Some aspects of a finite T_0-G-space

藤田亮介 (Ryousuke Fujita)

Introduction

The purpose of our presentation was to study actions of finite groups on finite T_0-spaces, i.e. topological spaces having finitely many points with the T_0-separation axioms. The definition of T_0-separation axiom is, for each pair of distinct points, there exists an open set containing one but not the other. A remarkable feature of a finite T_0-space is that it has the structure of a poset. Conversely, one can give any finite poset the structure of a finite T_0-space. The equivariant theory of finite T_0-spaces was first made by Stong [11]. After that, Kono and Ushitaki investigated the homeomorphism groups of finite spaces with group actions ([6], [7], [8]). Here a finite space is a topological space having finitely many points. In particular, they studied the homeomorphism groups of fixed point set X^G and G-actions on homeomorphism groups induced by given G-action on X, where X is a finite space with a G-action.

First we define a simplicial complex induced from a finite T_0-space. Recall that a finite T_0-space has a poset structure (see Proposition 2.2). Let X be a finite poset. The order complex $\Delta(X)$ of X is the abstract simplicial complex on the vertex set X whose faces are the chains of X, including the empty chain. The dimension of a simplex is defined to be the length of the chain, where the length of a chain is one less than its number of elements. In particular, the length of the empty chain is -1. When the dimension of a simplex σ is k, we write $\dim \sigma = k$. Next we shall define the geometric realization $|\Delta(X)|$ of $\Delta(X)$ by

$$|\Delta(X)| = \{ m : X \to [0,1] | \sum_{x \in X} m(x) = 1, \text{supp}(m) \in \Delta(X) \},$$

where for a map $m : X \to [0,1]$, we mean that $\text{supp}(m) = \{ x \in X | m(x) > 0 \}$. The numbers $(m(x) | x \in X)$ are the barycentric coordinates of m. For a simplex $\sigma \in \Delta(X)$, we put

$$|\sigma| = \{ m \in |\Delta(X)| | \text{supp}(m) = \sigma \}.$$

We can define a metric topology on $|\Delta(X)|$. In details, we have a metric d on $|\Delta(X)|$ defined by

$$d(m_1, m_2) = \left(\sum_{x \in X} (m_1(x) - m_2(x))^2 \right)^{\frac{1}{2}}.$$

Then we have $|\sigma| = \{ m \in |\Delta(X)| | \sum_{x \in \sigma} m(x) = 1 \}$, where $|\sigma|$ indicates the closure of $|\sigma|$. Moreover a metric space $|\Delta(X)|$ is equipped with a CW-complex structure whose n-cell
is a set \(\{ \sigma | \sigma \in \Delta(X), \dim \sigma = n \} \). Let \((p_x | x \in X) \) be a family of points in euclidean \(n \)-space \(\mathbb{R}^n \). Consider the continuous map
\[
f : |\Delta(X)| \to \mathbb{R}^n, \quad m \mapsto \sum_{x \in X} m(x)p_x.
\]
If \(f \) is an embedding, we call the image of \(f \) a simplicial polyhedron in \(\mathbb{R}^n \) of type \(\Delta(X) \), that is, \(f(|\Delta(X)|) \) is a realization of \(\Delta(X) \) as a polyhedron in \(\mathbb{R}^n \).

Now, we shall introduce McCord’s result [9, Theorem 2], which provides insight into understanding relations between finite \(T_0 \)-spaces and simplicial complexes.

Proposition 1.1. There exists a correspondence that assigns to each finite \(T_0 \)-space \(X \) a finite simplicial complex \(\Delta(X) \), whose vertices are the points of \(X \), such that the map \(\mu_X : |\Delta(X)| \to X \) induced from the correspondence above is a weak homotopy equivalence. Moreover, each map \(\varphi : X \to Y \) of finite \(T_0 \)-spaces is also a simplicial map \(\Delta(X) \to \Delta(Y) \), and \(\varphi \mu_X = \mu_Y | \varphi | \) where \(| \varphi | : |\Delta(X)| \to |\Delta(Y)| \) is a continuous map induced by \(\varphi \).

Let \(G \) be a finite group. In this note, we focus on the equivariant order complex \(\Delta(X) \) of a finite \(T_0 \)-\(G \)-space \(X \), that is, a finite \(T_0 \)-space with a \(G \)-action, and then its orbit space \(\Delta(X)/G \). In particular, we are interested in the following questions:

(i) Does \(|\Delta(X)| \) have a \(G \)-\(CW \)-complex structure?

