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Abstract

In the game of Go, a ren is a group of connected stones of the same color. In
a legal stone arrangement on a Go board, one of stones in a ren must be adjacent
to an empty point called a liberty. The maximum number of rens in legal stone
arrangements on a $19\cross 19$ Go board was obtained with an $IP$ (Integer Program-
ming) solver. Finding the number is equivalent to finding the size of a minimum
dominating set of the $19\cross 19$ grid graph. $A$ formula that, for any integers $m$ and
$n$ with $16\leqq m\leqq n$ , calculate the size of a minimum dominating set of $m\cross n$

grid graphs has been presented. To prove the validity of the formula, an enormous
amount of computation was carried out. In this paper, the method of finding mini-
mum dominating sets of complete grid graphs using an $IP$ solver is developed. The
size of a minimum dominating set of $20\cross 20$ grid graph can be obtained using an
$IP$ solver.
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1 Introduction
A $ren$ is a group of connected stones of the same color. In a legal stone arrangement on
a Go board, one of stones in a ren must be adjacent to an empty point called a liberty.
Miyashiro et al found the maximum number of rens in legal stone arrangements on a
$19\cross 19$ Go board using an $IP$ (Integer Programming) solver[4]. They also shown that
problem of finding a legal stone arrangement of the maximum number of rens is equivalent
to finding the minimum dominating sets of complete grid graphs. In fact, the $19\cross 19$ Go
$bo$ard is corresponding to complete grid graph $P_{19}\cross P_{19}$ . We also have found a minimum
dominating set of complete grid graph $P_{20}\cross P_{20}$ using an $IP$ solver in two strategies.

The infinite grid graph $(V, E)$ is a graph whose vertex set $V$ is the set of all pairs of
integers, that is all grid points on the x-y plane, and whose edge set $E$ is the set of all
pairs of vertices corresponding to segments of length 1 that connects two grid points. $A$

grid graph is a finite induced subgraph of the infinite grid graph. Furthermore, $A$ complete
grid graph is a grid graph whose vertex set is corresponding to a set of grid points in a

数理解析研究所講究録
第 1873巻 2014年 135-140 135



rectangle whose edges are parallel to the $x$ or $y$ axis. An $m\cross n$ grid graph is a complete
grid graph, denoted by $P_{m}\cross P_{n}$ , whose vertices compose a rectangular grid with $m$ rows
and $n$ columns. Let $\gamma_{m,n}$ denote the size of a minimum dominating set of $P_{m}\cross P_{n}.$

As a matter of fact, D. Gon\caalves et al proved that the following formula is valid for
every integer pair $(m, n)$ satisfying $16\leqq m\leqq n[3]$ :

$\gamma_{m,n}=\lfloor\frac{(m+2)(n+2)}{5}\rfloor-4$

Before that, Chang proved that the right hand side expression is an upper bound on $\gamma_{m,n}.$

In a later section, we provide an explicit instance of dominating set of $P_{m}\cross P_{n}$ with size
$\lfloor(m+2)(n+2)/5\rfloor-4$ for every integer pair $(m, n)$ satisfying $16\leqq m\leqq n.$

In the next section, we shall describe two strategies using an $IP$ solver in which a
minimum dominating set of $P_{20}\cross P_{20}$ is derived. In Section 3, we shall provide an explicit
instance of dominating set of $P_{m}\cross P_{n}$ with size $\lfloor(m+2)(n+2)/5\rfloor-4$ for every integer
pair $(m, n)$ satisfying $16\leqq m\leqq n$ . In Section 4, we shall make concluding remarks.

2 Two Strategies to Solve Minimum Dominating Set
Problems of complete grid graphs

Minimum dominating set problems of complete grid graphs can be converted into integer
programming problems straightforwardly. Each vertex $v(i,j)$ of $P_{m}\cross P_{n}$ is corresponding
to binary variable $x(i,j)$ . Each $x(i,j)$ is interpreted as follows:

$x(i, j)=1$ $\Leftrightarrow$ $v(i, j)$ is a dominating vertex.

The problem is minimization one. The objective function is

$\sum_{i=1}^{m}\sum_{j=1}^{n}x(i,j)$ .

The constraints for variables $x(i,j)$ are as follows:

$x(1,1)+x(2,1)+x(1,2)\geqq 1,$

$x(1, n)+x(2, n)+x(1, n-1)\geqq 1,$

$x(m, 1)+x(m-1,1)+x(m, 2)\geqq 1,$

$x(m, n)+x(m-1, n)+x(m, n-1)\geqq 1$ ;

for $1<i<m,$
$x(i, 1)+x(i, 2)+x(i-1,1)+x(i+1,1)\geqq 1,$

$x(i, n)+x(i, n-1)+x(i-1, n)+x(i+1, n)\geqq 1$ ;

for $1<j<n,$
$x(1, j)+x(2,j)+x(1,j-1)+x(1,j+1)\geqq 1,$

$x(m, j)+x(m-1, j)+x(m, j-1)+x(m,j+1)\geqq 1$ ;
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for $1<i<m$ and $1<j<n,$

$x(i, j)+x(i-1,j)+x(i+1,j)+x(i, j-1)+x(i,j+1)\geqq 1.$

As above, each constraints is corresponding to a vertex of the complete grid graph,
and the vertices are classified into three parts, (1) the four corners, (2) the border except
the four corners, and (3) the rest, that is the interior vertices.

