
An analysis of the Bernstein’s theorem for an automated prover

by

Hidetsune Kobayashi
Institute of Computational Logic

Yoko Ono
Yokohama City University

abstract

Our aim is to let an automated prover generate a proof to the Bernstein’s
theorem on the set theory. The prover can take some propositions out from a data
base at each proof step. However, since we have several propositions applicable
to a step, we have too many roots to check.

But, if we have a rough scenario of a proof, then we have only to check some
conflned routes.

This report is an analysis of the Bernstein’s theorem to see how a proof
consists and to see if we can give a scenario to the prover.

1. Introduction

At first, we introduce the Bernstein’s theorem:
Let f be an injecUve map from a set A to a set B. If there is an injective
map g from B to A, the two sets A and B have the same cardinality.
That is, we have a one to one onto map from A to B.

This is a famous proposition on the set theory, and we have a short proof
requiring at most 10 lines to write down. But, for a formal proof, we require about
ten times more lines to express the proof, because no logical gaps are allowed and
we use elementary propositions on the set theory stored in a data base.

2. Bernstein’s theorem

At flrst we have a big modification of the proposiUon:

We use the same notations as in 1. Since, g is a one to one map from B to
$g(B)$, and $g\circ fis$ a one to one map from A to $g\circ f(A)$ which is a subset of $g(B)$, if we
can flnd a one to one map from $g(B)$ to A, we have a one to one onto map from A

to B. Therefor we have only to show:
let Al be a subset ofA, and let f be a one to one map from Ainto Al,

We have a one to one map from A to Al.

数理解析研究所講究録
第 1873巻 2014年 82-87 82

Our prover use Isabelle/HOL as the inference engine, we express the last
proposition as

$[A1\subseteq A,$ $f:Aarrow$ Al, inj on $fA]\Rightarrow\exists\varphi.$ $bi|_{-}to\varphi A$ Al.

3. Existing files in Isabelle/HOL.

A proof is a sequence of proposiUons derived logically correct change from
the former proposition. Alogically correct change is given by applying an already
proved proposition. Hereafter, to avoid a confusion, we call the already proved
proposition as a rule, and a proposition to be proved is called simply as a
proposition. In Isabelle/HOL, a file containing propositions and proofs is called a
theory file (it is named as $*.thy$)

Rules are taken from existing thy files and from a new thy file
“Bernstein.thy”. Existing files are:

HOL.thy Elementary rules concerning logical propositions
Set.thy Elementary set theory
Fun.thy Elementary properties of functions
FuncSet.thy Elementary properties of functions

The new file “Bernstein.thy” is written to prove the therem.

4. Key definitions

The proof requires three key definitions. The flrst one is given by using the
primitive recursion as:

primrec $itr::\prime[nat,a*|a]\Rightarrow(a\Leftrightarrow a)^{\dagger/}$ where
$itr_{-}0:\prime\prime itr0f=f"|$ $itr_{-}Suc:\prime\prime itr$ (Suc n) $f=f\circ(\dot{\ovalbox{\tt\small REJECT}}trnf)^{\iota\iota}$

The second one is a definition giving a special subset ofAl:

definition $A2set::’/[’a*^{\iota}a$, ta set, ‘a set] $*’a$ set“ where
$ltA2setf$ A Al $==\{\cross.$ $\cross\in Al\wedge (\exists y\in (A- A1). \exists n. itr nfy=\cross)\}"$

The third is a map which is proved to be bijective later. This is the function
we looked for:

definition Bfunc:: $\dagger/[’a\not\subset 3^{1|}a,a$ set, ‘a set] $c*(’aI*^{t}a)^{t/}$ where
‘ Bfunc f A Al $==\lambda\cross\in A.$ $|\prime f$ $(\cross\in (A- A1)u(A2setf A Al))$ then $f\cross elseX"$

5. Final prop0sitions to prove.

Our goal is to show Bfunc defined above is a bijective map. Following two
propositions imply that Bfunc is bijective. By definition, if a function is injective
and also surjective, it is bijective.