(ii) Is there the orbit space version of Proposition 1.1?

Our results related the above questions are the following.

Theorem A. Let \(X \) be a finite \(T_0 \)-\(G \)-space. Then \(|\Delta(X)| \) is a finite \(G \)-\(CW \)-complex.

We will prepare the following technical condition:

(C) If \(g_0, g_1, \ldots, g_k \) are elements of \(G \) and \((x_0, x_1, \ldots, x_k) \) and \((g_0x_0, g_1x_1, \ldots, g_kx_k) \) are both simplices of \(K \), then there exists an element \(g \) of \(G \) such that \(gx_i = g_ix_i \) for all \(i \). Here overlaps of some of \(x_i \) are allowed.

Theorem B. If \(\Delta(X) \) satisfies property (C), there exists a weak homotopy equivalence \(\tilde{\mu}_X : |\Delta(X)|/G \to X/G \).

The rest of this note is organized as follows. In section 2, we briefly review finite \((T_0^-) \)-space theory. In section 3, we investigate an equivariant version of finite \(T_0 \)-spaces and prove Theorem A. The last section studies orbit spaces of equivariant complexes and prove Theorem B.

2 Finite \((T_0^-) \)-spaces

In this section, we survey well-known properties about finite \((T_0^-) \)-spaces. General reference may be found in [2], [6] and [10]. Let \(X \) denote a finite space, i.e. a topological space having finitely many points. Let a set \(U_x \) be the minimal open set which contains a point \(x \) of \(X \), that is, \(U_x \) is the intersection of all open sets containing \(x \). It is easy to see that a set \(\{ U_x | x \in X \} \) constitute a basis for the topology of \(X \). Now we can define a preorder on \(X \) by
\[
x \leq y \quad \text{if} \quad x \in U_y.
\]
In other words, every open set containing \(y \) also contains \(x \) if and only if \(x \leq y \).
Proposition 2.1. Let x and y be elements of a finite space X. Then X is T_0-space if and only if $U_x = U_y$ implies $x = y$.

Proposition 2.2. A finite T_0-space with the above preorder \leq is a poset.

If X is now a finite preordered set, one can define a topology on X given by the basis \(\{ y \in X \mid y \leq x \} \) for each $x \in X$. Note that if $y \leq x$, then y is contained in every basic set containing x, and therefore $y \in U_x$. Conversely, if $y \in U_x$, then $y \in \{ z \in X \mid z \leq x \}$. After all, $y \leq x$ if and only if $y \in U_x$. This shows that these two applications, relating topologies and preorders on a finite set, are mutually inverse. Thus we have

Proposition 2.3. A finite T_0-space corresponds to a finite poset.

Example 2.4. Let $X = \{a, b, c\}$ be a finite space whose topology is $\{\emptyset, \{a, b, c\}, \{b\}, \{c\}\}$. This space is T_0. Immediately, $U_a = \{a, b, c\}$, $U_b = \{b\}$ and $U_c = \{c\}$. Therefore $b \leq a$ and $c \leq a$, but there exists no order relation between b and c.

Example 2.5. Let $X = \{a, b, c, d\}$ be a finite space whose topology is $\{\emptyset, \{a, b, c, d\}, \{b, c, d\}, \{b\}, \{b, c\}, \{b, d\}\}$. This space is also T_0. Immediately, $U_a = \{a, b, c, d\}$, $U_b = \{b\}$, $U_c = \{b, c\}$ and $U_d = \{b, d\}$. On the order relation, we see the following Hasse diagram:

```
  a  \\
 / \  \\
/   \\
\  \\
 b-\  \\
 \  \\
 \  \\
 \  \\
 d-\  \\
 c
```

Figure 1.

Proposition 2.6. Let X be a preordered set. A set $F_x = \{y \in X \mid x \leq y\}$ is a closed set of X. Moreover F_x is the closure of the set $\{x\}$.

Definition 2.7. A subset U of a preordered set X is a down-set if for every $x \in U$ and $y \leq x$, it holds that $y \in U$. Dually, a subset F of a preordered set X is an up-set if for every $x \in F$ and $y \geq x$, it holds that $y \in F$. Open sets of finite spaces correspond to down-sets and closed sets to up-sets.

Proposition 2.8. Let X and Y be finite spaces, and f be a map from X to Y. Then f is continuous if and only if f is an order-preserving map.

Proposition 2.9. Let X be a finite space, f a continuous map of X into itself. If f is either one-to-one or onto, then it is a homeomorphism.

