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Locally freely productable groups and
the primitivity of their group rings
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Let R be a ring with the identity element. R is (right) primitive provided there exists a
faithful irreducible (right) R-module. A group G is LFP(locally freely productable) provided for
each finitely generated subgroup H = (g1, -+,gn) of G, either H is a non-trivial free products
of groups both of which are not isomorphic to Z or there exists an element z € G with z # 1
such that H * (x) is free product. In this note, we shall introduce the primitivity of group
rings of LFP groups. And as a result, we state that every group ring of a one-relator group
with torsion is primitive. In order to prove primitivity of group rings, we shall need the graph

theoretic approach used in [5] which extends the Formanek’s method in [3].

1 Graph theoretic approach

Let KG be the group ring of a group G over a field K, and let a = 7, oy f;
and b =371, Bigi be in KG (a; #0,0; # 0). If ab = 0 then for each f;g;, there
exists fpgq such that fig; = f,9,- Suppose that the following k equations hold;
figr = fag2, f3g2 = fags, -+, fok—39k-1 = fox—29k and fox_19k = foxg1. Then
we can regard the above equations as forming a kind of cycle, and they imply
il fo o foriifor = 1. That is, the above equations give us a information on
supports of a. We can use this idea for a more general case; a1b; +- - +a,b, € K
for a;, b; € KG with a; = ¥ o f;; and b; = Y Bixgix- In order to do this, regarding
the elements f;;9;x appeared in a;b; as vertices and the equalities of their elements
as edges, we use a graph-theoretic method.

Throughout this section, G = (V, E) denotes a simple graph; a finite undirected
graph which has no multiple edges or loops, where V' is the set of vertices and F
is the set of edges. A finite sequence voejv; - - - e,u, whose terms are alternately
elements e,’s in E and vy's in V is called a path of length pin Gif v,_jv, = ¢, € E
and vy # vy for any ¢,q’ € {0,1,-- -, p} with g # ¢/; simply denoted by vov; - - - v,.
Two vertices v and w of G are said to be connected if there exists a path from
v to w in G. Connection is an equivalence relation on V, and so there exists a
decomposition of V' into subsets C;’s (1 < ¢ < m) for some m > 0 such that
v,w € V are connected if and only if both v and w belong to the same set C;.
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The subgraph generated by C; is called a (connected) component of G. Any graph
is a disjoint union of components.

Definition 1.1 Let G = (V, E) and H = (V, F') be simple graphs with the same
vertez set V. Forv € V, let U(v) be the set consisting of all neighbours of v in 'H
and v itself: U(v) = {w € V | vw € F}U {v}. A triple (V,E,F) is an SR-graph
(for a sprint relay like graph) if it satisfies the following conditions:

(i) G is a clique graph; thus uv,vw € E implies uw € E.
(i) If C is a component of G and v,w € C with v # w, then U(v) N U(w) = 0.

If G has no isolated vertices, that is, ifv € V then vw € E for some w € V, then
SR-graph (V,E, F) is called a proper SR-graph.

Fig 1 shows an example of an SR-graph, in which edges in ' and F are re-
spectively denoted by solid lines and dotted lines. In what follows, solid lines
and dotted lines denote edges in E and F', respectively. In the above definition,
the condition (i) means that every component of G is a complete graph, and (ii)
does that each U(v) has at most one vertex from each component of G. Hence,
under the assumption (i), (ii) is equivalent to the condition that if w,u € U(v)
then wv € E. That is, (i) and (ii) implies that there exists no subgraph of types
appeared in Fig 2.

We call U(v) the SR-neighbour set of v € V, and set U(V) = {U(v) | v € V}.
For v,w € V with v # w, it may happen that U(v) = U(w), and so |$(V)| < |V|
generally. Let S = (V, E, F') be an SR-graph. We say S is connected if the graph
(V, EU F) in which there is no distinction between E and F' is connected.

Fig L. Anexampleof anSR-graph: Solid Fig 2. Prohibits : Itis not allowed to exist
lines are edges in E and dotted lines are the above two subgraphs in an SR-graph.
edgesin F. Sequences (€, 1. & Iy EaSp €

(oS Cpfy Enf) and (e, €0 f) are

SR-cycles.

