# Locally freely productable groups and the primitivity of their group rings

Tsunekazu Nishinaka \* Department of Budiness Administration Okayama Shoka University

Let R be a ring with the identity element. R is (right) primitive provided there exists a faithful irreducible (right) R-module. A group G is LFP(locally freely productable) provided for each finitely generated subgroup  $H = \langle g_1, \dots, g_n \rangle$  of G, either H is a non-trivial free products of groups both of which are not isomorphic to  $\mathbb{Z}_2$  or there exists an element  $x \in G$  with  $x \neq 1$  such that  $H * \langle x \rangle$  is free product. In this note, we shall introduce the primitivity of group rings of LFP groups. And as a result, we state that every group ring of a one-relator group with torsion is primitive. In order to prove primitivity of group rings, we shall need the graph theoretic approach used in [5] which extends the Formanek's method in [3].

#### 1 Graph theoretic approach

Let KG be the group ring of a group G over a field K, and let  $a = \sum_{i=1}^{m} \alpha_i f_i$ and  $b = \sum_{i=1}^{n} \beta_i g_i$  be in KG ( $\alpha_i \neq 0, \beta_i \neq 0$ ). If ab = 0 then for each  $f_i g_j$ , there exists  $f_p g_q$  such that  $f_i g_j = f_p g_q$ . Suppose that the following k equations hold;  $f_1 g_1 = f_2 g_2, f_3 g_2 = f_4 g_3, \dots, f_{2k-3} g_{k-1} = f_{2k-2} g_k$  and  $f_{2k-1} g_k = f_{2k} g_1$ . Then we can regard the above equations as forming a kind of cycle, and they imply  $f_1^{-1} f_2 \cdots f_{2k-1}^{-1} f_{2k} = 1$ . That is, the above equations give us a information on supports of a. We can use this idea for a more general case;  $a_1 b_1 + \cdots + a_n b_n \in K$ for  $a_i, b_i \in KG$  with  $a_i = \sum \alpha_{ij} f_{ij}$  and  $b_i = \sum \beta_{ik} g_{ik}$ . In order to do this, regarding the elements  $f_{ij} g_{ik}$  appeared in  $a_i b_i$  as vertices and the equalities of their elements as edges, we use a graph-theoretic method.

Throughout this section,  $\mathcal{G} = (V, E)$  denotes a simple graph; a finite undirected graph which has no multiple edges or loops, where V is the set of vertices and E is the set of edges. A finite sequence  $v_0e_1v_1\cdots e_pv_p$  whose terms are alternately elements  $e_q$ 's in E and  $v_q$ 's in V is called a path of length p in  $\mathcal{G}$  if  $v_{q-1}v_q = e_q \in E$ and  $v_q \neq v_{q'}$  for any  $q, q' \in \{0, 1, \dots, p\}$  with  $q \neq q'$ ; simply denoted by  $v_0v_1\cdots v_p$ . Two vertices v and w of  $\mathcal{G}$  are said to be connected if there exists a path from v to w in  $\mathcal{G}$ . Connection is an equivalence relation on V, and so there exists a decomposition of V into subsets  $C_i$ 's  $(1 \leq i \leq m)$  for some m > 0 such that  $v, w \in V$  are connected if and only if both v and w belong to the same set  $C_i$ .

<sup>\*</sup>Partially supported by Grants-in-Aid for Sientific Research under grant no. 23540063

The subgraph generated by  $C_i$  is called a (connected) component of  $\mathcal{G}$ . Any graph is a disjoint union of components.

**Definition 1.1** Let  $\mathcal{G} = (V, E)$  and  $\mathcal{H} = (V, F)$  be simple graphs with the same vertex set V. For  $v \in V$ , let U(v) be the set consisting of all neighbours of v in  $\mathcal{H}$  and v itself:  $U(v) = \{w \in V \mid vw \in F\} \cup \{v\}$ . A triple (V, E, F) is an SR-graph (for a sprint relay like graph) if it satisfies the following conditions:

- (i)  $\mathcal{G}$  is a clique graph; thus  $uv, vw \in E$  implies  $uw \in E$ .
- (ii) If C is a component of  $\mathcal{G}$  and  $v, w \in C$  with  $v \neq w$ , then  $U(v) \cap U(w) = \emptyset$ .

If  $\mathcal{G}$  has no isolated vertices, that is, if  $v \in V$  then  $vw \in E$  for some  $w \in V$ , then SR-graph (V, E, F) is called a proper SR-graph.

