0oooo0O0oooo
0 18730 20140 82-87 82

An analysis of the Bernstein's theorem for an automated prover

by

Hidetsune Kobayashi
Institute of Computational Logic

Yoko Ono
Yokohama City University

abstract

Our aim is to let an automated prover generate a proof to the Bernstein's
theorem on the set theory. The prover can take some propositions out from a data
base at each proof step. However, since we have several propositions applicable
to a step, we have too many roots to check.

But, if we have a rough scenario of a proof, then we have only to check some
confined routes.

This report is an analysis of the Bernstein's theorem to see how a proof
consists and to see if we can give a scenario to the prover.

1. Introduction

At first, we introduce the Bernstein's theorem:
Let f be an injective map from a set A to a set B. If there is an injective
map g from B to A, the two sets A and B have the same cardinality.
That is, we have a one to one onto map from A to B.

This is a famous proposition on the set theory, and we have a short proof
requiring at most 10 lines to write down. But, for a formal proof, we require about
ten times more lines to express the proof, because no logical gaps are allowed and
we use elementary propositions on the set theory stored in a data base.

2. Bernstein's theorem
At first we have a big modification of the proposition:

We use the same notations as in 1. Since, g is a one to one map from B to
g(B), and gof is a one to one map from A to gof(A) which is a subset of g(B), if we
can find a one to one map from g(B) to A, we have a one to one onto map from A
to B. Therefor we have only to show:

let Al be a subset of A, and let f be a one to one map from A into Al,
We have a one to one map from A to Al.

83

Our prover use Isabelle/HOL as the inference engine, we express the last
proposition as
[AL1c A f: A> AL, inj_on fA] = 3¢. bij_to ¢ A Al.

3. Existing files in Isabelle/HOL.

A proof is a sequence of propositions derived logically correct change from
the former proposition. A logically correct change is given by applying an already
proved proposition. Hereafter, to avoid a confusion, we call the already proved
proposition as a rule, and a proposition to be proved is called simply as a
proposition. In Isabelle/HOL, a file containing propositions and proofs is called a
theory file (it is named as *.thy)

Rules are taken from existing thy files and from a new thy file
“Bernstein.thy”. Existing files are:

HOL.thy Elementary rules concerning logical propositions
Set.thy Elementary set theory

Fun.thy Elementary properties of functions

FuncSet.thy Elementary properties of functions

The new file “Bernstein.thy” is written to prove the therem.

4. Key definitions

The proof requires three key definitions. The first one is given by using the
primitive recursion as:

primrec itr :"[nat, 'a = 'a] = (‘a = 'a)" where
itr_0:"itr0f=f"| itr_Suc:"itr(Sucn)f=f o (itrnf)"

The second one is a definition giving a special subset of Al:

definition A2set::"['a = 'a, 'a set, 'a set] = 'a set” where
"A2setfAAL=={x.xe A1A(3ye (A-Al).3n.itrnfy = x)}"

The third is a map which is proved to be bijective later. This is the function
we looked for:
definition Bfunc::"['a = 'a, 'a set, 'a set] = ('a ='a)" where
"Bfunc f A Al == AxeA. if (x e (A - A1) U (A2set f A A1)) then f x else x"

5. Final propositions to prove.

Our goal is to show Bfunc defined above is a bijective map. Following two
propositions imply that Bfunc is bijective. By definition, if a function is injective
and also surjective, it is bijective.

84

lemma Bfunc_inj:"[A1 S A; fe A— Al;inj_onfA]=
inj_on (Bfunc f A A1) A"

lemma Bfunc_surj:"[A1 € A; fe A— Atf;inj_onfA] =
surj _to (Bfunc f A A1) A AT

The first lemma named “Bfunc_inj” means:

Let Al be a subset of a set A, and let f be an injective map from A to Al,
then “Bfunc f A Al” is injective.

The second lemma means that “Bfunc f A A1” is a surjective map from A to Al.

6. Rules applied to prove the lemma “Bfunc_inj”.

We list rules explicitly applied to prove the lemma “Bfunc_inj” :

From HOL.thy balll, impl , box_equals
From Fun.thy inj_on_def inj_on_iff
From FuncSet.thy funcset_mem, Diff_iff

From Bernstein.thy Bfunc_eq, Bfunc_eql, A2set_as_range

As a proof technique we use case_tac as:
case_tac "xe A - Alu A2set f A At

case_tac"y e A - Alu A2set f A At

Case_tac gives a pair of propositions one with an extra assumption given in
the quotation, and another one with an extra assumption with negation of the

assumption given in the quotation. For example, the last case_tac gives two
propositions one with "y e A - A1 U A2set f A A1" as an extra assumption and
another proposition with “y ¢ A — A1uU A2set f A AT,