Next we state connectivity. First, for each U_x, we let $U_x \subset A \cup B$, where A and B are open sets of a finite space X. Then x is in one set, say $x \in A$, immediately $U_x \subset A$. Thus any finite space is locally connected.

Proposition 2.10. Let x, y be two comparable points of a finite space X and $x \leq y$. Then there exists a path from x to y in X, that is, a map α from the unit interval I to X such that $\alpha(0) = x$ and $\alpha(1) = y$.
Let X be a finite preordered set. A fence in X is a sequence x_0,x_1,\ldots,x_n of points such that any two consecutive are comparable. X is order-connected if any two points $x,y \in X$ there exists a fence starting in x and ending in y.

Proposition 2.11. Let X be a finite space. Then the following are equivalent:

(i) X is a connected topological space.

(ii) X is an order-connected preordered set.

(iii) X is a path-connected topological space.

If X and Y are finite spaces, we can consider the finite set Y^X of continuous maps from X to Y with the pointwise order: $f \leq g$ if $f(x) \leq g(x)$ for every $x \in X$.

Proposition 2.12. Let X and Y be two finite spaces. Then pointwise order on Y^X corresponds to the compact-open topology.

Corollary 2.13. Let $f,g:X \to Y$ be two maps between finite spaces. Then $f \simeq g$ if and only if there is a fence $f = f_0 \leq f_1 \geq f_2 \leq \cdots f_n = g$. Moreover, if $A \subset X$, then $f \simeq g \text{ rel } A$ if and only if there exists a fence $f = f_0 \leq f_1 \geq f_2 \leq \cdots f_n = g$ such that $f_i|_A = f|_A$ for every $0 \leq i \leq n$.

Any finite space is homotopy equivalent to a finite T_0-space.

Proposition 2.14. Let X be a finite space. Let X_0 be the quotient X/\sim where $x \sim y$ if $x \leq y$ and $y \leq x$. Then X_0 is T_0 and the quotient map $q:X \to X_0$ is a homotopy equivalence.

Therefore, when studying homotopy types of finite spaces, we can restrict our attention to finite T_0-spaces.

Definition 2.15. A point x in a finite T_0-space X is a down beat point if x cover one and only one element of X. This is equivalent to saying that the set $\hat{U}_x = U_x \setminus \{x\}$ has a maximum. Dually, $x \in X$ is an up beat point if x is covered by a unique element or equivalently if $\hat{F}_x = F_x \setminus \{x\}$ has a minimum, where F_x denotes the closure of the set $\{x\}$. In any of these cases, we say that x is a beat point of X.

Proposition 2.16. Let X be a finite T_0-space and let $x \in X$ be a beat point. Then $X \setminus \{x\}$ is a strong deformation retract of X.

Definition 2.17. A finite T_0-space is a minimal finite space if it has no beat points. A core of a finite space X is a strong deformation retract which is a minimal finite space.

Proposition 2.18. Let X be a minimal finite space. A map $f:X \to X$ is homotopic to the identity if and only if $f = 1_X$.

Immediately, we have the following corollary.

Corollary 2.19. (Classification Theorem) A homotopy equivalence between minimal finite spaces is a homeomorphism. In particular, the core of a finite space is unique up to homeomorphism and two finite spaces are homotopy equivalent if and only if they have homeomorphic cores.

By the Classification Theorem, a finite space is contractible if and only if its core is a point. In fact, a one-point finite space has a core of the one-point. Therefore any contractible finite space has a point which is a strong deformation retract. This property is false in general for non-finite spaces.
3 Finite T_0-G-spaces

In this section, we treat an equivariant version of finite T_0-spaces. Let G be a topological group (a group, for short) and X a finite T_0-space. A G-invariant subspace $A \subset X$ is an equivariant strong deformation retract if there is an equivariant retraction $r : X \to A$ such that ir is homotopic to 1_X via a G-homotopy which is stationary at A. A finite T_0-space which is a G-space will be a finite T_0-G-space.

Remark If a topological group G acts on a finite topological space effectively, then it must be a finite topological group [7, Proposition 3.9]. Therefore, from now on, we assume that G is finite.

Proposition 3.1. Let X be a finite T_0-G-space. Then there exists a core of X which is G-invariant and an equivariant strong deformation retract of X.

Proposition 3.2. A contractible finite T_0-G-space has a point which is fixed by the action of G.

This proposition deduces Stong’s result stated in introduction. Note that $A_p(G)$ is a finite T_0-G-space by conjugation. If $A_p(G)$ is contractible, $A_p(G)$ has exactly one point core which is G-invariant. Therefore $A_p(G)$ has a fixed point by the action of G. Consequently, G has a non-trivial normal p-subgroup.