Fig 1 shows an example of an SR-graph, in which edges in E and F are respectively denoted by solid lines and dotted lines. In what follows, solid lines and dotted lines denote edges in E and F, respectively. In the above definition, the condition (i) means that every component of  $\mathcal{G}$  is a complete graph, and (ii) does that each U(v) has at most one vertex from each component of  $\mathcal{G}$ . Hence, under the assumption (i), (ii) is equivalent to the condition that if  $w, u \in U(v)$ then  $wv \notin E$ . That is, (i) and (ii) implies that there exists no subgraph of types appeared in Fig 2.

We call U(v) the SR-neighbour set of  $v \in V$ , and set  $\mathfrak{U}(V) = \{U(v) \mid v \in V\}$ . For  $v, w \in V$  with  $v \neq w$ , it may happen that U(v) = U(w), and so  $|\mathfrak{U}(V)| \leq |V|$  generally. Let  $\mathcal{S} = (V, E, F)$  be an SR-graph. We say  $\mathcal{S}$  is connected if the graph  $(V, E \cup F)$  in which there is no distinction between E and F is connected.



Fig 1. An example of an SR-graph: Solid lines are edges in E and dotted lines are edges in F. Sequences  $(e_i, f_i, e_s, f_y, e_s, f_d, e_i)$ ,  $(e_i, f_x, e_y, f_y, e_x, f_d)$  and  $(e_i, f_x, e_y, f_d)$  are SR-cycles.



Fig 2. Prohibits : It is not allowed to exist the above two subgraphs in an SR-graph.

**Definition 1.2** Let S = (V, E, F) be an SR-graph and p > 1. Then a path  $v_1w_1v_2w_2, \dots, v_pw_pv_{p+1}$  in the graph  $(V, E \cup F)$  is called a SR-path of length p in S if either  $v_qw_q \in E$  and  $w_qv_{q+1} \in F$  or  $v_qw_q \in F$  and  $w_qv_{q+1} \in E$  for  $1 \leq q \leq p$ ; simply denoted by  $(e_1, f_1, \dots, e_p, f_p)$  or  $(f_1, e_1, \dots, f_p, e_p)$ , respectively, where  $e_q \in E$  and  $f_q \in F$ . If, in addition, it is a cycle in  $(V, E \cup F)$ , that is,  $v_{p+1} = v_1$ , then it is an SR-cycle of length p in S.

That is, for  $e_q \in E$  and  $f_q \in F$ , an SR-cycle  $(e_1, f_1, \dots, e_p, f_p)$  means that it is a cycle in  $(V, E \cup F)$  which consists alternately solid lines and dotted lines (see Fig1).

In what follows, let S = (V, E, F) be an SR-graph with  $\mathcal{G} = (V, E)$  and  $\mathcal{H} = (V, F)$ .  $\mathfrak{C}(V)$  denotes the set of components of V on  $\mathcal{H} = (V, F)$ . In addition, we set  $\mathfrak{N}(S) = \{U \in \mathfrak{U}(V) \mid |U| = 1\}, \mathfrak{M}(S) = \{U \in \mathfrak{U}(V) \mid |U| = 2\}$  and  $\mathfrak{L}(S) = \{U \in \mathfrak{U}(V) \mid |U| > 2\}.$ 

We would like to know when S has an SR-cycle. We first consider the somewhat trivial case of S in which  $\mathcal{H} = (V, F)$  is also a clique graph. In this case,  $\mathfrak{U}(V)$  coincides with  $\mathfrak{C}(V)$ . We have the next theorem:

**Theorem 1.3** Let S = (V, E, F) be an SR-graph and let  $\omega_E$  and  $\omega_F$  be, respectively, the number of components of  $\mathcal{G} = (V, E)$  and  $\mathcal{H} = (V, F)$ . Suppose that  $\mathcal{H} = (V, F)$  is a clique graph and S is connected. Then S has an SR-cycle if and only if  $\omega_E + \omega_F < |V| + 1$ .

In particular, if S is proper and  $|\mathfrak{N}(S)| \leq |\mathfrak{L}(S)|$  then S has an SR-cycle.

