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Let $R$ be a ring with the identity element. $R$ is (right) primitive provided there exists a
faithful irreducible (right) $R$-module. $A$ group $G$ is LFP(locally freely productable) provided for
each finitely generated subgroup $H=\langle g_{1},$ $\cdots,g_{n}\rangle$ of $G$ , either $H$ is a non-trivial free products
of groups both of which are not isomorphic to $\mathbb{Z}_{2}$ or there exists an element $x\in G$ with $x\neq 1$

such that $H*\langle x\rangle$ is free product. In this note, we shall introduce the primitivity of group
rings of LFP groups. And as a result, we state that every group ring of a one-relator group
with torsion is primitive. In order to prove primitivity of group rings, we shall need the graph
theoretic approach used in [5] which extends the Formanek’s method in [3].

1 Graph theoretic approach

Let $KG$ be the group ring of a group $G$ over a field $K$ , and let $a=\Sigma_{i=1}^{m}\alpha_{i}f_{i}$

and $b= \sum_{i=1}^{n}\beta_{i}g_{i}$ be in $KG(\alpha_{i}\neq 0, \beta_{i}\neq 0)$ . If $ab=0$ then for each $f_{i}g_{j}$ , there
exists $f_{p}g_{q}$ such that $f_{i}g_{j}=f_{p}g_{q}$ . Suppose that the following $k$ equations hold;
$f_{1}g_{1}=f_{2}g_{2},$ $f_{3}g_{2}=f_{4}g_{3},$

$\cdots,$ $f_{2k-3}g_{k-1}=f_{2k-2}g_{k}$ and $f_{2k-1}g_{k}=f_{2k}g_{1}$ . Then
we can regard the above equations as forming a kind of cycle, and they imply
$f_{1}^{-1}f_{2}\cdots f_{2k-1}^{-1}f_{2k}=1$ . That is, the above equations give us a information on
supports of $a$ . We can use this idea for a more general case; $a_{1}b_{1}+\cdots+a_{n}b_{n}\in K$

for $a_{i},$ $b_{i}\in KG$ with $a_{i}=\Sigma\alpha_{ij}f_{ij}$ and $b_{i}= \sum\beta_{ik}g_{ik}$ . In order to do this, regarding
the elements $f_{ij}g_{ik}$ appeared in $a_{i}b_{i}$ as vertices and the equalities of their elements
as edges, we use a graph-theoretic method.

Throughout this section, $\mathcal{G}=(V, E)$ denotes a simple graph; a finite undirected
graph which has no multiple edges or loops, where $V$ is the set of vertices and $E$

is the set of edges. $A$ finite sequence $v_{0}e_{1}v_{1}\cdots e_{p}v_{p}$ whose terms are alternately
elements $e_{q}$ ’s in $E$ and $v_{q}$ ’s in $V$ is called a path of length $p$ in $\mathcal{G}$ if $v_{q-1}v_{q}=e_{q}\in E$

and $v_{q}\neq v_{q’}$ for any $q,$ $q’\in\{0,1, \cdots,p\}$ with $q\neq q’$ ; simply denoted by $v_{0}v_{1}\cdots v_{p}.$

Two vertices $v$ and $w$ of $\mathcal{G}$ are said to be connected if there exists a path from
$v$ to $w$ in $\mathcal{G}$ . Connection is an equivalence relation on $V$ , and so there exists a
decomposition of $V$ into subsets $C_{i}’ s(1\leq i\leq m)$ for some $m>0$ such that
$v,$ $w\in V$ are connected if and only if both $v$ and $w$ belong to the same set $C_{i}.$
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The subgraph generated by $C_{i}$ is called $a$ (connected) component of $\mathcal{G}$ . Any graph
is a disjoint union of components.

Definition 1.1 Let $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$ be simple graphs with the same
vertex set V. For $v\in V$ , let $U(v)$ be the set consisting of all neighbours of $v$ in $\mathcal{H}$

and $v$ itself: $U(v)=\{w\in V|vw\in F\}\cup\{v\}.$ $A$ triple $(V, E, F)$ is an $SR$-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(i) $\mathcal{G}$ is a clique graph; thus $uv,$ $vw\in E$ implies $uw\in E.$

(ii) If $C$ is a component of $\mathcal{G}$ and $v,$ $w\in C$ with $v\neq w$ , then $U(v)\cap U(w)=\emptyset.$

If $\mathcal{G}$ has no isolated vertices, that is, if $v\in V$ then $vw\in E$ for some $w\in V$ , then
$SR$-graph $(V, E, F)$ is called a proper $SR$-graph.

