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1 Introduction

In this article we give a summary of recent results on the stability of time-
periodic parallel flows of the compressible Navier-Stokes equation in an infi-
nite layer.

We consider the system of equations

8:p + div (pv) = 0, (1.1)
PO+ - VD) — pAT — (u + ' )Vdive + VP(p) = 5g, (1.2)
in an n dimensional infinite layer , = R"! x (0, 4):
Q = {7="(2",7,);
¥ =T(F,...,50) € R 0 < T, < £},

Here n > 2; p = p(@,t) and ¥ = T(¥%(%, 1), ...,9"(,t)) denote the unknown
density and velocity at time ¢ > 0 and position Z € €, respectively; P is the

pressure that is assumed to be a smooth function of g satisfying P'(p,) > 0

for a given constant p, > 0; u and y’ are the viscosity coefficients that are
assumed to be constants satisfying u > 0, % p+ ' > 0; div, V and A denote
the usual divergence, gradient and Laplacian with respect to T, respectively.
Here and in what follows 7. denotes the transposition.

Concerning the external force g, we assume that g takes the form

9 ="(3"(@n,1),0,...,0,7"(Zn))

with §(Zn, t) being a ’f—periodic function in ¢, where T > 0.
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The system (1.1)—(1.2) is considered under the boundary condition
Uzamo0 = V'(t)er, Blgu=e =0, (1.3)

and initial condition
(6, V) lz—o = (Po, Vo), (1.4)

where ‘71(?) is a T-periodic function of ¢ and e; = T(1,0,...,0) € R™.
If g™ is suitably small, problem (1.1)—(1.3) has a smooth time-periodic
solution @, = T(ﬁp,'ﬁp), so called time-periodic parallel flow, satisfying

UV Y L
Pp = Pp(Tn) > P, Z/o Pp(Tn) dZy, = pu,

Tp = T (0 (@0, £),0,...,0), To(Fn,t +T) = T3, 1)
for a positive constant p.

Our aim is to study the stability of the time-periodic parallel flow u,. We
will give a summary of the results on the large time behavior of perturbations
to U, when Reynolds and Mach numbers are sufficiently small, which were
recently obtained in [1, 2, 3].

To formulate the problem for perturbations, we introduce the following
dimensionless variables:

~ ~ £
z=flx, t=—t, v

v

uV

=Vv, p=pp, P=pV?P, VI=VV! G= PNZ

g

with g = T(g*(zp, 1), -+ ,g"(zy,)). Here

~

P'(p.) pxl?
T=ET o V= y

{|at‘71|C(R) + |§1|0(Rx[0,f-’])} + Vo > 0.

Under this change of variables the domain € is transformed into = R*~! x
(0,1); and g'(zn,t) and V1(¢) are periodic in ¢ with period T' > 0, where T

is defined by

V ~
T=-T.
12

The time-periodic parallel flow %y, is transformed into u, = T(pp, vp) satisfying
1
Pp = Pp(Tn) = P / Pp(Tr) dzp = 1,
0

for a positive constant p, and

Up = T(,Ugll(xn’ t)?o) s ’O)> 'U;(xn,t + T) = ’Uzl,(xn,t)
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It then follows that the perturbation u(t) = T(¢(t), w(t)) := T(v*(p(t) —
Pp), v(t) — vy(t)) is governed by the following system of equations

O + V0, & +2div (ppw) = f°, (1.5)
Oew — £ Aw - ZVdivw + ¥ (fééfﬁgs) e
1.6
2(82 L)de1 + vp0g, w + (O, vy )w"er = f,
wlag = 0, (17)
(¢, w)le=0 = (o, wo)- (1.8)

Here div, V and A denote the usual divergence, gradient and Laplacian with
respect to x, respectively; v and v are the non-dimensional parameters
’ r M

b5 .
ol v=v+v, V—p*fV’

VvV =

and f° and f = T(f',---, f") denote the nonlinearities:

f° = —div (¢w),
52 yl 2 3’;’" 1
f = —Ww- Vw + 7’;—%5 (—Aw + —“%&i(bel) — @I‘r_gfﬁ)’%—i (—A’LU -+ 72'};20561)
(¢+729p - Vdiv w _|_ (P {pp) ¢) 274 (P"(pp)¢2)
+P2(pp7 ¢’ 6w¢)7
where
Py mvp(ﬂp) ity Y (0°Pa(pp, 9))
+ OV(P"(pp)9?) _ #2V(P'(pp)¢)
274 pp(9+7%pp)  (d+720p)7%0E
with

1
Pi(Bpd) = [ (1= 0P (010 + 1) 0.

We note that the Reynolds number Re and Mach number Ma are given by
Re =v~! and Ma = 77!, respectively.