In the above theorem, every component is a complete graph. We next consider the case that every component  $\mathcal{G}_i = (V_i, E_i)$  is a complete k-partite graph  $K_{m_1,\dots,m_k}$ . Let  $\mu(V_i)$  be the maximum number in  $\{m_1,\dots,m_k\}$ . For  $v \in V$ , let  $d_{\mathcal{G}}(v)$  be the degree of v in  $\mathcal{G}$ ; thus the number of edges of  $\mathcal{G}$  incident with v. I(V) denotes the set of isolated vertices in  $\mathcal{G}$ ; thus  $I(V) = \{v \in V \mid d_{\mathcal{G}}(v) = 0\}$ . Then we have

**Theorem 1.4** Let S = (V, E, F) be an SR-graph and  $\mathfrak{C}(V) = \{V_1, \dots, V_n\}$  with n > 1. Suppose that every component  $\mathcal{G}_i = (V_i, E_i)$  of  $\mathcal{G}$  is a complete k-partite graph. If  $|V_i| > 2\mu(V_i)$  for each  $i \in \{1, \dots, n\}$  and  $|I(V)| \leq n$  then S has an SR-cycle.

We can prove two theorems above by a similar argument in [5].

## 2 LFP groups

**Definition 2.1** A group G is LFP provided for each finitely generated subgroup  $H = \langle g_1, \dots, g_n \rangle$  of G, either H is a non-trivial free products of groups both of which are not isomorphic to  $\mathbb{Z}_2$  or there exists an element  $x \in G$  with  $x \neq 1$  such that  $H * \langle x \rangle$  is free product.

It is obvious that a locally free group is LFP and so is free group. Moreover, by the Kurosh Subgroup Theorem for free products, we can see that the non-trivial free product A \* B of groups A and B is LFP provided both of A and B are not isomorphic to  $\mathbb{Z}_2$ . By making use of theorems in the previous section, we can state the following theorem:

**Theorem 2.2** If G is LFP, then the group ring KG is primitive for any field K.

# 3 Primitivity of group rings of one-relator groups with torsion

Let  $\langle X \rangle$  be the free group with the base X. For a word R in  $\langle X \rangle$ ,  $G = \langle X | R \rangle$  denotes the one-relator group with a generating set X of G and a defining relation R = 1. If W is a cyclically reduced word in  $\langle X \rangle$  and  $R = W^n$  (n > 1), then G is called a one-relator group with torsion. The class of one-relator groups with torsion has been well studied, in particular, on residual finiteness (for instance, [2], [7], [8], [1]).

In this section, by making use of the Theorem 2.2, we shall show the next theorem:

**Theorem 3.1** The group ring KG of  $G = \langle X | W^n \rangle$  over a field K is primitive provided n > 1 and |X| > 1, where W is a cyclically reduced word in  $\langle X \rangle$ .

In what follows, let  $F = \langle X \rangle$  be the free group with the base  $X = \{x_1, \dots, x_m\}$ .  $\langle g_1, \dots, g_m \rangle_G$  denotes the subgroup of a group G generated by  $g_1, \dots, g_m \in G$ . If  $W \in F$ , then  $\mathcal{N}_F(W)$  denotes the normal closure of W in F. For a cyclically reduced word W,  $\mathcal{W}_F(W)$  denotes the set of all cyclically reduced conjugates of both W and  $W^{-1}$ . If  $W_i, \dots, W_t$  are reduced words in F and  $W = W_i \cdots W_t$  is also reduced, that is, there is no cancellation in forming the product  $W_i \cdots W_t$ , then we write  $W \equiv W_i \cdots W_t$ .

**Lemma 3.2** Let m, n > 1 and  $W_0 = W_0(x_1, \dots, x_m)$  be a cyclically reduced word in F which involves all  $x_i$ 's in X. Suppose that  $V \in \mathcal{N}_F(R_0)$ , where  $R_0 = W_0^n$ . If  $V \equiv V_1V_2$ , then every generator in X appears either in  $V_1$  or in  $V_2$ .

**Proof.** By the well-known the Newman-Gurevich Spelling Theorem([6], cf. [4]), V contains a subword  $S^{n-1}S_0$ , where  $S \equiv S_0S_1 \in \mathcal{W}_F(W_0)$  and every generator in X appears in  $S_0$ . Hence either  $V_1$  or  $V_2$  contains the subword  $S_0$ , and the assertion follows.

**Lemma 3.3** For m > 1, n > 1 and  $X = \{x_1, \dots, x_m\}$ , let  $G = \langle X | R \rangle$ , where  $R = W^n$  and W is a cyclically reduced words in the free group  $\langle X \rangle$  with the base X. If  $S, T \subseteq X$ , then  $\langle S \rangle_G \cap \langle T \rangle_G = \langle S \cap T \rangle_G$ .