Fig 1 shows an example of an $SR$-graph, in which edges in $E$ and $F$ are re-
spectively denoted by solid lines and dotted lines. In what follows, solid lines
and dotted lines denote edges in $E$ and $F$ , respectively. In the above definition,
the condition (i) means that every component of $\mathcal{G}$ is a complete graph, and (ii)
does that each $U(v)$ has at most one vertex from each component of $\mathcal{G}$ . Hence,
under the assumption (i), (ii) is equivalent to the condition that if $w,$ $u\in U(v)$

then $wv\not\in E$ . That is, (i) and (ii) implies that there exists no subgraph of types
appeared in Fig 2.

We call $U(v)$ the $SR$-neighbour set of $v\in V$ , and set $\mathfrak{U}(V)=\{U(v)|v\in V\}.$

For $v,$ $w\in V$ with $v\neq w$ , it may happen that $U(v)=U(w)$ , and so $|\mathfrak{U}(V)|\leq|V|$

generally. Let $\mathcal{S}=(V, E, F)$ be an $SR$-graph. We say $\mathcal{S}$ is connected if the graph
$(V, E\cup F)$ in which there is no distinction between $E$ and $F$ is connected.
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$SR$-cycles.

Definition 1.2 Let $S=(V, E, F)$ be an $SR$-graph and $p>1$ . Then a path
$v_{1}w_{1}v_{2}w_{2},$ $\cdots,$ $v_{p}w_{p}v_{p+1}$ in the graph $(V, E\cup F)$ is called a $SR$-path of length $p$

in $\mathcal{S}$ if either $v_{q}w_{q}\in E$ and $w_{q}v_{q+1}\in F$ or $v_{q}w_{q}\in F$ and $w_{q}v_{q+1}\in E$ for
$1\leq q\leq p$ ; simply denoted by $(e_{1}, f_{1}, \cdots, e_{p}, f_{p})$ or $(f_{1}, e_{1}, \cdots, f_{p}, e_{p})$ , respectively,
where $e_{q}\in E$ and $f_{q}\in F.$ If, in addition, it is a cycle in $(V, E\cup F)$ , that is,
$v_{p+1}=v_{1}$ , then it is an $SR$-cycle of length $p$ in $\mathcal{S}.$
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That is, for $e_{q}\in E$ and $f_{q}\in F$ , an $SR$-cycle $(e_{1}, f_{1}, \cdots, e_{p}, f_{p})$ means that it is
a cycle in $(V, E\cup F)$ which consists alternately solid lines and dotted lines (see
Figl).

In what follows, let $S=(V, E, F)$ be an $SR$-graph with $\mathcal{G}=(V, E)$ and $\mathcal{H}=$

$(V, F)$ . $\mathfrak{C}(V)$ denotes the set of components of $V$ on $\mathcal{H}=(V, F)$ . In addition,
we set $\sigma yt(\mathcal{S})=\{U\in \mathfrak{U}(V)||U|=1\},$ $\mathfrak{M}(S)=\{U\in \mathfrak{U}(V)||U|=2\}$ and
$\mathfrak{L}(\mathcal{S})=\{U\in \mathfrak{U}(V)||U|>2\}.$

We would like to kn$ow$ when $\mathcal{S}$ has an $SR$-cycle. We first consider the somewhat
trivial case of $\mathcal{S}$ in which $\mathcal{H}=(V, F)$ is also a clique graph. In this case, $\mathfrak{U}(V)$

coincides with $\mathfrak{C}(V)$ . We have the next theorem:

Theorem 1.3 Let $S=(V, E, F)$ be an $SR$-graph and let $\omega_{E}$ and $\omega_{F}$ be, respec-
tively, the number of components of $\mathcal{G}=(V, E)$ and $\mathcal{H}=(V, F)$ . Suppose that
$\mathcal{H}=(V, F)$ is a clique graph and $S$ is connected. Then $S$ has an $SR$-cycle if and
only if $\omega_{E}+\omega_{F}<|V|+1.$

In particular, if $S$ is proper and $|\Re(\mathcal{S})|\leq|\mathfrak{L}(S)|$ then $S$ has an $SR$-cycle.