Proposition 3.3. Let X and Y be finite T_0-G-spaces and let $f : X \to Y$ be a G-map which is a homotopy equivalence. Then f is an equivariant homotopy equivalence.

Let X be a finite T_0-G-space and x, y points of X. If $x \in U_y$, then $gx \in gU_y = U_{gy}$. Therefore a G-action on a finite T_0-space X preserves the order. Thus $\Delta(X)$ is a G-simplicial complex (in short, G-complex). Let \mathbb{N}_0 be the union set of natural numbers $\{1, 2, 3, \cdots \}$ and $\{0\}$.

Definition 3.4. Let G be a finite group. A CW-complex Z with a G-action is called a G-CW-complex if it satisfies the following conditions:

(i) The G-action determines a cellular map, that is, for any $g \in G$, $gZ^i \subset Z^i$ for each $i \in \mathbb{N}_0$, where Z^i denotes the union of cells of dimension $\leq i$ and is called the i-skeleton of Z.

(ii) If $g(e) = e$, then g is trivial on \bar{e}, that is, $Z^i \supset \bar{e}$, where \bar{e} is the closure of e.

Proof of Theorem A.

Proof. For $g \in G$ and $m \in |\Delta(X)|$, we define a map $g(m) : X \to [0, 1]$ by

$$(g(m))(x) := m(g^{-1}(x)) \quad \text{for } x \in X.$$

Then we have

$$\sum_{x \in X} (g(m))(x) = \sum_{x \in X} m(g^{-1}(x)) = \sum_{g^{-1}(x) \in X} m(g^{-1}(x)) = 1,$$
on the other hand,

\[
\text{supp}(g(m)) = \{ x \in X \mid (g(m))(x) > 0 \} = \{ x \in X \mid m(g^{-1}(x)) > 0 \} = \{ x \in X \mid g^{-1}(x) \in \text{supp}(m) \} = g(\text{supp}(m)) \in \Delta(X).
\]

Therefore we have that \(g(m) \in |\Delta(X)| \). Thus we can define an isometric map \(g : |\Delta(X)| \to |\Delta(X)| \). For each \(\sigma \in \Delta(X) \), it holds that \(g(|\sigma|) = |g(\sigma)| \). In particular, a map \(g \) is a cellular map.

Let \(g(|\sigma|) = |\sigma| \). Immediately, we have \(g(\sigma) = \sigma \). Since \(g \) is an automorphism between totally ordered sets, it is an identity map. Therefore \(g^{-1} : \sigma \to \sigma \) is also an identity map. Let \(m \) be any element of \(|\sigma| \).

\[
\text{Case } x \in \sigma : \text{ It follows that } (g(m))(x) = m(g^{-1}(x)) = m(x).
\]

\[
\text{Case } x \in X \setminus \sigma : \text{ Since } g^{-1}(x) \in X \setminus g^{-1}(\sigma) = X \setminus \sigma, \text{ we get that } (g(m))(x) = m(g^{-1}(x)) = 0 = m(x).
\]

Therefore \(g(m) = m \). Thus we obtain that \([\sigma] \subset |\Delta(X)|^g \).

Referring to [5, p.229], we now prepare the following technical properties concerning a \(G \)-complex \(K \):

\begin{enumerate}
 \item [(P_1)] For any \(g \in G \) and simplex \(\sigma \) of \(K \), \(g \) leaves \(\sigma \cap g\sigma \) pointwise fixed.
 \item [(P_2)] If \(g_0, g_1, \cdots, g_k \) are elements of \(G \) and \((x_0, x_1, \cdots, x_k) \) and \((g_0x_0, g_1x_1, \cdots, g_kx_k) \) are both simplices of \(K \), then there exists an element \(g \) of \(G \) such that \(gx_i = g_i x_i \) for all \(i \). Here overlaps of some of \(x_i \) are allowed.
 \item [(P_3)] Let \(g \) be an element of \(G \) and \(\sigma \) a simplex of \(K \). If \(g(\sigma) = \sigma \), \(g \) leaves \(\sigma \) pointwise fixed.
\end{enumerate}

Proposition 3.5. It holds that \((P_2) \implies (P_1) \implies (P_3) \).

Proposition 3.6. Let \(X \) be a finite \(T_0 \)-\(G \)-space. Then a \(G \)-complex \(\Delta(X) \) holds both property \((P_1) \) and property \((P_3) \).