**Proof.** It is obvious that  $\langle S \rangle_G \cap \langle T \rangle_G \supseteq \langle S \cap T \rangle_G$ . Suppose, to the contrary, that  $\langle S \rangle_G \cap \langle T \rangle_G \neq \langle S \cap T \rangle_G$ . Then there exist reduced words  $u = u(s, a, \dots, b)$ in  $\langle S \rangle \setminus \langle S \cap T \rangle$  and  $v = v(t, c, \dots, d)$  in  $\langle T \rangle \setminus \langle S \cap T \rangle$  such that  $uv \in \mathcal{N}_F(R)$ , where  $a, \dots, b \in S, c, \dots, d \in T, s \in S \setminus (S \cap T)$  and  $t \in T \setminus (S \cap T)$ . Let w be the reduced word for uv, say  $w \equiv u_1v_1$ , where  $u \equiv u_1u_2$  and  $v \equiv u_2^{-1}v_1$ . Then  $w \in \mathcal{N}_F(R)$ , however,  $u_1$  involves s but not t, and  $v_1$  involves t but not s, which cntradicts the assertion of Lemma 3.2.

Let  $X = \{a_i, b_i, \dots \mid i \in \mathbb{Z}\}$  and  $W_i$   $(i \in \mathbb{Z})$  cyclically reduced words in the free group  $\langle X \rangle$  with the base X such that

$$W_i = W_i(a_{j_{a1}+i}, \cdots, a_{j_{as}+i}, b_{j_{b1}+i}, \cdots, b_{j_{bt}+i}, \cdots),$$

where  $j_{a1} < j_{a2} < \cdots < j_{as}$  and  $j_{b1} < j_{b2} < \cdots < j_{bt}$  and  $\cdots$ . Let  $\alpha_*, \beta_*, \cdots$ be the minimum subscripts on  $a, b, \cdots$  occurring in  $W_0$ , respectively, and  $\alpha^*, \beta^*, \cdots$ be the maximum subscript on  $a, b, \cdots$  occurring in  $W_0$ , respectively. That is,  $\alpha_* = j_{a1}, \alpha^* = j_{as}$  and  $\beta_* = j_{b1}, \beta^* = j_{bt}$  and  $\cdots$ . We set  $A = \{a_i \mid i \in \mathbb{Z}\}, B = \{b_i \mid i \in \mathbb{Z}\}, \cdots$ ; in this case,  $X = A \cup B \cup \cdots$ .

Let

$$G_{\infty} = \langle X \mid R_i (i \in \mathbb{Z}) \rangle \text{ with } R_i = W_i^n (n > 1).$$
(1)

In  $G_{\infty}$ , we set subgroups  $Q_t$  and  $P_t$  of  $G_{\infty}$  for all  $t \in \mathbb{Z}$ , as follows:

For 
$$N \neq 0$$
,  
 $Q_t = \langle a_{i+t}, b_{j+t}, \cdots \mid \alpha_* \leq i \leq \alpha^*, \ \beta_* \leq j \leq \beta^*, \cdots \rangle_{G_{\infty}},$   
 $P_t = \langle a_{i+t}, b_{j+t}, \cdots \mid \alpha_* \leq i \leq \alpha^* - 1, \ \beta_* \leq j \leq \beta^* - 1, \cdots \rangle_{G_{\infty}}.$   
For  $N = 0$ ,  
 $Q_t = \langle a_{\alpha^*+t}, b_{\beta^*+t}, \cdots \rangle_{G_{\infty}},$   
 $P_t = 1.$ 

$$(2)$$

where N is the maximum number in  $\{\alpha^* - \alpha_*, \beta^* - \beta_*, \cdots\}$ .