83

lemma $Bfunc\lrcorner n|:"[A1\subseteq A;f\in Aarrow$ Al; $In|_{-}$onfAJ \Rightarrow

$in|_{-}on$ (Bfunc f A Al) $A”$

lemma $Bfunc_{-}sur|:"[A1\subseteq A;f\in Aarrow Al; in|_{-}onfA]\Rightarrow$

$sur|_{-}to$ (Bfunc f AAl) $AA1”$

?he flrst lemma named $Bfunc_{-}inj$ means:

Let Al be a subset of a set A, and let f be an injective map from A to Al,

then Bfunc f A Al” is injective.

The second lemma means that Bffinc fA Al” is a surjective map from A to Al.

6. Rules applied to prove the lemma $uBfunc$ inj”.

We list rules explicitly applied to prove the lemma $Bfunc_{-}inj$
” :

From HOL.thy balll, impl , $bo\cross_{-}equals$

From Fun.thy $inj_{-}on_{-}defin|_{-}on\lrcorner ff$

From FuncSet.thy funcset mem, Di$ff\lrcorner ff$

From Bernstein.thy $Bfunc_{-}eq,$ $Bfunc_{-}eq1,$ $A2set_{-}as_{-}range$

As a proof technique we use case-tac as:
case $-tac\cross|\in A$ –Al $uA2setfAA1^{\iota/}$

case $-tac’ y\prime\in$ A-Al $uA2setfAA1”$

Case-tac gives a pair of propositions one with an extra assumption given in

the quotation, and another one with an extra assumpUon with negation of the

assumption given in the quotation. For example, the last case-tac gives two

propositions one with $\prime\prime y\in A$ –Al $uA2$set $fAA1”$ as an extra assumption and

another proposition with $y\not\in A$ –Al $uA2$set $fAA7”$

We place flles in a order from elementary one to complicated one:

HOL.thy, Set.thy, Fun.thy, FuncSet.thy, Bernstein.thy.

7. Rules Bfunc-eq, Bfunc-eql, $A2set_{-}as_{-}range$

Rules in Bernstein.thy $Bfunc_{-}eq$”, “Bfunc-eql” and $A2set_{-}as_{-}$range are

84

proved by explicitly applying rules;

Bfunc-eq

refl, subset$D,$ $Bfunc_{-}def$, lambda$-funA2set_{-}sub$

Bfunc-eql

Bfunc$-def$

$A2set_{-}as_{-}range$

conjl, bexl, exl, funcsetl, conj $E,$ $be\cross E,$ $e\cross E,$ $\arg_{-}cong$ subsetD , Collectl,

UnE , Collect$E,$ $funcset_{-}mem,$ $A2set_{-}def,$ $A2set_{-}sub,$ $itr_{-}O,$ $Itr_{-}Suc$

8. The chain of rules backward from Bfunc
$-$

inj

To illustrate how the proof of $Bfunc\lrcorner nj$
” consists, we show a chain of

lemmas backward from “Bfunc-inj”.

Bfunc def \cdots

Bfunc-eq lambda-fun \cdots

A2 set sub \cdots

$Bfunc\lrcorner nj$ Bfunc-eql Bfunc def \cdots

A2 set-as range $A2set_{-}def$ \cdots

A2 set sub \cdots

$Itr_{-}O$, ltr-Suc \cdots

9. How a rule changes a proposition.

We give an example of a part of a proof to show how rules change a given
proposition. A proposition to prove is “Bfunc-inj”.

lemma $Bfunc\lrcorner n|:"[A1\subseteq A;f\in Aarrow Al; in|_{-}onfA]\Rightarrow in|_{-}on$ (Bfunc f A Al) $A”$

apply $($subst $in|_{-}on_{-}def)$

Here, $Bf\lfloor 1nc_{-}inj$
” is a proposition to prove. The next line is a command we ask a

prover change the original proposition. Then the inference engine Isabelle/HOL
returns a proposition derived by applying the rule subst $inj_{-}on_{-}def$