Definition 1.2 Let S = (V, E, F) be an SR-graph and p > 1. Then a path
VIW VW3, -+, VpWyUps1 0 the graph (V, E U F) is called a SR-path of length p
in S if either vaw, € E and wgugy1 € F or vawy, € F and wevgy1 € E for
1 < q < p; simply denoted by (eq, f1,-++,€p, fp) or (f1,€1, -, fp, €p), TESPECtively,
where e, € E and f, € F. If, in addition, it is a cycle in (V,EUF), that is,
Upt1 = V1, then it is an SR-cycle of length p in S.



That is, for e, € E and f, € F, an SR-cycle (e, fi,- -, ep, fp) Mmeans that it is
a cycle in (V, E U F) which consists alternately solid lines and dotted lines (see
Figl).

In what follows, let S = (V, E, F) be an SR-graph with G = (V, FE) and H =
(V,F). €(V) denotes the set of components of V on H = (V, F). In addition,
we set N(S) = {U € WV) | U] = 1}, M(S) = {U € WV) | |U| = 2} and
£(8) ={U e (V) | |U| > 2}.

We would like to know when S has an SR-cycle. We first consider the somewhat
trivial case of S in which H = (V, F) is also a clique graph. In this case, (V)
coincides with €(V'). We have the next theorem:

Theorem 1.3 Let S = (V, E, F) be an SR-graph and let wg and wp be, respec-
tively, the number of components of G = (V,E) and H = (V,F). Suppose that
H = (V,F) is a cligue graph and S is connected. Then S has an SR-cycle if and
only if wg +wp < |V| + 1.

In particular, if S is proper and |N(S)| < |L(S)| then S has an SR-cycle.

In the above theorem, every component is a complete graph. We next con-
sider the case that every component G; = (Vi, ;) is a complete k-partite graph
Kmy,smi- Let u(V;) be the maximum number in {m,, - - - ,mi}. For v € V, let
dg(v) be the degree of v in G; thus the number of edges of G incident with v.
I(V) denotes the set of isolated vertices in G; thus I(V) = {v € V | dg(v) = 0}.
Then we have

Theorem 1.4 Let S = (V, E, F) be an SR-graph and (V) = {V4,---,V,} with
n > 1. Suppose that every component G; = (V;, E;) of G is a complete k-partite
graph. If [V;| > 2u(V;) for each i € {1,---,n} and |I(V)| < n then S has an
SR-cycle.

We can prove two theorems above by a similar argument in [5].

2 LFP groups

Definition 2.1 A group G is LFP provided for each finitely generated subgroup
H =(g1,"+,90) of G, either H is a non-trivial free products of groups both of
which are not isomorphic to Zy or there exists an element x € G with z # 1 such
that H x (x) is free product.

It is obvious that a locally free group is LFP and so is free group. Moreover, by
the Kurosh Subgroup Theorem for free products, we can see that the non-trivial
free product A * B of groups A and B is LFP provided both of A and B are not
isomorphic to Zs.
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By making use of theorems in the previous section, we can state the following
theorem:

Theorem 2.2 If G is LFP, then the group ring KG is primitive for any field K.

3 Primitivity of group rings of one-relator groups with
torsion

Let (X) be the free group with the base X. For a word R in (X), G = (X | R)
denotes the one-relator group with a generating set X of G and a defining relation
R =1. If W is a cyclically reduced word in (X) and R = W" (n > 1), then G
is called a one-relator group with torsion. The class of one-relator groups with
torsion has been well studied, in particular, on residual finiteness (for instance,
[2], 7], 18], [1])-

In this section, by making use of the Theorem 2.2, we shall show the next
theorem:

Theorem 3.1 The group ring KG of G = (X | W™) over a field K 1is primitive
provided n > 1 and |X| > 1, where W is a cyclically reduced word in (X).

In what follows, let F' = (X) be the free group with the base X = {z1,--- T}
(g1, gm)c denotes the subgroup of a group G generated by g1, -+, 9m € G. If
W € F, then Np(W) denotes the normal closure of W in F. For a cyclically
reduced word W, Wx(W) denotes the set of all cyclically reduced conjugates of
both W and W-1. If W;,- .-, W, are reduced words in F and W = W;.--W; is
also reduced, that is, there is no cancellation in forming the product W;--- W4,
then we write W = W, .- W,.