As for the stability of parallel flows of the compressible Navier-Stokes
equations, Iooss and Padula ([4]) studied the linearized stability of a station-
ary parallel flow in a cylindrical domain under the perturbations periodic in
the unbounded direction of the domain. It was shown that the linearized
operator generates a Cyp-semigroup in L2-space on the basic period cell with
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zero mean value condition for the density-component. Using the Fourier se-
ries expansion, the authors of [4] showed that the linearized semigroup is
written as a direct sum of an analytic semigroup and an exponentially de-
caying Cy-semigroup, which correspond to low and high frequency parts of
the semigroup, respectively. It was also proved that the essential spectrum of
the linearized operator lies in the left-half plane strictly away from the imag-
inary axis and the part of the spectrum lying in the right-half to the line
{Re A = —c} for some number ¢ > 0 consists of finite number of eigenvalues
with finite multiplicities. In particular, if the Reynolds number is suitably
small, then the semigroup decays exponentially.

On the other hand, the stability of a stationary parallel flow in the infinite
layer ) were considered in [5, 6, 7, 8] under the perturbations in some L*-
Sobolev space on Q. It was shown in [5, 8] that the asymptotic leading part
of the low frequency part of the linearized semigroup is given by an n — 1
dimensional heat kernel and the high frequency part decays exponentially as
t — oo, if the Reynolds and Mach numbers are sufficiently small and the
density of the parallel flow is sufficiently close to a positive constant. As for
the nonlinear problem, it was proved in [5, 6, 7] that the stationary parallel
flow is asymptotically stable under sufficiently small initial perturbations in
H™(Q) N LY(Q) with m > [n/2] + 1. Furthermore, the asymptotic leading
part of the perturbation is given by the same n — 1 dimensional heat kernel
as in the case of the linearized problem when n > 3. In the case of n = 2,
the asymptotic leading part is no longer described by linear heat equations
but by a one-dimensional viscous Burgers equation ([7]).

These results on stationary parallel flows were extended to the time-
periodic case in [1, 2, 3]. In section 2 we will give assumptions on the given
data g and V! and state some properties of time-periodic parallel flow. In
section 3 we will consider the linearized problem and give a summary of the
results obtained in [2, 3]. We will give a Floquet representation for a part
of low frequency part of the linearized evolution operator, which plays an
important role in the analysis of the nonlinear problem. In section 4 we will
consider the nonlinear problem and state the results on the global existence
and asymptotic behavior obtained by J. Brezina ([1]).

2 Time-periodic parallel flow

We assume the following regularity for g, V!and P.

Assumption 2.1 Let m be an integer satisfying m > 2. We assume that
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g ="(34(@s,1),0,...,0,5*(&,)), V}(Z) and P belong to the spaces

gt e ﬂ 7.([0,7]; H™%(0,2)), g€ C™|0,4],
71 [ﬂiu] T
Ve Cper” '([0,T1]),
and

P € C™(R).

It is easily verified that g, V! and P belong to similar spaces as g, Vi
and P.

Let us consider the time-periodic parallel flow. The dimensionless form
of problem (1.1)—(1.3) is written as

Owp + div (pv) = 0, (2.1)
p(Ow 4+ v - Vv) — vAv — DVdive + VP(p) = vpg, (2.2)
Vlzn=o = V(t)es, V|gp=1 = 0. (2.3)

"The following result was shown in [2].

Proposition 2.2 ([2]) There exists 6, > 0 such that if

v|g"|em (o, < o,

then the following assertions hold true.
There ezists a time-periodic solution u, = T(py(zs), vp(zn,t)) of (2.1)-
(2.3) that satisfies

Up € ﬂ per ‘] ;Hm+2—2j(07 1))’ Pp € Cm-H[O? 1]7

and

with



C
lop — Lem+i( < ;5'/(|P"|cm-1(g,m + 19" lem (o),

o
1P’ (pp) = Vleqoy < —v19" o
e P(sy)
p»P'(p
LI (2.4)

for some constants 0 < p <1 <p and ap > 0.