In the above theorem, every component is a complete graph. We next con-
sider the case that every component $\mathcal{G}_{i}=(V_{i}, E_{i})$ is a complete $k$-partite graph
$K_{m_{1},\cdots,m_{k}}$ . Let $\mu(V)$ be the maximum number in $\{m_{1}, \cdots, m_{k}\}$ . For $v\in V$ , let
$d_{\mathcal{G}}(v)$ be the degree of $v$ in $\mathcal{G}$ ; thus the number of edges of $\mathcal{G}$ incident with $v.$

$I(V)$ denotes the set of isolated vertices in $\mathcal{G}$ ; thus $I(V)=\{v\in V|d_{\mathcal{G}}(v)=0\}.$

Then we have

Theorem 1.4 Let $S=(V, E, F)$ be an $SR$-graph and $\mathfrak{C}(V)=\{V_{1}, \cdots, V_{n}\}$ with
$n>1$ . Suppose that every component $\mathcal{G}_{i}=(V_{i}, E_{i})$ of $\mathcal{G}$ is a complete $k$ -partite
graph. If $|V_{i}|>2\mu(V_{i})$ for each $i\in\{1, \cdots, n\}$ and $|I(V)|\leq n$ then $\mathcal{S}$ has an
$SR$-cycle.

We can prove two theorems above by a similar argument in [5].

2 LFP groups

Definition 2.1 $A$ group $G$ is $LFP$ provided for each finitely genemted subgroup
$H=\langle g_{1},$

$\cdots,$
$g_{n}\rangle$ of $G$ , either $H$ is a non-trivial free products of groups both of

which are not isomorp $hic$ to $\mathbb{Z}_{2}$ or there exists an element $x\in G$ with $x\neq 1$ such
that $H*\langle x\rangle i\mathcal{S}$ free product.

It is obvious that a locally free group is LFP and so is free group. Moreover, by
the Kurosh Subgroup Theorem for free products, we can see that the non-trivial
free product $A*B$ of groups $A$ and $B$ is LFP provided both of $A$ and $B$ are not
isomorphic to $\mathbb{Z}_{2}.$
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By making use of theorems in the previous section, we can state the following
theorem:

Theorem 2.2 If $G$ is $LFP$, then the group ring $KG$ is primitive for any field $K.$

3 Primitivity of group rings of one-relator groups with
torsion

Let $\langle X\rangle$ be the free group with the base $X$ . For a word $R$ in $\langle X\rangle,$ $G=\langle X|R\rangle$

denotes the one-relator group with a generating set $X$ of $G$ and a defining relation
$R=1$ . If $W$ is a cyclically reduced word in $\langle X\rangle$ and $R=W^{n}(n>1)$ , then $G$

is called a one-relator group with torsion. The class of one-relator groups with
torsion has been well studied, in particular, on residual finiteness (for instance,

[2], [7], [8], [1] $)$ .
In this section, by making use of the Theorem 2.2, we shall show the next

theorem:

Theorem 3.1 The group ring $KG$ of $G=\langle X|W^{n}\rangle$ over a field $K$ is primitive
provided $n>1$ and $|X|>1$ , where $W$ is a cyclically reduced word in $\langle X\rangle.$

In what follows, let $F=\langle X\rangle$ be the free group with the base $X=\{x_{1}, \cdots,x_{m}\}.$

$\langle g_{1},$ $\cdots g_{m}\rangle_{G}$ denotes the subgroup of a group $G$ generated by $g_{1},$ $\cdots,g_{m}\in G$ . If
$W\in F$ , then $\mathcal{N}_{F}(W)$ denotes the normal closure of $W$ in $F$ . For a cyclically
reduced word $W,$ $\mathcal{W}_{F}(W)$ denotes the set of all cyclically reduced conjugates of
both $W$ and $W^{-1}$ . If $W_{i},$ $\cdots,$

$W_{t}$ are reduced words in $F$ and $W=W_{i}\cdots W_{t}$ is
also reduced, that is, there is no cancellation in forming the product $W_{i}\cdots W_{t},$

then we write $W\equiv W_{i}\cdots W_{t}.$

Lemma 3.2 Let $m,$ $n>1$ and $W_{0}=W_{0}(x_{1}, \cdots, x_{m})$ be a cyclically reduced word
in $F$ which involves all $x_{i}s$ in X. Suppose that $V\in \mathcal{N}_{F}(R_{0})$ , where $R_{0}=W_{0}^{n}.$

If $V\equiv V_{1}V_{2:}$ then every generator in $X$ appears either in $V_{1}$ or in $V_{2}.$

Proof. By the well-known the Newman-Gurevich Spelling Theorem([6], cf. [4]),
$V$ contains a subword $S^{n-1}S_{0}$ , where $S\equiv S_{0}S_{1}\in \mathcal{W}_{F}(W_{0})$ and every generator
in $X$ appears in $S_{0}$ . Hence either $V_{1}$ or $V_{2}$ contains the subword $S_{0}$ , and the
assertion follows.