The $IP$ solver used in this research is SCIP[ $I$ ], and the performance of the computer
we used is as follows:

CPU: Inte$l^{}$ Cor$e^{TM}$ i7 CPU 960 (Clock frequency 3. $20GHz$),
Memory size: $12GB.$

SCIP cannot solve the problems created above for $m=n=20$ on our hardware in several
days. We deduce from the output of SCIP that the difficulty of the computation is chiefly
due to a huge number of optimum or nearly optimum solutions. Thus, determining $\gamma_{19,19}$

by solving $IP$ problems directly is limit to our computing environment.
Since, for any integers $m$ and $n$ satisfying $16\leqq m\leqq n$ , we can present a dominating set

of $P_{m}\cross P_{n}$ with $\lfloor(m+2)(n+2)/5\rfloor-4$ vertices, see the next section, to prove $\gamma_{20,20}=92,$

it suffices to show that no dominating set of $P_{20}\cross P_{20}$ of size 91 exists. We shall show it
in two strategies. The first one is partitioning $P_{20}\cross P_{20}$ into two $P_{20}\cross P_{10}’ s$ , creating $IP$

problems corresponding to the two complete grid graphs, solving the two $IP$ problems,
and merging the solutions. The second one is setting a number of areas in $P_{20}\cross P_{20},$

adding constraints on the number of dominating vertices in the areas, and solving the
modified $IP$ problem.

2.1 The Strategy of Dividing the $IP$ Problem
We first partition $P_{20}\cross P_{11}$ into three parts $A,$ $B$ , and $C$ as in Figure 1. Part $A,$ $B$ , and
$C$ are $P_{20}\cross P_{9},$ $P_{20}\cross P_{1}$ , and $P_{20}\cross P_{1}$ , respectively. For every vertex in part $C$ , any
constraint that forces the vertex to be covered is not assigned.

Figure 1: Partitioning $P_{20}\cross P_{11}$ int$0$ three parts.

Let $N(A\cup B),$ $N(B)$ , and $N(C)$ denote the number of dominating vertices in $A\cup B,$ $B,$

and $C$ , respectively. We obtain the following values by solving corresponding $IP$ problems.

(a) The minimum value of $N(A\cup B)$ .
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(b) The minimum and maximum values of $N(B)$ under the constraint $N(A\cup B)=v,$

for given $v.$

(c) The minimum and maximum values of $N(C)$ under the constraint $N(A\cup B)=w,$

for given $w.$

Since the value of (a) is 43, $N(A\cup B)\geqq 43$ holds. If $\gamma_{20,20}\leqq 91$ , then there must
be a feasible solution such that $N(A\cup B)=43,44$ , or 45. From the value of (c) for
$w=43,$ $N(C)\geq 14$ follows. From the value of (b) for $v=48,$ $N(B)\leq 9$ follows.
It is therefore impossible that both $N_{upper}=43$ and $N_{1ower}=48$ hold simultaneously,
where $N_{upper}$ and $N_{1ower}$ are the number of dominating vertices in upper and lower half
of $P_{20}\cross P_{20}$ , respectively. By similar arguments, it follows that it is impossible for both
$N_{upper}=44$ and $N_{1ower}=47$ to hold simultaneously. Furthermore, if there exists a
dominating set of $P_{20}\cross P_{20}$ consisting of 91 vertices then there are two feasible solutions
$X$ and $Y$ such that $X$ satisfies $N(A\cup B)=45,3\leq N(B)\leqq 4$ , and $5\leq N(C)\leq 6,$

$Y$ satisfies $N(A\cup B)=46,3\leq N(B)\leq 4$ , and $5\leq N(C)\leq 6$ , the part $B$ of $X$ is
equal to the part $C$ of $Y$ , and the part $C$ of $X$ is equal to the part $B$ of $Y$ . To find $X$

and $Y$ above, we had SCIP collect all feasible solutions for eight cases of constraints: four
constraints $N(A\cup B)=45,$ $N(B)\in\{3,4\}$ , and $N(C)\in\{5,6\}$ , and other four constraints
$N(A\cup B)=46,$ $N(B)\in\{5,6\}$ , and $N(C)\in\{3,4\}$ . The total computation time is at
most 13 hours, and the total number of feasible solutions is 84111.