Lemma 3.2 Let m,n > 1 and Wy = Wy(21, -+, Zm) be a cyclically reduced word
in F which involves all z;’s in X. Suppose that V € Nr(Ryp), where Ry = W¢'.
If V = Vi V,, then every generator in X appears either in Vi or in V.

Proof. By the well-known the Newman-Gurevich Spelling Theorem([6], cf. [4]),
V contains a subword S""1S,, where S = SyS1 € Wr(W,) and every generator
in X appears in Sy. Hence either V; or V, contains the subword Sy, and the
assertion follows.

Lemma 3.3 Form>1,n> 1 and X = {z1,-+-,Zm}, let G = (X | R), where
R=Wm" and W is a cyclically reduced words in the free group (X) with the base
X. IfS, T C X, then (S)aN(T)g =(SNT)g.



Proof. It is obvious that (S)c N (T)¢ 2 (SN T)g. Suppose, to the contrary,
that (S)e N (T)e # (SN T)¢. Then there exist reduced words u = u(s,a, - -, b)
in (S)\(SNT) and v = v(t,c,---,d) in (T) \ (SNT) such that uv € Np(R),
where a,---,b€ S, ¢,---,deT,s€ S\ (SNT)andt € T\ (SNT). Let w be
the reduced word for uv, say w = uyv;, where v = ujuy and v = Uy 1. Then
w € Np(R), however, u; involves s but not ¢, and v; involves ¢ but not s, which
cntradicts the assertion of Lemma 3.2.

Let X = {a;,b;,--- |1 € Z} and W; (i € Z) cyclically reduced words in the
free group (X) with the base X such that

Wi = Wi@gartis s Qagtis Dy s+ 5 Dty =),

where jo; < Jaz < -+ < Jas and Jon < Jo2 < -+ < ju and ---. Let Quy Bryr e
be the minimum subscripts on a, b, - - - occurring in W, respectively, and o*, 8*,
-+ be the maximum subscript on a, b, - - - occurring in Wy, respectively. That is,
Q= Ja1, & = Jos and By = jo1, B* = jiy and ---. Weset A={a; |1 €Z},B =
{b; |1 €Z},---; in this case, X = AUBU---.

Let
Goo = (X | Ri(i € Z)) with Ry = Wi(n > 1). (1)
In G, we set subgroups Q; and P, of G, for all t € Z, as follows:
[ For N #0,
Qt = <a’i+t)bj+t> l Oy S ? S O[*, /8* S ] _<_ 16*7' ) '>G°o)
) -Pt =<ai+t,bj+t,"'Ia*SiSa*—l, /B*SjSﬁ*_la"'>Goo' (2)
For N =0,
Qt - <a/a*+t7 bﬂ"‘+ta e ')Gooa
| P =1

where N is the maximum number in {a* — a,, 8* — B, - -}.

Then P, < @ and Q; =~ <aa*+ta"'>aa*+tabﬂ*+t,"'abﬁ*+t)"' | R). By the
Magnus’ method for Freiheitssatz, we may identify G, as the union of the chain
of the following G;’s:

Goo = U2, Gi, where (3)
Go=Qo, G2 =Q_i*p_;,, Gaim1 and Gy = G *p,,; Qigr.

Generally, for each k € Z, set
Go = Qr, G2i = Q-itk *p_yy,, Gaic1 80d Goipr = G *p,,, ., Qikrr,  (4)
and we can also identify G, as U2, G;. Then we have

Go = Qk = (Gautkr *** > Qar 4k, DBty ** 5 03r 4k, )
Gai = (Gapthoir " Bas4htis Dgutheis* * *, Dgebhtis ) Goo (5)
G2it1 = (Qautbis " " Qarthtitls Outhois * * * » OB* Hhtidls * * *)Gen
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Lemma 3.4 Let H be a subgroup of G generated by a finite subset Y of X;
thus H= (Y)g.,. Set I={i€Z|a; € ANY or --- or b € BNY}, and let
i* (resp. 1,) be the mazimum number (resp. the minimum number) in I and M,
(resp. m*) the mazimum number (resp. the minimum number) in {cu, By, -}

(resp. {a*,B*,--}).
IfFN<tand N+ —i,+ M, —m*<t, then HN P, = 1.