On a \(G \)-complex, we can see a geometric simplex as a cell. One immediate consequence of this observation is the following.

Proposition 3.7. Let \(|K| \) be the geometric realization of a \(G \)-complex \(K \) with property \((P_3) \). Then \(|K| \) is a \(G \)-\(CW \)-complex.

The following result is an equivariant version of Proposition 1.1 in a sense.

Proposition 3.8. Let \(X \) be a finite \(T_0 \)-\(G \)-space. For each subgroup \(H \) of \(G \), it holds that \(\Delta(X^H) = \Delta(X)^H \) and the map \(\mu_X^H : |\Delta(X)|^H \to X^H \) is a weak homotopy equivalence.

4 Orbit spaces

Next we will devote the study of the orbit space of a \(G \)-complex.
Proposition 4.1. Let X be a finite T_0-G-space. Then the orbit space X/G is a finite T_0-space.

Let X and Y be finite sets, and $\mathcal{P}(X)$ the power set of X. A map $f : X \to Y$ induces a map $\mathcal{P}(X) \to \mathcal{P}(Y)$, which we denote also by f. Let K be a simplicial complex such that X is the set of vertices of K. Then it is easy to see that the image $f(K)$ becomes a simplicial complex such that $f(X)$ is the set of vertices of $f(K)$. We apply this observation to our situation.

Let K be a G-complex and X be the set of vertices of K. Concerning the induced G-action on X, we consider its orbit space X/G and the orbit map $p : X \to X/G$. As observes above, p induced a map $\mathcal{P}(X) \to \mathcal{P}(X/G)$, which we denote by p as well and $p(K)$ becomes a simplicial complex such that X/G is the set of vertices of $p(K)$. For $s \in K$, we denote $p(s)$ by \bar{s}.

Next consider another kind of orbit space. Let K be a G-complex. Denote by K/G the orbit space of the G-action on K and by $\pi : K \to K/G$ the orbit map. For $s \in K$, we denote $\pi(s)$ by $[s]$. Note that K/G is not a simplicial complex in general and K/G does not coincide with $p(K)$ in general.

Proposition 4.2. [5, Lemma 5.10] Let K be a G-complex satisfying property (P_2) and X be the set of vertices of K. Then the orbit space K/G becomes a simplicial complex such that the set of vertices K/G is X/G and K/G is naturally isomorphic to $p(K)$. Moreover the orbit map $\pi : K \to K/G$ is a simplicial map preserving dimension of simplexes.

Corollary 4.3. If K is a G-complex satisfying property (P_2), $\lvert K \rvert / G$ is homeomorphic to $\lvert K/G \rvert$.

Furthermore, we add simplicial notion for both posets and (finite) cell complexes to investigate the simplicial structure of the orbit spaces in detail.

Definition 4.4. A simplicial poset P is a finite poset with a smallest element $\hat{0}$ such that every interval

$$[\hat{0}, y] = \{ x \in P | \hat{0} \leq x \leq y \}$$

for $y \in P$ is a boolean algebra, i.e., $[\hat{0}, y]$ is isomorphic to the set of all subsets of a finite set, ordered by inclusion. When a boolean algebra is the set of all subsets of a finite set consisting of n elements, we denote the boolean algebra by B_n. Let x be an element of P such that $[\hat{0}, x]$ is isomorphic to a boolean algebra B_n. Then the dimension of x is said to be $n - 1$, denoted by $\dim x = n - 1$. Remark that $\dim \hat{0} = -1$. Moreover, a simplicial poset P is n-dimensional, if it contains at least one point x such that $\dim x = n$ but no $(n + 1)$-dimensional points.

The set of all faces of a (finite) simplicial complex with empty set added forms a simplicial poset ordered by inclusion, where the empty set is the smallest element. Such a simplicial poset is called the face poset of a simplicial complex, and two simplicial complexes are isomorphic if and only if their face posets are isomorphic. Therefore, a simplicial poset can be thought of as a generalization of a simplicial complex. Figure 2 shows that a 2-simplicial complex and its face poset.
A CW-complex is said to be regular if all closed cells are homeomorphic to closed disks. Although a simplicial poset is not necessarily the face poset of a simplicial complex, it is always the face poset of a regular CW-complex. Let P be a simplicial poset. To each element $y \in P \setminus \{0\} = \overline{P}$, we assign a (geometric) simplex whose face poset is $[0, y]$ and glue those geometric simplices according to the order relation in P. Then, we get the CW-complex in which the closure of each cell is identified with a simplex, the structure of faces being preserved; moreover, all characteristic mappings are embeddings. This CW-complex is called a simplicial cell complex associated to P and is denoted by $|P|$. For instance, if two 2-simplices are identified on their boundaries via the identity map, then it is not a simplicial complex but a CW-complex obtained from a simplicial poset (see Figure 3). Clearly, this CW-complex is homeomorphic to the 2-sphere S^2. The simplicial cell complex $|P|$ has a well-defined barycentric subdivision which is isomorphic to the order complex $\Delta(\overline{P})$ of the poset \overline{P}.