Lemma 3.3 For $m>1,$ $n>1$ and $X=\{x_{1}, \cdots, x_{m}\}_{Z}$ let $G=\langle X|R\rangle$ , where
$R=W^{n}$ and $W$ is a cyclically reduced words in the free group $\langle X\rangle$ with the base
X. If $S,$ $T\subseteq X$ , then $\langle S\rangle_{G}\cap\langle T\rangle_{G}=\langle S\cap T\rangle_{G}.$
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Proof. It is obvious that $\langle S\rangle_{G}\cap\langle T\rangle_{G}\supseteq\langle S\cap T\rangle_{G}$ . Suppose, to the contrary,
that $\langle S\rangle_{G}\cap\langle T\rangle_{G}\neq\langle S\cap T\rangle_{G}$. Then there exist reduced words $u=u(s, a, \cdots, b)$

in $\langle S\rangle\backslash \langle S\cap T\rangle$ and $v=v(t, c, \cdots, d)$ in $\langle T\rangle\backslash \langle S\cap T\rangle$ such that $uv\in \mathcal{N}_{F}(R)$ ,
where $a,$ $\cdots$ , $b\in S,$ $c,$ $\cdots,$ $d\in T,$ $s\in S\backslash (S\cap T)$ and $t\in T\backslash (S\cap T)$ . Let $w$ be
the reduced word for $uv$ , say $w\equiv u_{1}v_{1}$ , where $u\equiv u_{1}u_{2}$ and $v\equiv u_{2}^{-1}v_{1}$ . Then
$w\in \mathcal{N}_{F}(R)$ , however, $u_{1}$ involves $s$ but not $t$ , and $v_{1}$ involves $t$ but not $s$ , which
cntradicts the assertion of Lemma 3.2.

Let $X=\{a_{i}, b_{i}, \cdots|i\in \mathbb{Z}\}$ and $W_{i}(i\in \mathbb{Z})$ cyclically reduced words in the
free group $\langle X\rangle$ with the base $X$ such that

$W_{i}=W_{i}(a_{j_{a1}+i}, \cdots, a_{j_{as}+i}, b_{j_{b1}+i}, \cdots, b_{j_{bt}+i}, \cdots)$ ,

where $j_{a1}<j_{a2}<\cdots<j_{as}$ and $j_{b1}<j_{b2}<\cdots<j_{bt}$ and $\cdots$ . Let $\alpha_{*},$
$\beta_{*},$ $\cdots$

be the minimum subscripts on $a,$ $b,$ $\cdots$ occurring in $W_{0}$ , respectively, and $\alpha^{*},$ $\beta^{*},$

. . be the maximum subscript on $a,$ $b,$ $\cdots$ occurring in $W_{0}$ , respectively. That is,
$\alpha_{*}=j_{a1},$ $\alpha^{*}=j_{as}$ and $\beta_{*}=j_{b1},$ $\beta^{*}=j_{bt}$ and $\cdots$ . We set $A=\{a_{i}|i\in \mathbb{Z}\},$ $B=$
$\{b_{i}|i\in \mathbb{Z}\},$ $\cdots$ ; in this case, $X=A\cup B\cup\cdots.$

Let
$G_{\infty}=\langle X|R_{\eta}\cdot(i\in \mathbb{Z})\rangle$ with $R_{\eta}\cdot=W_{i}^{n}(n>1)$ . (1)

In $G_{\infty}$ , we set subgroups $Q_{t}$ and $P_{t}$ of $G_{\infty}$ for all $t\in \mathbb{Z}$ , as follows:

$\{\begin{array}{l}For N\neq 0,Q_{t} =\langle a_{i+t}, b_{j+t}, \cdots|\alpha_{*}\leq i\leq\alpha^{*}, \beta_{*}\leq j\leq\beta^{*}, \cdots\rangle_{G_{\infty}},P_{t} =\langle a_{i+t}, b_{j+t}, \cdots|\alpha_{*}\leq i\leq\alpha^{*}-1, \beta_{*}\leq j\leq\beta^{*}-1, \cdots\rangle_{G_{\infty}}.For N=0,Q_{t} =\langle a_{\alpha^{*}+t}, b_{\beta^{*}+t}, \cdots\rangle_{G_{\infty}},P_{t} =1.\end{array}$ (2)

where $N$ is the maximum number in $\{\alpha^{*}-\alpha_{*}, \beta^{*}-\beta_{*}, \cdots\}.$