Then  $P_t \leq Q_t$  and  $Q_t \simeq \langle a_{\alpha_*+t}, \cdots, a_{\alpha^*+t}, b_{\beta_*+t}, \cdots, b_{\beta^*+t}, \cdots | R_t \rangle$ . By the Magnus' method for Freiheitssatz, we may identify  $G_{\infty}$  as the union of the chain of the following  $G_i$ 's:

$$G_{\infty} = \bigcup_{i=0}^{\infty} G_{i}, \text{ where} G_{0} = Q_{0}, \quad G_{2i} = Q_{-i} \ast_{P_{-i+1}} G_{2i-1} \text{ and } G_{2i+1} = G_{2i} \ast_{P_{i+1}} Q_{i+1}.$$
(3)

Generally, for each  $k \in \mathbb{Z}$ , set

$$G_0 = Q_k, \ G_{2i} = Q_{-i+k} *_{P_{-i+k+1}} G_{2i-1} \text{ and } G_{2i+1} = G_{2i} *_{P_{i+k+1}} Q_{i+k+1}, \quad (4)$$

and we can also identify  $G_{\infty}$  as  $\bigcup_{i=0}^{\infty} G_i$ . Then we have

$$\begin{array}{ll}
G_{0} &= Q_{k} = \langle a_{\alpha_{*}+k}, \cdots, a_{\alpha^{*}+k}, b_{\beta_{*}+k}, \cdots, b_{\beta^{*}+k}, \cdots \rangle_{G_{\infty}} \\
G_{2i} &= \langle a_{\alpha_{*}+k-i}, \cdots, a_{\alpha^{*}+k+i}, b_{\beta_{*}+k-i}, \cdots, b_{\beta^{*}+k+i}, \cdots \rangle_{G_{\infty}} \\
G_{2i+1} &= \langle a_{\alpha_{*}+k-i}, \cdots, a_{\alpha^{*}+k+i+1}, b_{\beta_{*}+k-i}, \cdots, b_{\beta^{*}+k+i+1}, \cdots \rangle_{G_{\infty}}
\end{array} \tag{5}$$

**Lemma 3.4** Let H be a subgroup of  $G_{\infty}$  generated by a finite subset Y of X; thus  $H = \langle Y \rangle_{G_{\infty}}$ . Set  $I = \{i \in \mathbb{Z} \mid a_i \in A \cap Y \text{ or } \cdots \text{ or } b_i \in B \cap Y\}$ , and let  $i^*$  (resp.  $i_*$ ) be the maximum number (resp. the minimum number) in I and  $M_*$ (resp.  $m^*$ ) the maximum number (resp. the minimum number) in  $\{\alpha_*, \beta_*, \cdots\}$ (resp.  $\{\alpha^*, \beta^*, \cdots\}$ ).

If N < t and  $N + i^* - i_* + M_* - m^* < t$ , then  $H \cap P_t = 1$ .

**Proof.** If N = 0 then the assertion of the Lemma is trivial, and so we suppose  $N \neq 0$ , and also suppose, to the contrary, there exists  $t \in \mathbb{Z}$  such that

$$N < t, N + i^* - i_* + M_* - m^* < t \text{ and } H \cap P_t \neq 1.$$

If we set  $k = \mu = i_* - M_*$  in (4) just above this lemma, then

$$G_0 = Q_\mu$$
, and  $G_{2i} = Q_{-i+\mu} *_{P_{-i+\mu+1}} G_{2i-1}$ .

Moreover, let  $\tau$  be the largest number between 0 and  $i^* - \mu - m^*$ . If we set  $i = \tau$  in the above, then we can see that  $G_{2\tau} \supseteq H$  and  $\alpha^* + \tau < \alpha_* + t$ ,  $\beta^* + \tau < \beta_* + t$ ,  $\cdots$ .

In fact, if  $\tau = 0$ , then  $\alpha^* + \tau = \alpha^* \leq \alpha_* + N < \alpha_* + t$ , because of N < t. On the other hand, if  $\tau \neq 0$ , then  $\tau = i^* - (i_* - M_*) - m^*$ , and so,

 $\alpha^* + \tau \le \alpha_* + N + \tau = \alpha_* + N + i^* - i_* + M_* - m^* < \alpha_* + t,$ 

because of  $N + i^* - i_* + M_* - m^* < t$ . We similarly obtain that  $\beta^* + \tau < \beta_* + t$ , ....

Next, we shall show  $G_{2\tau} \supseteq H$ . To see this, since

$$G_{2\tau} = \langle a_{\alpha_* + \mu - \tau}, \cdots, a_{\alpha^* + \mu + \tau}, b_{\beta_* + \mu - \tau}, \cdots, b_{\beta^* + \mu + \tau}, \cdots \rangle_{G_{\infty}},$$

it sufficies to show that  $\alpha_* + \mu - \tau \leq i_*, \beta_* + \mu - \tau \leq i_*, \cdots$ , and  $\alpha^* + \mu + \tau \geq i^*, \beta^* + \mu + \tau \geq i_*, \cdots$ . Note that  $\mu + \tau = i^* - m^*$  if  $\tau \neq 0$  and  $\mu \geq i^* - m^*$  if  $\tau = 0$ . In fact, if  $\tau \neq 0$ , then  $\mu + \tau = \mu + i^* - \mu - m^* = i^* - m^*$ , and if  $\tau = 0$ , then  $i^* - \mu - m^* \leq 0$  and so  $i^* - m^* \leq \mu$ .