By definition, we have the following proposition.

Proposition 4.5. Let S be a finite cell complex. Then S is simplicial if and only if for each cell $\sigma \subset S$, the closure $\overline{\sigma}$ of σ is isomorphic to a simplex Δ of the same dimension with σ as a cell complex.

In a word, a simplicial cell complex is a cell complex such that each closed cell is a geometric simplex. Obviously, the geometric realization of any finite simplicial complex is a simplicial cell complex.

Definition 4.6. Let S be a simplicial cell complex and $V(S)$ the set of all 0-cells of S. Let σ be a cell of S. We put $V(\sigma) = V(S) \cap \overline{\sigma}$. For each cell $\sigma \subset S$, there is an embedding

$$\varphi_{\sigma} : \Delta^{\dim \sigma}(V(\sigma)) \to \overline{\sigma} \subset S,$$
where $\Delta^{\dim \sigma}(V(\sigma))$ is the $\dim \sigma$-simplex whose vertex set is $V(\sigma)$. We say φ_{σ} a characteristic map of σ.

Proposition 4.7. A simplicial poset corresponds to a simplicial cell complex.

Let P be a simplicial poset and $x \in P$. A half-open interval $[\hat{0}, x]$ is a subset $\{y \in P | \hat{0} \leq y \leq x\}$ of P.

Definition 4.8. Let P and Q be simplicial posets. A simplicial poset map $f : P \rightarrow Q$ is a map such that for any $x \in P$, $\dim f(x) \leq \dim x$ and $f([\hat{0}, x]) = ([\hat{0}, f(x)]).

For a simplicial poset P, we put $V(P) := \{x \in P | \dim x = 0\}$, which is called the vertex set of P. Similarly, for each $x \in P$, $V(x) := V([\hat{0}, x]) = [\hat{0}, x] \cap V(P)$, which is also called the vertex set of x. A simplicial poset map f is order-preserving and satisfies $f(V(x)) = V(f(x))$ for $x \in P$. Note that $V(P) = \bigcup_{x \in P} V(x)$. Moreover we put

$$K_P := \{V(x) | x \in P\},$$

which is a simplicial complex whose vertex set is $V(P)$. Here we see K_P as a simplicial poset, so that a surjection $\varphi_P : P \twoheadrightarrow K_P$ defined by $\varphi_P(x) = V(x)$ is a simplicial poset map.

Definition 4.9. Let X and Y be simplicial cell complexes. A simplicial cell complex map $f : X \rightarrow Y$ is a cellular map such that for any cell $\sigma \in X$, $f(\sigma)$ is a cell of Y and $f|_{\sigma} : \sigma \rightarrow f(\sigma) \subset Y$ extends linearly the map $f|_{V(\sigma)} : V(\sigma) \rightarrow V(f(\sigma)) \subset Y$. Note that $f(\sigma)$ is the compact set of a Hausdorff space Y.

Let X and Y be simplicial cell complexes. Let $\mathcal{F}(X)$ (respectively, $\mathcal{F}(Y)$) be a simplicial poset corresponding to X (respectively, Y). A simplicial cell complex map $f : X \rightarrow Y$ defines a simplicial poset map $\mathcal{F}(f) : \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ by $\sigma \mapsto f(\sigma)$ for each cell $\sigma \in X$. Conversely, we have the following.

Proposition 4.10. For any simplicial poset map $\alpha : \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$, there exists uniquely a simplicial cell complex map $f : X \rightarrow Y$ such that $\mathcal{F}(f) = \alpha$. In particular, if a simplicial poset map $\alpha : \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ is bijective, then f is an isomorphism from X to Y.

Proposition 4.11. For any simplicial poset P, there exists some simplicial cell complex X with $\mathcal{F}(X) \cong P$.

From the above two propositions, there is uniquely an isomorphism class $[X]$ such that $\mathcal{F}(X) \cong P$. Then a simplicial cell complex X is said to be a realization of P, denoted by $|P|$ as well. Under this notation, we have a simplicial cell complex map $|\varphi_P| : |P| \rightarrow |K_P|$.