Then $P_{t}\leq Q_{t}$ and $Q_{t}\simeq\langle a_{\alpha_{*}+t},$
$\cdots,$ $a_{\alpha^{*}+t},$ $b_{\beta_{*}+t},$

$\cdots,$ $b_{\beta^{*}+t},$ $\cdots|R_{t}\rangle$ . By the
Magnus’ method for Freiheitssatz, we may identify $G_{\infty}$ as the union of the chain
of the following $G_{i}’ s$ :

$G_{\infty}= \bigcup_{i=0}^{\infty}G_{i}$ , where
$G_{0}=Q_{0},$ $G_{2i}=Q_{-i}*P_{-i+1}G_{2i-1}$ and $G_{2i+1}=G_{2i}*P_{i+1}Q_{i+1}.$

(3)

Generally, for each $k\in \mathbb{Z}$ , set

$G_{0}=Q_{k},$ $G_{2i}=Q_{-i+k}*P_{-i+k+1}G_{2i-1}$ and $G_{2i+1}=G_{2i}*P_{i+k+1}Q_{i+k+1}$ , (4)

and we can also identify $G_{\infty}$ as $\bigcup_{i=0}^{\infty}G_{i}$ . Then we have

$G_{0} =Q_{k}=\langle a_{\alpha_{*}+k}, \cdots, a_{\alpha^{*}+k}, b_{\beta_{*}+k}, \cdots, b_{\beta^{*}+k}, \cdots\rangle_{G_{\infty}}$

$G_{2i} =\langle a_{\alpha_{*}+k-i}, \cdots, a_{\alpha^{*}+k+i}, b_{\beta_{*}+k-i}, \cdots, b_{\beta^{*}+k+i}, \cdots\rangle_{G_{\infty}}$ (5)
$G_{2i+1} =\langle a_{\alpha_{*}+k-i}, \cdots, a_{\alpha^{*}+k+i+1}, b_{\beta_{*}+k-i}, \cdots, b_{\beta^{*}+k+i+1}, \cdots\rangle_{G_{\infty}}$
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Lemma 3.4 Let $H$ be a subgroup of $G_{\infty}$ generated by a finite subset $Y$ of $X$ ;
thus $H=\langle Y\rangle_{G_{\infty}}$ . Set $I=\{i\in \mathbb{Z}|a_{i}\in A\cap Y or \cdots or b_{i}\in B\cap Y\}$ , and let
$i^{*}$ (resp. $i_{*}$ ) be the maximum number (resp. the minimum number) in I and $M_{*}$

(resp. $m^{*}$) the maximum number (resp. the minimum number) in $\{\alpha_{*}, \beta_{*}, \cdots\}$

$(resp. \{\alpha^{*}, \beta^{*}, \cdots\})$ .
If $N<t$ and $N+i^{*}-i_{*}+M_{*}-m^{*}<t$, then $H\cap P_{t}=1.$

Proof. If $N=0$ then the assertion of the Lemma is trivial, and so we suppose
$N\neq 0$ , and also suppose, to the contrary, there exists $t\in \mathbb{Z}$ such that

$N<t,$ $N+i^{*}-i_{*}+M_{*}-m^{*}<t$ and $H\cap P_{t}\neq 1.$

If we set $k=\mu=i_{*}-M_{*}$ in (4) just above this lemma, then

$G_{0}=Q_{\mu}$ , and $G_{2i}=Q_{-i+\mu}*p_{-t+\mu+1}G_{2i-1}.$

Moreover, let $\tau$ be the largest number between $0$ and $i^{*}-\mu-m^{*}$ . If we set $i=\tau$

in the above, then we can see that $G_{2\tau}\supseteq H$ and $\alpha^{*}+\tau<\alpha_{*}+t,$ $\beta^{*}+\tau<\beta_{*}+t,$

In fact, if $\tau=0$ , then $\alpha^{*}+\tau=\alpha^{*}\leq\alpha_{*}+N<\alpha_{*}+t$ , because of $N<t$ . On
the other hand, if $\tau\neq 0$ , then $\tau=i^{*}-(i_{*}-M_{*})-m^{*}$ , and so,

$\alpha^{*}+\tau\leq\alpha_{*}+N+\tau=\alpha_{*}+N+i^{*}-i_{*}+M_{*}-m^{*}<\alpha_{*}+t,$

because of $N+i^{*}-i_{*}+M_{*}-m^{*}<t$ . We similarly obtain that $\beta^{*}+\tau<\beta_{*}+t,$