Proof. If N =0 then the assertion of the Lemma is trivial, and so we suppose
N # 0, and also suppose, to the contrary, there exists ¢ € Z such that

N<t, N+i*—i,+M,—m*"<t and HNF # 1.
If we set k = u =i, — M, in (4) just above this lemma, then
Go = Qu, and Gy = Q-—i+u *P_itu+1 Gai-1.

Moreover, let T be the largest number between 0 and ¢* —pu —m*. If weset ¢ =7
in the above, then we can see that Go; 2 H and o* +7 < o, +t, 8 +7 < B+,

In fact, if 7 =0, then o* +7 = o* < au + N < o, + t, because of N < t. On
the other hand, if 7 # 0, then 7 = i* — (i, — M,) — m*, and so,

a*+7<o+N+T7=a.+ N+ —it.+ M, —m" <o, +1t,

because of N + i* — i, + M, — m* < t. We similarly obtain that 8* + 7 < (. +¥¢,

Next, we shall show G, O H. To see this, since

GZT = <aa*+u—ra cry ot ptrs bﬂrﬁ-u—‘h ce ,bﬂ“+u+‘r’ o '>Goo)

it sufficies to show that o, +pu—7 < iy, B+ —7 < by, -, and a* +p+7 > 7%,
B*+pu+T1 >4, - Notethat p+7=13*—m*if7#0and p > i*—m*if 7 =0.
In fact, if 7 # 0, then p+7 = p+i* — p—m* =7 —m*, and if 7 = 0, then
*—pu—m*<0andso i —m* < pu.

Since 7 > 0 and o, — M, < 0 by definitions, we have

O +p—T < o+ p=ts +a— M, < 1.

We similarly obtain that 3, + p — 7 < i., - - -. Moreover, as mentioned above, if
T =0, then u > 7* — m*, and so we have that

Ftp+r>at+ it -mt>at+it ot =1
because m* < o*. If 7 # 0, since y + T = i* — m*, we also have

o+ pu+r=a+i"—-m' > "+ —at =it



We have thus seen a*+u+7 > * for either cases, and similarly we have 8*+u+7 >

t*, - -+, as desired.
In the above, replacing o, + p with a., o* + p with o*, B, + p with B, ---,
and 7 with k, we may assume that Go, = U2, G; with the presentation (4) and

there exists £ > 0 such that Gy, 2 H and
" +k<a,+t B+Ek<Bi+t, . (6)

Now, let n = §* — (., and we may here assume N =ao* —a, > -+ > 8* — S..
For j € {0,1,---, N}, we define Pt(”)’s so as to satisfy

PtZPt(N)DPt(l)D"'DPt(O)=1

as follows:
N
}Dt-_—— }D{ ) ) — (a’a*+t,...,aa*+t_1,bﬁ*+t,.--’bﬁ*+t_1,o..>Goo

N-1

})t — <aa*+ta ceey Gk -2, bﬁ*+t, v ,bﬁ*+t—2> ot '>G'oo7
N—-n+1

R( n ) — <(La*+t,"'>a'a*+t—n’ bﬂ*+t,'.'>Go°7

P(N—n) . . Ce
A = <aa*+t, y Aa*+t—n—1, >Goo’
1

Pt( ) = (a’a*'i't)Goo’

_Pt(o) = 1.

By our assumption, HNPF; # 1, that is, there exists u € HN P, such that u # 1.
Then there exists [ € {0,1,---, N — 1} such that u € Pt(N'l) and u & Pt(N_l"l).
We shall show that this is impossible. In fact, we shall show that u € Pt(N—l)
implies u € Pt(N_l'l), and this completes the proof of the Lemma.