Since  $\tau \ge 0$  and  $\alpha_* - M_* \le 0$  by definitions, we have

$$\alpha_* + \mu - \tau \le \alpha_* + \mu = i_* + \alpha_* - M_* \le i_*.$$

We similarly obtain that  $\beta_* + \mu - \tau \leq i_*, \cdots$ . Moreover, as mentioned above, if  $\tau = 0$ , then  $\mu \geq i^* - m^*$ , and so we have that

$$\alpha^* + \mu + \tau \ge \alpha^* + i^* - m^* \ge \alpha^* + i^* - \alpha^* = i^*$$

because  $m^* \leq \alpha^*$ . If  $\tau \neq 0$ , since  $\mu + \tau = i^* - m^*$ , we also have

$$\alpha^* + \mu + \tau = \alpha^* + i^* - m^* \ge \alpha^* + i^* - \alpha^* = i^*.$$

We have thus seen  $\alpha^* + \mu + \tau \ge i^*$  for either cases, and similarly we have  $\beta^* + \mu + \tau \ge i^*$ ,  $\cdots$ , as desired.

In the above, replacing  $\alpha_* + \mu$  with  $\alpha_*$ ,  $\alpha^* + \mu$  with  $\alpha^*$ ,  $\beta_* + \mu$  with  $\beta_*$ ,  $\cdots$ , and  $\tau$  with k, we may assume that  $G_{\infty} = \bigcup_{i=0}^{\infty} G_i$  with the presentation (4) and there exists  $k \ge 0$  such that  $G_{2k} \supseteq H$  and

$$\alpha^* + k < \alpha_* + t, \ \beta^* + k < \beta_* + t, \ \cdots$$
(6)

Now, let  $n = \beta^* - \beta_*$ , and we may here assume  $N = \alpha^* - \alpha_* \ge \cdots \ge \beta^* - \beta_*$ . For  $j \in \{0, 1, \cdots, N\}$ , we define  $P_t^{(j)}$ 's so as to satisfy

$$P_t = P_t^{(N)} \supset P_t^{(1)} \supset \dots \supset P_t^{(0)} = 1$$

as follows:

$$P_{t} = P_{t}^{(N)} = \langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-1}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-1}, \cdots \rangle_{G_{\infty}}$$

$$P_{t}^{(N-1)} = \langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-2}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-2}, \cdots \rangle_{G_{\infty}},$$

$$\vdots$$

$$P_{t}^{(N-n+1)} = \langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-n}, b_{\beta_{*}+t}, \cdots \rangle_{G_{\infty}},$$

$$P_{t}^{(N-n)} = \langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-n-1}, \cdots \rangle_{G_{\infty}},$$

$$\vdots$$

$$P_{t}^{(1)} = \langle a_{\alpha_{*}+t} \rangle_{G_{\infty}},$$

$$P_{t}^{(0)} = 1.$$

By our assumption,  $H \cap P_t \neq 1$ , that is, there exists  $u \in H \cap P_t$  such that  $u \neq 1$ . Then there exists  $l \in \{0, 1, \dots, N-1\}$  such that  $u \in P_t^{(N-l)}$  and  $u \notin P_t^{(N-l-1)}$ . We shall show that this is impossible. In fact, we shall show that  $u \in P_t^{(N-l-1)}$  implies  $u \in P_t^{(N-l-1)}$ , and this completes the proof of the Lemma.