$\ldots.$

Next, we shall show $G_{2\tau}\supseteq H$ . To see this, since

$G_{2\tau}=\langle a_{\alpha_{*}+\mu-\tau}, \cdots, a_{\alpha^{*}+\mu+\tau}, b_{\beta_{*}+\mu-\tau}, \cdots, b_{\beta^{*}+\mu+\tau}, \cdots\rangle_{G_{\infty}},$

it sufficies to show that $\alpha_{*}+\mu-\tau\leq i_{*},$ $\beta_{*}+\mu-\tau\leq i_{*},$ $\cdots$ , and $\alpha^{*}+\mu+\tau\geq i^{*},$

$\beta^{*}+\mu+\tau\geq i_{*},$ $\cdots$ . Note that $\mu+\tau=i^{*}-m^{*}$ if $\tau\neq 0$ and $\mu\geq i^{*}-m^{*}$ if $\tau=0.$

In fact, if $\tau\neq 0$ , then $\mu+\tau=\mu+i^{*}-\mu-m^{*}=i^{*}-m^{*}$ , and if $\tau=0$ , then
$i^{*}-\mu-m^{*}\leq 0$ and so $i^{*}-m^{*}\leq\mu.$

Since $\tau\geq 0$ and $\alpha_{*}-M_{*}\leq 0$ by definitions, we have

$\alpha_{*}+\mu-\tau\leq\alpha_{*}+\mu=i_{*}+\alpha_{*}-M_{*}\leq i_{*}.$

We similarly obtain that $\beta_{*}+\mu-\tau\leq i_{*},$ $\cdots$ . Moreover, as mentioned above, if
$\tau=0$ , then $\mu\geq i^{*}-m^{*}$ , and so we have that

$\alpha^{*}+\mu+\tau\geq\alpha^{*}+i^{*}-m^{*}\geq\alpha^{*}+i^{*}-\alpha^{*}=i^{*}$

because $m^{*}\leq\alpha^{*}$ If $\tau\neq 0$ , since $\mu+\tau=i^{*}-m^{*}$ , we also have

$\alpha^{*}+\mu+\tau=\alpha^{*}+i^{*}-m^{*}\geq a^{*}+i^{*}-\alpha^{*}=i^{*}$
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We have thus seen $\alpha^{*}+\mu+\tau\geq i^{*}$ for either cases, and similarly we have $\beta^{*}+\mu+\tau\geq$

$i^{*},$ $\cdots$ , as desired.
In the above, replacing $\alpha_{*}+\mu$ with $\alpha_{*},$ $\alpha^{*}+\mu$ with $\alpha^{*},$ $\beta_{*}+\mu$ with $\beta_{*},$

$\cdots,$

and $\tau$ with $k$ , we may assume that $G_{\infty}= \bigcup_{i=0}^{\infty}G_{i}$ with the presentation (4) and
there exists $k\geq 0$ such that $G_{2k}\supseteq H$ and

$\alpha^{*}+k<\alpha_{*}+t, \beta^{*}+k<\beta_{*}+t, \cdots$ . (6)

Now, let $n=\beta^{*}-\beta_{*}$ , and we may here assume $N=\alpha^{*}-\alpha_{*}\geq\cdots\geq\beta^{*}-\beta_{*}.$

For $j\in\{0,1, \cdots, N\}$ , we define $P_{t}^{(j)\prime}s$ so as to satisfy

$P_{t}=P_{t}^{(N)}\supset P_{t}^{(1)}\supset\cdots\supset P_{t}^{(0)}=1$

as follows:
$P_{t}= P_{t}^{(N)} =\langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-1}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-1}, \cdots\rangle_{G_{\infty}}$

$P_{t}^{(N-1)} =\langle a_{\alpha*+t}, \cdots, a_{\alpha^{*}+t-2}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-2}, \cdots\rangle_{G_{\infty}},$

.
.