Let K be a G-complex. Now, we shall investigate the structure of the orbit space K/G. Let σ and τ be simplices of K. We define a partial ordering on K/G as follows:

$$\pi(\tau) \leq \pi(\sigma) \text{ if and only if there exists an element } g \in G \text{ such that } g(\tau) \subset \sigma,$$

where the map $\pi : K \twoheadrightarrow K/G$ is the orbit map. Note that the orbit space K/G has the minimum $\hat{0} = \pi(\emptyset)$. Moreover we denote the orbit map from $|K|$ to $|K|/G$ by π as well.
Proposition 4.12. If a G-complex K has property (P_1), K/G is a simplicial poset. Moreover $|K|/G$ is a simplicial cell complex such that $\{\pi(\sigma)\mid \sigma \in K\backslash \{\emptyset\}\}$ is the set of all cells of $|K|/G$.

Proposition 4.13. If a G-complex K has property (P_1), it holds that $|K|/G \cong |K/G|$ as a simplicial cell complex.

Corollary 4.14. Let X be a finite T_0-G-space. The orbit space $|\Delta(X)|/G$ is a finite simplicial cell complex associated to a simplicial poset $\Delta(X)/G$. Moreover we have $|\Delta(X)|/G \cong |\Delta(X)/G|$.

Let X be a finite T_0-G-space. Since the orbit map $p : X \to X/G$ is continuous, it is an order-preserving map. It determines a simplicial map

$$\Delta(p) : \Delta(X) \to \Delta(X/G),$$

and also a continuous map $|\Delta(p)| : |\Delta(X)| \to |\Delta(X/G)|$. Noting $|\Delta(X/G)|$ is a G-space with a trivial G-action, we have a continuous map $\tilde{p} : |\Delta(X)|/G \to |\Delta(X/G)|$ such that the following diagram commutes

$$\begin{array}{ccc}
|\Delta(X)| & \xrightarrow{q} & |\Delta(X)/G| \\
\downarrow & & \downarrow \tilde{p} \\
|\Delta(X)|/G & \xrightarrow{p} & |\Delta(X/G)|
\end{array}$$

where q is the orbit map from $|\Delta(X)|$ to $|\Delta(X)|/G$.

Proposition 4.15. Let X be a finite T_0-G-space. A simplicial complex $K_{\Delta(X)/G}$ concides with $\Delta(X/G)$.

In consequence we have the following commutative diagram:

$$\begin{array}{ccc}
|\Delta(X)|/G & \xrightarrow{\cong} & |\Delta(X)/G| \\
\downarrow \tilde{p} & & \downarrow |\varphi_{\Delta(X)/G}| \\
|\Delta(X/G)| & \xrightarrow{id} & |\Delta(X/G)|
\end{array}$$

A simplicial action of G on a simplicial complex K is called regular in the sense of Bredon if K possesses property (P_2) for the action of each subgroups of G. Now, we shall present an interesting example.

Example 4.16. Let n be an integer larger than one. Let X_{2n+2} be a set consisting of $2n+2$ elements as follows:

$$X_{2n+2} = \bigcup_{i=1}^{n+1}\{x_i, x_{-i}\}.$$
We set
\[
\begin{align*}
U(x_i) := \{x_i\} \cup \{x_j, x_{-j}\}, \quad \text{and} \\
U(x_{-i}) := \{x_{-i}\} \cup \{x_j, x_{-j}\},
\end{align*}
\]
for \(i = 1, 2, \ldots, n + 1\). First note that each point \(x_i\) determines the smallest open set \(U(x_i)\) on \(X_{2n+2}\), that is, \(U_{x_i} = U(x_i)\). Therefore we define a \(T_0\)-topology on \(X_{2n+2}\). Let \(g\) be a map from \(X_{2n+2}\) to itself by \(g(x_i) = x_{-i}\). We set \(G := (g)(\text{that is, a group is generated by } g)\). Evidently, \(G\) is a cyclic group whose order is two. Since \(|\Delta(X_{2n+2})|\) is homeomorphic to the \(n\)-sphere \(S^n\), it holds that \(|\Delta(X_{2n+2})|/G \cong \mathbb{R}P^n\), where \(\mathbb{R}P^n\) is the \(n\)-dimensional real projective space. Note that \(|\Delta(X_{2n+2})|/G\) is a simplicial cell complex by Proposition 4.12. On the other hand, \(X_{2n+2}/G\) is a totally ordered set with \(n + 1\) elements. Therefore \(|\Delta(X_{2n+2}/G)|\) is homeomorphic to a \(n\)-simplex \(\Delta^n(X_{2n+2}/G)\).

