqq 2g’+\frac{n-1}{2}$

where we set $g’=g(d_{2}(H))$ and $n=n(H)$ (see [4]).
ii) If $H$ is Weierstrass, then so is $d_{2}(H)$ (see [9]).
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Theorem 3.10 Let $g(H)\geqq 6g(d_{2}(H))+4$ . Assume that $g(H)=2g(d_{2}(H))+ \frac{n-1}{2}$

where we set $n=n(H)$ . In this case, $H=2d_{2}(H)+n\mathbb{N}_{0}$ . If $H$ is Weierstrass, then so
is $p(H)$ .

Proof. We have $p(H)=2d_{2}(H)+n\mathbb{N}_{0}+(n+2(s_{\max}-m))\mathbb{N}_{0}$ . Since $d_{2}(p(H))=d_{2}(H)$

is Weierstrass by Remark 3.9 ii), $p(H)$ is Weierstrass (see Proposiiton 2.4 in [6]). $\square$

By a similar method to the proof of Proposiiton 2.4 in [6] we can prove the following:

Theorem 3.11 Let $g(H)\geqq 6g(d_{2}(H))+4$ . Assume that $H\not\supset n+2(s_{\max}-m)$ where
we set $n=n(H)$ . If $H$ is Weierstrass, then so is $p(H)$ .

Moreover, we get the following:

Theorem 3.12 We set $\mathbb{N}_{0}\backslash d_{2}(H)=\{l_{1}<\cdots<l_{g’}\}$ where $g’=g(d_{2}(H))$ . Let $H_{i}=$

$2d_{2}(H)+\langle n,$ $n+2l_{g’},$ $n+2l_{g’-1},$ $\ldots,$
$n+2l_{g’-i}\rangle$ where we set $n=n(H)$ . Assume that

$g(H)\geqq 6g(d_{2}(H))+4$ . If $H=2d_{2}(H)+n\mathbb{N}_{0}$ is Weierstrass, then so is $H_{i}$ for any $i$

with $0\leqq i\leqq g’-1.$

Using Theorems 3.11 and 3.12 we get the following:

Corollary 3.13 Let $g(H)\geqq 6g(d_{2}(H))+4$ . Assume that $g(H)=2g(d_{2}(H))+ \frac{n-1}{2}-1.$

If $H$ is Weierstrass, then so is $p(H)$ .

Proof. By the assumption $H=2d_{2}(H)+\langle n,$ $n+2(s_{i}-m)\rangle$ for some $i$ with $s_{i}+s_{j}\not\in$

$S(d_{2}(H))$ , all $j$ (see [6]). If $s_{i}\neq s_{\max}$ , then by Theorem 3.11 we get the result. If
$s_{i}=s_{\max}$ , then by Theorem 3.12 we get the result. $\square$

By Proposition 2..4 in [4] we have the following:

Remark 3.14 Let $n\geqq 4g(d_{2}(H))+1$ where we set $n=n(H)$ . Assume that $g(H)=$

$g(d_{2}(H))+ \frac{n-1}{2}$ . In this case, $H=2d_{2}(H)+\langle n,$ $n+2,$ $\ldots,$
$n+2(m(d_{2}(H))-1)\rangle$ . If

$d_{2}(H)$ is Weierstrass, then so is $H.$

By Remarks 3.14 and 3.9 ii) we get the following:

Proposition 3.15 Let $g(H)\geqq 6g(d_{2}(H))+4$ . Assume that $g(H)=g(d_{2}(H))+ \frac{n-1}{2}+$

$1$ where we set $n=n(H)$ . If $H$ is Weierstrass, then so is $p(H)$ .

Proposition 3.16 Let $g(H)\geqq 6g(d_{2}(H))+4$ . Assume that $g(H)=g(d_{2}(H))+ \frac{n-1}{2}$

where we set $n=n(H)$ . If $H$ is Weierstrass, then so is $p(H)$ .

Proof We have $n(p(H))=n-1$ . Hence, by Remarks 3.14 and 3.9 ii) we get the result.
$\square$
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