$P_{t}^{(N-n+1)} =\langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-n}, b_{\beta_{*}+t}, \cdots\rangle_{G_{\infty}},$

$P_{t}^{(N-n)} =\langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-n-1}, \cdots\rangle_{G_{\infty}},$

. .
$P_{t}^{(1)} =\langle a_{\alpha_{*}+t}\rangle_{G_{\infty}},$

$P_{t}^{(0)} =1.$

By our assumption, $H\cap P_{t}\neq 1$ , that is, there exists $u\in H\cap P_{t}$ such that $u\neq 1.$

Then there exists $l\in\{0,1, \cdots, N-1\}$ such that $u\in P_{t}^{(N-l)}$ and $u\not\in P_{t}^{(N-l-1)}.$

We shall show that this is impossible. In fact, we shall show that $u\in P_{t}^{(N-l)}$

implies $u\in P_{t}^{(N-l-1)}$ , and this completes the proof of the Lemma.
By (6), $\alpha^{*}+k\leq\alpha_{*}+t-1$ , and so $k\leq-N+t-1\leq-l+t-2$ , which implies

$H\subseteq G_{2(t-l-2)}$ (7)

because $H\subseteq G_{2k}\subseteq G_{2(t-l-2)}$ . By way of construction of $P_{t}^{(N-l)}$ , we have

$P_{t}^{(N-l)}=\langle a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-l-1}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-l-1}’, \cdots\rangle_{G_{\infty}},$

where $b_{\beta^{*}+t-l-1}’=b_{\beta^{*}+t-l-1}$ if $l<n$ and $b_{\beta^{*}+t-l-1}’=1$ if $l\geq n$ . By (2), we also
have

$Q_{t-l-1}=\langle a_{\alpha_{*}+t-l-1}, \cdots, a_{\alpha^{*}+t-l-1}, b_{\beta_{*}+t-l-1}, \cdots, b_{\beta^{*}+t-l-1}, \cdots\rangle_{G_{\infty}},$

and therefore we see that $P_{t}^{(N-l)}\subseteq Q_{t-l-1}$ . Combining this with (7), it follows
that $u\in G_{2(t-l-2)}\cap Q_{t-l-1}$ . Since $G_{2(t-l-2)}\cap Q_{t-l-1}=P_{t-l-1}$ , we have $u\in P_{t-l-1},$

and thus $u\in P_{t-l-1}\cap P_{t}^{(N-l)}.$
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On the other hand, $P_{t-l-1}=\langle S\rangle_{Q_{t-l-1}}$ and $P_{t}^{(N-l)}=\langle T\rangle_{Q_{t-l-1}}$ in $Q_{t-l-1}$ , where

$S=\{a_{\alpha_{*}+t-l-1}, \cdots, a_{\alpha^{*}+t-l-2}, b_{\beta_{*}+t-l-1}, \cdots, b_{\beta^{*}+t-l-2}, \cdots\}$

and $T=\{a_{\alpha_{*}+t}, \cdots, a_{\alpha^{*}+t-l-1}, b_{\beta_{*}+t}, \cdots, b_{\beta^{*}+t-l-1}’, \cdots\}.$

Then it is easily seen that $\langle S\cap T\rangle_{Q_{t-l-1}}=P_{t}^{(N-l-1)}$ . We can here identify $Q_{t-l-1}$

as the one-relator group with torsion, and therefore it follows form Lemma 3.3
that

$u\in P_{t-l-1}\cap P_{t}^{(N-l)}=\langle S\rangle_{Q_{t-l-1}}\cap\langle T\rangle_{Q_{t-l-1}}=\langle S\cap T\rangle_{Q_{t-l-1}}=P_{t}^{(N-l-1)}$ ;

thus $u\in P_{t}^{(N-l-1)}$ , as desired.

By the proof of the above Lemma, we have

Corollary 3.5 If $H$ be a subgroup of $G_{\infty}$ generated by a finite subset $Y$ of $X_{f}$

then there exists a positive integer $t$ such that $H\subseteq G_{2(t-1)}$ and $H\cap P_{t}=1.$

Lemma 3.6 If $G_{\infty}$ and $W_{i}$ are as in (1), then for each finite elements $g_{1},$ $\cdots,$ $g_{m}$

in $G_{\infty}$ , there exists an integer $i$ such that $\langle g_{1},$

$\cdots,$ $g_{m},$ $W_{i}\rangle_{G_{\infty}}$ is the free product
$\langle g_{1},$