3 The linearized problem

In this section we consider the linearized problem
Su+ Lt)u=0, t > s, wlag =0, uli=s = Uo. (3.1)
Here L(t) is the operator given by

Vp (t) Oz y2div (pp -)
L(t) = , 3
(®) \V (ﬂﬂﬁ ) ~ £ AL, — ZVdiv

Y pp

0 0
" ( 202 v(t)er v(0)0e, I + (B2, vp(t))e1" €n ) '
Note that L(t) satisfies L(t + T') = L(t).
We introduce the space Z, defined by
Zy = {u="T(¢,w); ¢ € Cuoc([5,00); H'()),
85w € Crol[5, 00); L) N L ([, 00); HH() (lof] < 1),
w € Cioe((s, 00); H5 () }-

It was shown in [2] that for any initial data uo = T(¢o, wo) satisfying ug €
(H'N L?)(Q) with 8,wo € L?(£2) there exists a unique solution u(t) of linear
problem (3.1) in Z,. We denote U(t, s) the solution operator for (3.1) given
by
u(t) = U(t, s)uo.
To investigate problem (3.1) we consider the Fourier transform of (3.1)
with respect to ' € R*1

d_. =~ . ~
pr + Lg()u=0, t > s, Ule=s = Uo. (3.2)
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Here 8 = éb\(f’,xn,t) and W = iD(f’,xn,t) are the Fourier transforms of ¢ =
¢, Zn,t) and w = w(z', s, 1) in 2’ € R*! with £ = (&, ,&-1) € R™!
being the dual variable; Lg (t) is the operator on (H! x L2)(0,1) defined as

D(Le(t)) = (H* x [H? n HY))(0,1),

i10,(t) 7’0" € 7?0, (0p - )
Loy=| €5 L(gP -2 )+ ZeT¢ —iZed,,
O, (EH222 ) ~iZT¢5,, Ll -a2) - 2z,
0 0 0
+| E@u)e; &l Ok b, (01E)e]
0 0 0

For each t € R and ¢ € R™!, Lg(t) is sectorial on (H' x L?)(0,1). We
denote the solution operator for (3.2) by Ug, (t,s). We note that it holds that

U(t, s)up = &1 [(75, (t, s)ao]
for up € (H* N L?)(2) with pwo € L3(Q).
We also need to investigate the adjoint problem
—0Osu + Ez,(s)u =0, s <t, u|s=t = ug.
Here Ez,(s) is a formal adjoint operator defined by

D(Ly(s)) = (H' x [H? N HY))(0,1),

~i&1up(s) —iy?p,T€" 8, (py )
Lys)= | —i€5 2(€P~ 02k + 267€ _iZga,
e (5—(2’&) ) iy €0 REr-2) - 22,
0 Fos@u)Te 0
+ 0 —i&wl(s)fhs 0

0 O (vp(s))Tel  —i&ivy(s)



We denote the solution operator for the adjoint problem by ﬁg,(s, t).
It holds that (7'5/ (t,s) and f]’g, (s,t) are defined for all ¢ > s and
Oe(t+T,s+T) = Up(t,s), Us(s +T,t+T) = Tj(s,1).

Since Lg/(t) is T-periodic in ¢, the spectrum of U/ (T,0) plays an impor-
tant role in the study of the large time behavior. The following results were
established in [2].

We set
Xo= (H1 X Lz)(O, 1).

Theorem 3.1 ([2]) There exist positive numbers vy and o such that if v >
vo and v2/(v + V) > ~¢ then there exists ro > 0 such that for each &' with
|€'| < 7o there hold the following assertions.

(i) The spectrum of operator Ug/(T,0) on (H' x H3)(0,1) satisfies

o(Ug(T,0)) C {ug} U{p: Il < g0} (3.3)
for a constant qo > sz’th %qo < Repg < 1. Here pg = et is a
simple eigenvalue of Ug (T, 0) and A has an expansion
Ag = —ikobr — mi&f — K"[€" + O(IE'P), (3.4)
where kg € R and k; > 0, k" > 0.

Let ﬁg: be the eigenprojection for the eigenvalue pgr. Then there holds
e (t, 8)(I = g ulms < Ce*|(I ~ g ulx,

foru € Xg andt — s > T. Here d is a positive constant depending on
To.

(11) The spectrum of operator 65*,(0, T) on H' x H} satisfies
o(03(0,T)) © (e} U{n : Il < o}
Here Tig, is a simple eigenvalue of (/J\'g, (0, 7).
Let ﬁZ’ be the eigenprojection for the eigenvalue Tie,. Then there holds
(Meru, v) = (u, ﬁg,v)

for u,v € Xj.
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Theorem 3.1 can be proved by a perturbation argument from the case
¢ = 0. See [2] for details.

Based on Theorem 3.1 we can obtain a Floquet representation of a part
of U(t, s).

Let vg, o and 7o are the numbers given by Theorem 3.1. In the rest of
this section we assume that v > v and 72/(v + ) > 2.

We set R
wO(t) = Up(t, 0)ul”. (3.5)
o) .

Here u; " is an eigenfunction of the operator Uy (T, 0) for the eigenvalue e*T =
1. Observe that.
uO(t +T) = u@(2).