2.2 The Strategy of Adding Constraints
Let $N,$ $S,$ $W$ , and $E$ be the number of dominating vertices in the upper, lower, left,
and right half of $P_{20}\cross P_{20}$ , respectively. First, we obtain $IP$ problem $P$ by adding the
following constraints to the $IP$ problem directly corresponding to the minimum dominating
set problem of $P_{20}\cross P_{20}$ :

$N=W=45$ and $S=E=46.$

Next, for each row $r_{i}$ , we find the maximum and the minimum values of the number of
dominating vertices in $r_{i}$ by solving the corresponding $IP$ problems. For each column $c_{j},$

we similarly find the maximum and the minimum values of the number of dominating
vertices in $c_{j}$ . Next, we obtain $IP$ problem $P’$ by adding the constraints derived from the
maximum and the minimum values above to $IP$ problem $P$ . Finally, we verify that there
is no feasible solution in $P’$ by solving it using an $IP$ solver, namely SCIP.

The total computation time is about 32 hours.

3 Construction of Dominating Sets of Size Equal to
the Given Upper Bound

Let $f(m, n)$ denote the function defined as:

$f(m, n)= \lfloor\frac{(m+2)(n+2)}{5}\rfloor-4$
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Chang proved that $f(m, n)$ is an upper bound on the size of a minimum dominating set
of $P_{20}\cross P_{20}[2]$ . In this section, we explicitly describe the structure of a dominating set of
$P_{m}\cross P_{n}$ of size equal to $f(m, n)$ for arbitrary integer pair $(m, n)$ satisfying $16\geqq m\geqq n.$

Let $P_{m}\cross P_{n}$ be considered as a subgraph of the infinite grid graph. Fill the infinite
grid graph with $X$-pentominoes, and let $S_{m,n}(k)$ denote the set of vertices at the center
of a $X$-pentomino in $P_{m}\cross P_{n}$ , where $k\in\{0,1,2,3,4\}$ represent the position of the most
left vertex in the highest row in $S_{m,n}(k)$ . For example, the set of vertices at $\cross$ marks
in Figure 2 is denoted by $S_{m,n}(0)$ All of the vertices of $P_{m}\cross P_{n}$ except the ones on the
border are dominated by $S_{m,n}(k)$ .

Figure 2: Example of $S_{m,n}(0)$ .

If $k\neq 1$ then two undominated vertices vanish by moving and adding a dominating
vertex on the border near the $NW$ corner. For example, if $k=0$ , then two undominated
vertices near the $NW$ corner vanish by moving the dominating vertex at the $NW$ corner
one vertex below and adding a dominating vertex two vertices right from the $NW$ corner,
see Figure 3. We omit the case of $k\in\{2,3,4\}.$

$\Rightarrow$

Figure 3: Deleting undominated vertices near the $NW$ corner.

By applying the process above to all corners, and adding undominated vertices on
the border to $S_{m,n}(k)$ as dominating vertices, we obtain a dominating set of $P_{m}\cross P_{n},$

denoted by $S_{m,n}(k)$ . For integers $m$ and $n$ with $m\geqq 16$ and $n\geqq 16$ , let $k(m, n)$ denote
the minimum element in $\{0,1,2,3,4\}$ such that

$| \overline{S_{m,n}(k(m,n))}|=\min\{|\overline{S_{m,n}(k)}||k\in\{0,1,2,3,4\}\}.$

We write $\overline{S_{m,n}(k(m,n))}$ as $S_{m,n}$ for short. By counting the size of the dominating set
$S_{m,n}$ , we have

$|S_{m,n}|=f(m, n)$ (1)
for any $m$ and $n$ in {16, 17, 18, 19, 20}. Let $g(m, n)$ denote the function defined as

$g(m, n)= \lfloor\frac{m}{5}\rfloor n+m\lfloor\frac{n}{5}\rfloor-5\lfloor\frac{m}{5}\rfloor\lfloor\frac{n}{5}\rfloor.$
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Since $|\overline{S_{m,n}(k)}|-g(m, n)$ , where $k\in\{0,1,2,3,4\}$ , and $f(m, n)-g(m,n)$ are all periodic

in the both variables $m$ and $n$ with period 5, it follows that equation (1) holds for any
integers $m$ and $n$ with $m\geqq 16$ and $n\geqq 16.$

4 Concluding Remarks
It seems to be intractable to carry out computations used to prove $\gamma_{m,n}=f(m, n)$ by
Gongalves et al using an $IP$ solver in practical time[3], where $f(m, n)$ is defined in the
previous section. It will therefore be an interesting challenge to prove above equation
using only an $IP$ solver. Notice that the performance of a notable commercial $IP$ solver
is much higher than the one of SCIP. We will use a commercial $IP$ solver, e.g. ILOG
CPLEX, to address the challenge.
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