By (6),  $\alpha^* + k \leq \alpha_* + t - 1$ , and so  $k \leq -N + t - 1 \leq -l + t - 2$ , which implies

$$H \subseteq G_{2(t-l-2)} \tag{7}$$

because  $H \subseteq G_{2k} \subseteq G_{2(t-l-2)}$ . By way of construction of  $P_t^{(N-l)}$ , we have

$$P_t^{(N-l)} = \langle a_{\alpha_*+t}, \cdots, a_{\alpha^*+t-l-1}, b_{\beta_*+t}, \cdots, b'_{\beta^*+t-l-1}, \cdots \rangle_{G_{\infty}},$$

where  $b'_{\beta^*+t-l-1} = b_{\beta^*+t-l-1}$  if l < n and  $b'_{\beta^*+t-l-1} = 1$  if  $l \ge n$ . By (2), we also have

$$Q_{t-l-1} = \langle a_{\alpha_*+t-l-1}, \cdots, a_{\alpha^*+t-l-1}, b_{\beta_*+t-l-1}, \cdots, b_{\beta^*+t-l-1}, \cdots \rangle_{G_{\infty}},$$

and therefore we see that  $P_t^{(N-l)} \subseteq Q_{t-l-1}$ . Combining this with (7), it follows that  $u \in G_{2(t-l-2)} \cap Q_{t-l-1}$ . Since  $G_{2(t-l-2)} \cap Q_{t-l-1} = P_{t-l-1}$ , we have  $u \in P_{t-l-1}$ , and thus  $u \in P_{t-l-1} \cap P_t^{(N-l)}$ .

On the other hand,  $P_{t-l-1} = \langle S \rangle_{Q_{t-l-1}}$  and  $P_t^{(N-l)} = \langle T \rangle_{Q_{t-l-1}}$  in  $Q_{t-l-1}$ , where

$$S = \{a_{\alpha_*+t-l-1}, \cdots, a_{\alpha^*+t-l-2}, b_{\beta_*+t-l-1}, \cdots, b_{\beta^*+t-l-2}, \cdots\}$$
  
and 
$$T = \{a_{\alpha_*+t}, \cdots, a_{\alpha^*+t-l-1}, b_{\beta_*+t}, \cdots, b'_{\beta^*+t-l-1}, \cdots\}.$$

Then it is easily seen that  $\langle S \cap T \rangle_{Q_{t-l-1}} = P_t^{(N-l-1)}$ . We can here identify  $Q_{t-l-1}$  as the one-relator group with torsion, and therefore it follows form Lemma 3.3 that

$$u \in P_{t-l-1} \cap P_t^{(N-l)} = \langle S \rangle_{Q_{t-l-1}} \cap \langle T \rangle_{Q_{t-l-1}} = \langle S \cap T \rangle_{Q_{t-l-1}} = P_t^{(N-l-1)};$$

thus  $u \in P_t^{(N-l-1)}$ , as desired.

By the proof of the above Lemma, we have

**Corollary 3.5** If H be a subgroup of  $G_{\infty}$  generated by a finite subset Y of X, then there exists a positive integer t such that  $H \subseteq G_{2(t-1)}$  and  $H \cap P_t = 1$ .

**Lemma 3.6** If  $G_{\infty}$  and  $W_i$  are as in (1), then for each finite elements  $g_1, \dots, g_m$ in  $G_{\infty}$ , there exists an integer *i* such that  $\langle g_1, \dots, g_m, W_i \rangle_{G_{\infty}}$  is the free product  $\langle g_1, \dots, g_m \rangle_{G_{\infty}} * \langle W_i \rangle_{G_{\infty}}$ .

**Proof.** Let  $G_{\infty}$  be as in (3) and Y the set of generators which appear in  $g_i$ 's. By virtue of Corollary 3.5, for  $H = \langle Y \rangle_{G_{\infty}}$ , there exists t > 0 such that  $H \subseteq G_{2(t-1)}$  and  $H \cap P_t = 1$ .

Now, by (3),  $G_{2t-1} = G_{2(t-1)} *_{P_t} Q_t$ , where

$$Q_t = \langle a_{\alpha_*+t}, \cdots, a_{\alpha^*+t}, b_{\beta_*+t}, \cdots, b_{\beta^*+t}, \cdots \mid R_t \rangle,$$

and either  $P_t = \langle a_{i+t}, b_{j+t}, \cdots \mid \alpha_* \leq i \leq \alpha^* - 1, \ \beta_* \leq j \leq \beta^* - 1, \cdots \rangle_{G_{\infty}}$  or  $P_t = 1$ . We see then that  $W_t \in Q_t$ . As is well known,  $W_t^m \neq 1$  if  $1 \leq m < n$  because  $R_t = W_t^n$  and n > 1. Moreover, if  $W_t^m \in P_t$ , then  $(W_t^m)^n \neq 1$  because  $P_t$  is a free subgroup in  $Q_t$  by Freiheitssatz, which implies contradiction. Hence we have that  $\langle W_t \rangle \cap P_t = 1$ . Combining this with  $H \cap P_t = 1$ , we see that  $\langle Y, W_t \rangle_{G_{2t-1}} = \langle Y \rangle_{G_{2t-1}} * \langle W_t \rangle_{G_{2t-1}} = H * \langle W_t \rangle_{G_{\infty}}$ . Since  $\langle g_1, \cdots, g_m \rangle_{G_{\infty}} \subseteq H$ , we have that  $\langle g_1, \cdots, g_m, W_t \rangle_{G_{\infty}} = \langle g_1, \cdots, g_m \rangle_{G_{\infty}} * \langle W_t \rangle_{G_{\infty}}$ .