We also define the multiplier A : L2(R""!) — L?(R™!) by
Ao = y——l [551)\5'3] .
Here X is defined by
1: |€’| < Ty,
X&) =
Oa |£,| Z To
for & € R 1,

Clearly, A is a bounded linear operator on L2(R*!). It then follows that
A generates a uniformly continuous group {e"*}ser. Furthermore, it holds
that

n—
2

18 e 0| agn-1y) < C(1+8) ™" T G873 |lo]| pogo-1y, k=0,1,..., 1 < p< 2.

We have the following Floquet representation for U(t, s).

Theorem 3.2 ([3])
(i) There ezist time periodic operators
2(t): IXR™Y) o [2(Q), 2(t+T)=2(),
P(t): L*(Q) » LR, P(t+T)=P(t)
such that the operator P(t) := 2 (t) P (t) : L*(Q) — L*(Q) satisfies
P(t)? =P(t), P(t+1t)=DP(t),



P(t) (0 + L(t))u(t) = (0: + L(t))(Pt)u(t)) = 2 (1)[(0: — A)(Z (t)u(t))]
forw e L0, T; (H' x [H* N H{))(Q)) N HY(0,T; L*()).

(i) It holds that
P)U(t,s) = U(t, s)P(s) = 2 (t)et =94 P (s).
Furthermore,
16405 2L POU(t, o)ullia < O+t — )T H [l
for0<2j+1<m, k=0,1,....
(1ii) Let #(t) be a heat semigroup defined by
H(t) = F~ e~ (imob1+r1€3+x"1€"1°)t g7
Suppose that 1 < p < 2. Then it holds that
16505, (P(O)U (¢, s)u — [ (t ~ 8)olu®@(®))llz2@)
<CU+t-8) T Jull o)

for u = T(¢p,w), k = 0,1,..., and 0 < | < m. Here ulO(¢) is the
function gwen in (3.5) and 0 = fol o', ) dzp,.

(iv) (I —P@)U(t,s)=U(t,s)(I —P(s)) satisfies
I = P)U (¢, s)ull gy < Ce™ 9 (Jlull g xraye) + 10xwll2()

fort— s >T. Hered is a positive constant.

4 The nonlinear problem

In this section we consider the nonlinear problem (1.5)—(1.8)..

Brezina ([1]) recently proved the global existence and the asymptotic
behavior for (1.5)—(1.8) when the Reynolds and Mach numbers are sufficiently
small.

Theorem 4.1 ([1]) Letn > 2 and let m be an integer satisfying m > [n/2]+
1. Suppose that g, V' and P satisfy Assumption 2.1 for m replaced by m+1.
Then there are positive numbers vy and vy such that the following assertions
hold true, provided that v > vy and /(v + D) > 3.
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There is a positive number o such that if ug € T(¢o,wo) € H™ N L1(R)
satisfies a suitable compatibility condition and ||ug||pmnri() < €o, then there
ezists a global solution u(t) of (1.5)~(1.8) in C([0,00); H™(Y)) and u(t) sat-
isfies

||8f'u(t)”L2(n) = O(t_"——_g), k=0,1,

‘ast — oo.
Furthermore, there holds

n—1

lu(t) = (ou®)(®)ll 20y = Ot~ ~2na(2))

ast — oco. Here ny(t) =1 for n > 4, n,(t) = logt forn =3 and n,(t) =
for n =2, where § is an arbitrarily positive number; u(® = u(z,,t) is the
function given in (3.5); and o = o(z',t) satisfies

1
00 — k1020 — K'A"0 + k90p 0 =0, Olimo = / do(z’, z,,) dzy,
0
ifn >3, and
1
0,0 — nlaﬁla + K00z, 0 + a0y, (02) = 0, 0o = / éo(z'; zp,) dzy
0

ifn =2, where A" =92 +---+82_, forn >3, and ay is a constant.

Remark 4.2 A result similar to Theorem 4.1 also holds for the case of sta-
tionary parallel flows ([7]).

Theorem 4.1 is proved by the decomposition method based on the spectral
analysis in section 3. We write problem (1.5)—(1.8) as

O+ L(t)u = F(u), u(0) = uo.
We decompose the solution u(t) of (1.5)—(1.8) into
u(t) = u1(t) + oo (1),

where
ur(t) = P(t)u(t), uoo(t) = (I —P(¢))u(t).
It then follows from Theorem 3.2 that

u(t) = 2(t) [etAe@(O)uo + /Ot et~ P ($)F(u(s)) ds] :

Otio + L(t)uoo = (I — P(t))F(u), ue(0) = (I —P(t))uo.
To estimate u;, we use the estimates obtained in Theorem 3.2, while uy, is

estimated by a variant of the Matsumura-Nishida energy method ([9, 6, 7]).
See [1] for details.
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