Since the map \(\tilde{p} : |\Delta(X_{2n+2})|/G \to |\Delta(X_{2n+2}/G)|\) is not a weak homotopy equivalence, \(\tilde{p}\) is not an isomorphism between simplicial cell complexes. If \(\Delta(X_{2n+2}/G)\) is a simplicial complex, the map \(|\varphi_{\Delta(X_{2n+2}/G)}|\) is an isomorphism, and \(\tilde{p}\) is also an isomorphism. This is a contradiction. Hence \(\Delta(X_{2n+2}/G)\) is not a simplicial complex, thereby \(G\)-action on \(\Delta(X_{2n+2})\) is not regular in the sense of Bredon.

Proof of Theorem B.

Let \(X\) be a finite \(T_0\)-\(G\)-space. By Proposition 1.1, there is a weak homotopy equivalence \(\mu_X : |\Delta(X)| \to X\). Then \(\mu_X\) determines a continuous map \(\tilde{\mu}_X : |\Delta(X)|/G \to X/G\) such that the following diagram commutes.

\[
\begin{array}{ccc}
|\Delta(X)|/G & \xrightarrow{\tilde{p}} & |\Delta(X)/G| \\
\downarrow{\tilde{\mu}_X} & & \downarrow{\mu_{X/G}} \\
X/G & &
\end{array}
\]

Therefore \(\tilde{p}\) is a weak homotopy equivalence if and only if \(\tilde{\mu}_X\) is so. In general, \(\tilde{\mu}_X\) is not a weak homotopy equivalence (see Example 4.16).

Remark that both \(|\Delta(X)|/G\) and \(|\Delta(X/G)|\) are CW-complexes. Therefore, we have

Claim 1. \(\tilde{\mu}_X\) is a weak homotopy equivalence if and only if \(\tilde{p}\) is a homotopy equivalence.

We consider the case where \(\tilde{p}\) is a homeomorphism.

Claim 2. Let \(X\) be a finite \(T_0\)-\(G\)-space. Then the following conditions are equivalent:
(1) \(\tilde{p}\) is a homeomorphism.
(2) \(\Delta(X)/G\) is a simplicial complex.
(3) \(\Delta(X)\) has property (P2).

Proof. (1) \(\Rightarrow\) (2) Since \(\tilde{p}\) is a homeomorphism, \(\varphi_{\Delta(X)/G}\) is injective. Let \(U\) be a subset of \(X/G\). Then there exists only one element \(s\) of \(\Delta(X)/G\) at most with \(V(s) = U\). Therefore \(\Delta(X)/G\) is a simplicial complex. (2) \(\Rightarrow\) (1) Since \(\Delta(X)/G\) is a simplicial complex, it holds that \(|\Delta(X)/G| = |\Delta(X/G)|\). Noting that \(\varphi_{\Delta(X)/G}\) is surjective, \(\tilde{p}\) is also surjective.
By Proposition 2.9, \tilde{p} is a homeomorphism. (2) \Rightarrow (3) Let $\sigma = \{x_i \mid i = 0, \cdots, k\}$ and $\tau = \{g_ix_i \mid g_i \in G, \ i = 0, \cdots, k\}$ be simplices of $\Delta(X)$. If $x_i = x_j$, then

$$g_jx_j = (g_jg_i^{-1})(g_ix_i) \in \tau \cap (g_jg_i^{-1})\tau.$$

Since a G-complex $\Delta(X)$ has property (P_1), we have $g_jx_j = (g_jg_i^{-1})^{-1}(g_jx_j) = g_ix_i$, so that $g_ix_i = g_jx_j = g_jx_i$. Hence we assume that each $x_i (i = 0, \cdots, k)$ is distinct, then both σ and τ are k-simplices of $\Delta(X)$. Therefore both $\pi(\sigma)$ and $\pi(\tau)$ are elements of $\Delta(X)/G$ such that $V(\pi(\sigma)) = V(\pi(\tau)) = \{\pi(x_i) \mid i = 0, \cdots, k\}$. By assumption, $\pi(\sigma) = \pi(\tau)$. In consequence there is some $g \in G$ such that $\tau = g(\sigma)$ and $g_ix_i = g_jx_i (i = 0, \cdots, k)$.

(3) \Rightarrow (2) It follows from Proposition 4.2. \square

Combining Claim 1 and Claim 2, we obtain Theorem B. \square

References