We are now in a position to prove Theorem 3.1.

**Proof of Theorem 3.1** If there exists  $x \in X$  such that W contains none of x or  $x^{-1}$ , then G is a non-trivial free product of groups both of which are not isomorphic to  $\mathbb{Z}_2$ . Hence we may assume that  $X = \{x_1, \dots, x_m\}$  (m > 1) and W contains either  $x_i$  or  $x_i^{-1}$  for all  $i \in \{1, \dots, m\}$ .

If W has no zero exponent sum  $\sigma_x(W)$  on x for all  $x \in X$ , say  $\sigma_{x_1}(W) = \alpha$ and  $\sigma_{x_2}(W) = \beta$ , then  $G \simeq \langle a^{\beta}, x_2, \cdots, x_m \mid R \rangle \subset E$ , by the Magnus' method for Freiheitssatz, where  $R = W^n(a^\beta, x_2, \dots, x_m)$  and  $E = \langle a, x_2, \dots, x_m | R \rangle$ . Let  $N = \mathcal{N}_F(x_2a^\alpha, x_3 \dots, x_m)$ , where  $F = \langle x_1, \dots, x_m \rangle$ . Then we have that  $N \supset \mathcal{N}_F(R)$  and  $N/\mathcal{N}_F(R) \simeq G_{\infty}$ , where  $G_{\infty}$  is as in (1), and so we may let  $G_{\infty} = N/\mathcal{N}_F(R)$ .

Let  $F_G = \langle a^{\beta}, x_2, \dots, x_m \rangle$  and  $H = (N \cap F_G) / \mathcal{N}_{F_G}(R)$ . Then we can easily see that H can be isomorphically embedded in  $G_{\infty}$  and that G is a cyclic extension of H. Since  $W_i \in H$ , it follows from Lemma 3.6 that H is LFP. Hence KH is primitive for any field K by Theorem 2.2. Since G/H is cyclic, by [9, Theorem 1], we have that KG is also primitive.

If W has a zero exponent sum  $\sigma_x(W)$  on x for some  $x \in X$ , say  $\sigma_{x_1}(W) = 0$ , then we set  $N = \mathcal{N}_F(x_2, x_3 \cdots, x_m)$ . Since  $N/\mathcal{N}_F(R) \simeq G_{\infty}$  and G is a cyclic extension of  $N/\mathcal{N}_F(R)$ , the result is similarly obtained as above. This completes the proof of the theorem.

### References

- [1] G. Baumslag C. F. Miller and D. Troeger, *Reflections on the residual finiteness* of one-relator groups, Groups. Geom. Dyn., 1(2007), 209-219
- [2] V. Egorov, The residual finiteness of certain one-relator groups, In Algebraic systems, Ivanov. Gos. Univ., Ivanovo, (1981), 100-121
- [3] E. Formanek, Group rings of free products are primitive, J. Algebra, 26(1973), 508-511
- [4] J. Howie and S. J. Pride, A spelling theorem for staggered generalized 2complexes, with applications, Invent. math., 76 (1984), 55-74
- [5] T. Nishinaka, Group rings of countable non-abelian locally free groups are primitive, Int. J. algebra and computation, 21(3) (2011), 409-431
- [6] Paul E. Schupp, A Strengthened Freiheitssatz, Math. Ann., 221(1976), 73-80.
- [7] Daniel T. Wise, The residual finiteness of positive one-relator groups, Comment. Math. Helv., 76(2)(2001), 314-338
- [8] Daniel T. Wise, Residual finiteness of quasi-positive one-relator groups, J. London Math. Soc., 66(2002), 334-350
- [9] A. E. Zalesskii, The group algebras of solvable groups, Izv. Akad. Nauk BSSR, ser Fiz. Mat., (1970), 13-21.