We place files in a order from elementary one to complicated one:
HOL.thy, Set.thy, Fun.thy, FuncSet.thy, Bernstein.thy.
7. Rules Bfunc_eq, Bfunc_eql, A2set_as_range

Rules in Bernstein.thy “Bfunc_eq”, “Bfunc_eql” and “A2set_as_range” are

85

proved by explicitly applying rules;

Bfunc_eq

refl, subsetD, Bfunc_def, lambda_ fun A2set_sub
Bfunc_eql

Bfunc__def
A2set_as_range

conjl, bexl, exl, funcsetl, conjE, bexE, exE, arg_cong subsetD, Collectl,
UnE, CollectE, funcset_mem, A2set _def, A2set_sub, itr_0, itr_Suc

8. The chain of rules backward from Bfunc_inj

To illustrate how the proof of “Bfunc_inj” consists, we show a chain of
lemmas backward from “Bfunc_inj”.

Bfunc_def
Bfunc_eq lambda_fun
A2_set_sub
Bfunc_inj Bfunc_eql Bfunc_def
A2_set_as_range A2set_def ..
A2_set_sub ..
itr_0, itr_Suc ...

9. How a rule changes a proposition.

We give an example of a part of a proof to show how rules change a given
proposition. A proposition to prove is “Bfunc_inj".

lemma Bfunc_inj:"[A1 < A; fe A - A1; inj_on f Al = inj_on (Bfunc f A A1) A"
apply (subst inj_on_def)

Here, “Bfunc_inj” is a proposition to prove. The next line is a command we ask a
prover change the original proposition. Then the inference engine Isabelle/HOL
returns a proposition derived by applying the rule “subst inj_on_def” as

1L TAIc A f e A- AT inj_onfA]=
VxeA. VyeA BfuncfAA1x =BfuncfAAly » x =y

86

In fact, the definition of “inj_on” is substituted in the conclusion part. The
following command changes by the rule “balll” and subsequently “balll” again.

apply (rule balll, rule balli)

1.AXY. [AM1cA; f e AoALinj_onfA; xeA yeA]=
Bfuncf AALx=BfuncfAAly - x=Yy

apply (rule impt)

1.AXYy.[AIcA;f e Ao AL inj_onfA; xeA yeA;
BfuncfAAlx=BfuncfAALy]= x =y

apply (case_tac "x € A — A1U A2set f A A1")

LAXY. [AIcAf e AoAfinj_onfA; xehA yeA;
BfuncfAALx=BfuncfAAly,xe A-ATUA2setfA]= x=y

2.AXYy.[ATc A f e AoAtinj_onfA; xehA yeA;
BfuncfAA1x=BfuncfAAly;xe¢ A - AlUA2setfA]= x=y

We need apply (case_tac"y € A — A1 U A2set f A A1"), but it is abbreviated!
apply (frule_tac a = x in Bfunc_eq[of Al A f], assumption-+)
1L.Axy. [A1cA feA->AtLinj_onfA; xeA yeA BfuncfAAIx =
BfuncfAAly; xe A - A1UA2set fA; BfuncfAAIx=x]= x=y

2. abbreviated

Above application of Bfunc_eq shows how rules work. It fixes a part of path
towards the conclusion. This means that a rule decides a part of proof path.

10. Who gives a rule at each proof step?

Our aim is to make an automated prover which chooses proper rules at each

step of the proof. Actually, it is quite hard to give definitions “Bfunc” and “A2_set”
for a prover unless the prover does not keep mathematical ideas in a proof

knowledge data base. “case_tac” is also difficult tactic to use unless the prover
has no mathematical idea. Therefor we have to store such knowledge with
instruction how to use.

The formal proof to the Bernstein's theorem is written by a human. Starting
from the original proposition, it is changed by a rule with a/some simple
mathematical property/properties. The proof direction is controled carefully. In
section 8, we gave a diagram of rules. But, in the diagram, we listed only rules
which are used on the correct way to the final proof. In fact, we have much more
rules applicable at a step (and probably, it takes us to a wrong way). Here, we
stress again, mathematical ideas are indispensable to reach the goal. A scenario
for the proof of the Bernstein's theorem is:

1. give a simple form of the original proposition.
2. prove that a proof of the theorem is derived by a simplified proposition.
3. prove the simplified proposition.

Our prover choose an applicable rule if the rule satisfies some necessary
conditions. Among those applicable rules, we can throw out some unnecessary
rules with some mathematical ideas. In the proof of the Bernstein's theorem,
within scenario 3, we need an instruction to use case_tac. Therefor giving a
scenario is not enough to generate a proposition, and we need some detailed
mathematical ideas.

References
1. S. Kametani, Set and topology, Asakura, (in Japanese)

2. T. Nipkow, L. Paulson, M. Wenzel, A proof assistant for higher order logic,
Springer, 2013.

87