By (6), a*+k<a,+t—1,andso k < —N+t—1< ~Il+t—2, which implies

H C Gayg-1-2) (7)
because H C Gai, C Gat—1-2). By way of construction of Pt(N'l), we have
N-l
Pt( ) = <a'a*+t’ Cy G gt—1-1, b,@*—{—ta e )b,,8*+t-l—1, tt ')Goo’

where bg. ;1 = bgrys1-1 if Il < nand b, = 1if I > n. By (2), we also
have

Qt-1-1 = (Qan+t—1-1, ", G tt—I-1y Ofattaie1y * = * » DB +1—1=1, ** ") Gy

and therefore we see that PN " C Q,_1_1. Combining this with (7), it follows
that u € Ga—i-2)NQ¢—i—1. Since Gop—1-2)NQ4—1—1 = Po_y_1, we have u € P,_;_;,
and thus u € P,_;_; N Pt(N"l).
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On the other hand, P,_;_; = (S)g,_,_, and Pt(N_l) = (T)q,_,_, in Q¢—1—1, where

S = {a'a,‘+t—l—-1) vy Qo t—1-2 bﬂ.+t—l—1) e 7bﬁ"+t—l—2’ ° }
/
and T = {aa;,+t, sty Qart—1-1y bﬂ.+t, cr ,bﬁ~+t-l—1, o }

Then it is easily seen that (SNT)q,_,_, = P11 We can here identify Q;—;—1
as the one-relator group with torsion, and therefore it follows form Lemma 3.3
that

u€ PN Pt(N_l) = <S>Qt—l-—1 N (T>Qt-—l—1 =(SN T>Qt—l—1 = Pt(N_l—l);

thus u € Pt(N_l_l), as desired.

By the proof of the above Lemma, we have

Corollary 3.5 If H be a subgroup of G generated by a finite subset Y of X,
then there ezists a positive integer t such that H C Goi-1) and HN K = 1.

Lemma 3.6 If G and W; are as in (1), then for each finite elements g1, -+, gm
in Gso, there exists an integer i such that (g1, -, gm, Wi)c,, is the free product

<gla te >gm>Goo * (Wi>G°o-

Proof. Let G beasin (3) and Y the set of generators which appear in g;’s. By
virtue of Corollary 3.5, for H = (Y)¢,,, there exists t > 0 such that H C Ga¢_1)
and HN P, = 1.

Now, by (3), Gat—1 = Ga-1) *p, Qt, Where

Qt = <a°‘*+t7 vty Gttty bﬁ*-Ha v ,bﬁ*+ta e l Rt>’

and either P, = (G44,0j41, - |ox < i< =1, B < j< B~ 1, )G, OF
P, = 1. We see then that W; € Q;. Asis well known, W* #1ifl1<m<n
because R, = W/ and n > 1. Moreover, if W* € P, then (W;™)" # 1 becasuse
P, is a free subgroup in @y by Freiheitssatz, which implies contradiction. Hence
we have that (W;) N P, = 1. Combining this with H N P, = 1, we see that
(1/’ Wt>G'2t—1 = <Y>G2t—1 * <I/Vt>G2t—1 = H * <VVt>Goo' Since <gla T 7gm>Goo C H, we
have that <gl7 “y Gmy Wt)Goo = <gla t agm>Goo-* (Wt>Goo~
We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1 If there exists z € X such that W contains none of
z or 7!, then G is a non-trivial free product of groups both of which are not
isomorphic to Z,. Hence we may assume that X = {z1, -+, Zn} (m > 1) and W
contains either x; or z;* for all i € {1,---,m}.

If W has no zero exponent sum o,(W) on z for all z € X, say 05, (W) = «
and o4, (W) = 8, then G ~ (a?, 3, ,zm | R) C E, by the Magnus’ method



for Freiheitssatz, where R = W™(a®, x5, -, z) and E = (a,z3, -, Zm | R).
Let N = Np(z20*,2z3--+,2n), where F = (z1,--+,Z,,). Then we have that
N D> Nr(R) and N/Np(R) =~ G, where Gy, is as in (1), and so we may let
G = N/Nr(R).

Let Fg = (aP,zq,-++,Zp) and H = (N N Fg)/Ngg(R). Then we can easily see
that H can be isomorphically embedded in G, and that G is a cyclic extension
of H. Since W; € H, it follows from Lemma 3.6 that H is LFP. Hence K H is
primitive for any field K by Theorem 2.2. Since G/H is cyclic, by [9, Theorem
1], we have that KG is also primitive.

If W has a zero exponent sum o,(W) on z for some z € X, say o, (W) = 0,
then we set N = Np(za,23-+,2y). Since N/Nr(R) ~ G, and G is a cyclic
extension of N/Nr(R), the result is similarly obtained as above. This completes
the proof of the theorem.
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