’ as
$1.$ $\prime\prime[A1\subseteq A;f\in Aarrow Al; in|_{-}onfA]\Rightarrow$

$\forall\cross\in A.$ $\forall y\in A$. Bfunc f A Al $x=$ Bfunc f A Al $yarrow\cross=y$

85

In fact, the deflnition of“inj-on” is substituted in the conclusion part. The
following command changes by the rule “ballI

” and subsequently“ballI
” again.

apply (rule balll, rule balll)

1. $\Lambda\cross y.$ $[A1\subseteq A,\cdot f\in Aarrow$ Al; $in|_{-}onfA;\cross\in A;y\in AI\Rightarrow$

Bfunc f A Al $x=$ Bfunc f A Al $yarrow\cross=y$

apply (rule impl)

1. $\Lambda\cross y$. [Al $\subseteq A;f\in Aarrow A1;in|_{-}onfA;\cross\in A;y\in A$

Bfunc f A Al $\cross=$ Bfunc f A Al y] $\Rightarrow\cross=y$

apply $(case_{-}tac"x\in A- A1 uA2setf A A1^{\iota/})$

1. $\Lambda\cross y.$ $[$ Al $\subseteq A;f\in Aarrow A1;in|_{-}onfA;\cross\in A;y\in A$;

Bfunc f A Al $\cross=$ Bfunc f A Al $y;\cross\in A$ –Al $uA2$setfA] $\Rightarrow\cross=y$

2. $\Lambda\cross y$. [Al $\subseteq A;f\in Aarrow$ Al; $in|_{-}onfA;\cross\in A;y\in A$;

Bfunc f A Al $\cross=$ Bfunc f A Al $y;x\not\in A$ –Al $uA2$setfA] $\Rightarrow x=y$

We need apply $(case\lrcorner ac"y\in A$ –Al $uA2$set $fAA1”)$, but it is abbreviatedl

apply $(frule\lrcorner aca=x in Bfunc_{-}eq[of Al A \eta, assumption+)$

1. $\Lambda\cross y.$ $[$ Al $\subseteq A;f\in Aarrow A1;in|_{-}onfA;\cross\in A;y\in A$; Bfunc f A Al $x=$

Bfunc f A Al $y_{1}\cdot\cross\in A$ –Al $uA2setfA$; Bfunc f A Al $x=\cross$] $\Rightarrow\cross=y$

2. abbreviated

Above application of Bfunc-eq shows how rules work. It flxes a part of path
towards the conclusion. This means that a rule decides a part of proof path.

10. Who gives a rule at each proof step?

Our aim is to make an automated prover which chooses proper rules at each
step of the proof. Actually, it is quite hard to give definitions“Bfunc“ and $A2_{-}set$

for a prover unless the prover does not keep mathematical ideas in a proof

86

knowledge data base. “case-tac” is also difficult tactic to use unless the prover
has no mathematical idea. Therefor we have to store such knowledge with
instruction how to use.

The formal proof to the Bernstein’s theorem is written by a human. Starting
from the original proposition, it is changed by a rule with $a/$some simple
mathematical property/properties. The proof direction is controled carefully. In
section 8, we gave a diagram of rules. But, in the diagram, we listed only rules
which are used on the correct way to the final proof. In fact, we have much more
rules applicable at a step (and probably, it takes us to a wrong way). Here, we
stress again, mathematical ideas are indispensable to reach the goal. A scenario
for the proof of the Bernstein’s theorem is:

1. give a simple form of the original proposition.
2. prove that a proof of the theorem is derived by a simplifled proposition.
3. prove the simplified proposition.

Our prover choose an applicable rule if the rule satisfies some necessary
conditions. Among those applicable rules, we can throw out some unnecessary
rules with some mathematical ideas. In the proof of the Bernstein‘s theorem,
within scenario 3, we need an instruction to use case-tac. Therefor giving a
scenario is not enough to generate a proposition, and we need some detailed
mathematical ideas.

References

1. S. Kametani, Set and topoloy, Asakura, (in Japanese)
2. T. Nipkow, L. Paulson, M. Wenzel, A proof assistant for higher order logic,

Springer, 2013.

87