$\cdots,$
$g_{m}\rangle_{G_{\infty}}*\langle W_{i}\rangle_{G_{\infty}}.$

Proof. Let $G_{\infty}$ be as in (3) and $Y$ the set of generators which appear in $g_{i}’ s$ . By
virtue of Corollary 3.5, for $H=\langle Y\rangle_{G_{\infty}}$ , there exists $t>0$ such that $H\subseteq G_{2(t-1)}$

and $H\cap P_{t}=1.$

Now, by (3), $G_{2t-1}=G_{2(t-1)}*p_{t}Q_{t}$ , where

$Q_{t}=\langle a_{\alpha*+t}, \cdots, a_{\alpha^{*}+t}, b_{\beta_{*}+t}, \cdots,b_{\beta^{*}+t}, \cdots|R_{4}\rangle,$

and either $P_{t}=\langle a_{i+t},$ $b_{j+t},$ $\cdots|\alpha_{*}\leq i\leq\alpha^{*}-1,$ $\beta_{*}\leq j\leq\beta^{*}-1,$ $\cdots\rangle_{G_{\infty}}$ or
$P_{t}=1$ . We see then that $W_{t}\in Q_{t}$ . As is well known, $W_{t}^{m}\neq 1$ if $1\leq m<n$

because $R_{4}=W_{t}^{n}$ and $n>1$ . Moreover, if $W_{t}^{m}\in P_{t}$ , then $(W_{t}^{m})^{n}\neq 1$ becasuse
$P_{t}$ is a free subgroup in $Q_{t}$ by Freiheitssatz, which implies contradiction. Hence
we have that $\langle W_{t}\rangle\cap P_{t}=1$ . Combining this with $H\cap P_{t}=1$ , we see that
$\langle Y,$ $W_{t}\rangle_{G_{2t-1}}=\langle Y\rangle_{G_{2t-1}}*\langle W_{t}\rangle_{G_{2t-1}}=H*\langle W_{t}\rangle_{G_{\infty}}$ . Since $\langle g_{1},$

$\cdots,$
$g_{m}\rangle_{G_{\infty}}\subseteq H$ , we

have that $\langle g_{1},$

$\cdots,$ $g_{m},$ $W_{t}\rangle_{G_{\infty}}=\langle g_{1},$
$\cdots,$

$g_{m}\rangle_{G_{\infty}}*\langle W_{t}\rangle_{G_{\infty}}.$

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 If there exists $x\in X$ such that $W$ contains none of
$x$ or $x^{-1}$ , then $G$ is a non-trivial free product of groups both of which are not
isomorphic to $\mathbb{Z}_{2}$ . Hence we may assume that $X=\{x_{1}, \cdots, x_{m}\}(m>1)$ and $W$

contains either $x_{i}$ or $x_{i}^{-1}$ for all $i\in\{1, \cdots, m\}.$

If $W$ has no zero exponent sum $\sigma_{x}(W)$ on $x$ for all $x\in X$ , say $\sigma_{x_{1}}(W)=\alpha$

and $\sigma_{x_{2}}(W)=\beta$ , then $G\simeq\langle a^{\beta},$
$x_{2},$ $\cdots,$

$x_{m}|R\rangle\subset E$ , by the Magnus’ method
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for Freiheitssatz, where $R=W^{n}(a^{\beta}, x_{2}, \cdots, x_{m})$ and $E=\langle a,$ $x_{2},$ $\cdots,$ $x_{m}|R\rangle.$

Let $N=\mathcal{N}_{F}(x_{2}a^{\alpha}, x_{3}\cdots, x_{m})$ , where $F=\langle x_{1},$ $\cdots,$
$x_{m}\rangle$ . Then we have that

$N\supset \mathcal{N}_{F}(R)$ and $N/\mathcal{N}_{F}(R)\simeq G_{\infty}$ , where $G_{\infty}$ is as in (1), and so we may let
$G_{\infty}=N/\mathcal{N}_{F}(R)$ .

Let $F_{G}=\langle a^{\beta},$
$x_{2},$ $\cdots,$

$x_{m}\rangle$ and $H=(N\cap F_{G})/\mathcal{N}_{F_{G}}(R)$ . Then we can easily see
that $H$ can be isomorphically embedded in $G_{\infty}$ and that $G$ is a cyclic extension
of $H$ . Since $W_{i}\in H$ , it follows from Lemma 3.6 that $H$ is LFP. Hence $KH$ is
primitive for any field $K$ by Theorem 2.2. Since $G/H$ is cyclic, by [9, Theorem
1 $]$ , we have that $KG$ is also primitive.

If $W$ has a zero exponent sum $\sigma_{x}(W)$ on $x$ for some $x\in X$ , say $\sigma_{x_{1}}(W)=0,$

then we set $N=\mathcal{N}_{F}(x_{2}, x_{3}\cdots, x_{m})$ . Since $N/\mathcal{N}_{F}(R)\simeq G_{\infty}$ and $G$ is a cyclic
extension of $N/\mathcal{N}_{F}(R)$ , the result is similarly obtained as above. This completes
the proof of the theorem.
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