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1 Introduction

The purpose of our presentation was to study actions of finite groups on finite Ty-spaces,
L.e. topological spaces having finitely many points with the Ty-separation axioms. The
definition of Ty-separation axiom is, for each pair of distinct points, there exists an open
set containing one but not the other. A remarkable feature of a finite Tp-space is that it
has the structure of a poset. Conversely, one can give any finite poset the structure of a
finite To-space. The equvariant theory of finite Ty-spaces was first made by Stong [11].
After that, Kono and Ushitaki investigated the homeomorphism groups of finite spaces
with group actions ([6], [7], [8]). Here a finite space is a topological space having finitely
many points. In particular, they studied the homeomorphism groups of fixed point set
X€ and G-actions on homeomorphism groups induced by given G-action on X, where X
is a finite space with a G-action.

First we define a simplicail complex induced from a finite Ty-space. Recall that a finite
To-space has a poset structure (see Proposition 2.2). Let X be a finite poset. The order
compler A(X) of X is the abstract simplicial complex on the vertex set X whose faces
are the chains of X, including the empty chain. The dimension of a simplex is defined
to be the length of the chain, where the length of a chain is one less than its number of
elements. In particular, the length of the empty chain is —1. When the dimension of a
simplex o is k, we write dim o = k. Next we shall define the geometric realization |A(X)|
of A(X) by

[AX)] = {m: X = [0,1]| Y m(z) =1, supp(m) € A(X)},

zeX

where for a map m : X — [0, 1], we mean that supp(m) = {z € X |m(z) > 0}. The
numbers (m(z) |z € X) are the barycentric coordinates of m. For a simplex ¢ € A(X),

we put
o] = {m € [A(X)]|supp(m) = o}.

We can define a metric topology on |A(X)|. In details, we have a metric d on |A(X)]
defined by

d(my, mg) = <Z (ma(z) — mg(m))2> :
zeX
Then we have [0 = {m € |A(X)|| 3 m(z) = 1}, where [o] indicates the closure of |o].

zET
Moreover a metric space |A(X)] is equipped with a CW-complex structure whose n-cell



90

is a set {|o]|o € A(X), dimo = n}. Let (p, |z € X) be a family of points in euclidean
n-space R™. Consider the continuous map

f:|1AX)] - R™, m Zm(m)px.
zeX
If f is an embedding, we call the image of f a simplicial polyhedron in R™ of type A(X),
that is, f(JA(X)]) is a realization of A(X) as a polyhedron in R".

Now, we shall introduce McCord’s result [9, Theorem 2], which provides insight into
understanding relations between finite Ty-spaces and simplicial complexes.

Proposition 1.1. There ezxists a correspondence that assigns to each finite Ty-space X
a finite simplicial complex A(X), whose vertices are the points of X, such that the map
px : [A(X)] = X induced from the correspondence above is a weak homotopy equivalence.
Moreover, each map ¢ : X — Y of finite Ty-spaces is also a simplicial map A(X) = A(Y),
and pux = pyle| where || 1 |A(X)] = |A(Y)] is a continuous map induced by .

Let G be a finite group. In this note, we focus on the equivariant order complex A(X)
of a finite Ty-G-space X, that is, a finite Ty-space with a G-action, and then its orbit
space A(X)/G. In particular, we are interested in the following questions:

(i) Does |A(X)| has a G-CW-complex structure?
(ii) Is there the orbit space version of Proposition 1.17

Our results related the above questions are the following.
Theorem A. Let X be a finite To-G-space. Then |A(X)| is a finite G-CW-complex.
We will prepare the following technical condition:

(C) If go, 91, -+ , gk are elements of G and (zo,z1, - ,zx) and (goZo, G121, * , JxTk)
are both simplices of K, then there exists an element g of G such that gz; = g;z; for all
1. Here overlaps of some of z; are allowed.

Theorem B. If A(X) satisfies property (C), there exists a weak homotopy equivalence
ix : |AX)l/G = X/G.

The rest of this note is organized as follows. In section 2, we briefly review finite
(To-)space theory. In section 3, we investigate an equivariant version of finite Tg-spaces
and prove Theorem A. The last section studies orbit spaces of equivariant complexes and
prove Theorem B.

2 Finite (7T,-)spaces

In this section, we survey well-known properties about finite (Tp-)spaces. General refer-
ence may be found in [2], [6] and [10]. Let X denote a finite space, i.e. a topological space
having finitely many points. Let a set U, be the minimal open set which contains a point
z of X, that is, U, is the intersection of all open sets containing z. It is easy to see that
a set {U,}zex constitute a basis for the topology of X. Now we can define a preorder on
X by

z<y if zeU,.

In other words, every open set containing y also contains z if and only if z < y.



Proposition 2.1. Let z and y be elements of a finite space X. Then X is Ty-space if
and only if Uy = U, implies z = y.

Proposition 2.2. A finite Ty-space with the above preorder < is a poset.

If X is now a finite preordered set, one can define a topology on X given by the basis
{y € X|y < z}sex. Note that if y < z, then y is contained in every basic set containing
z, and therefore y € U,. Conversely, if y € U,, then y € {z € X |z < z}. After all,
y < z if and only if y € U,. This shows that these two applications, relating topologies
and preorders on a finite set, are mutually inverse. Thus we have

Proposition 2.3. A finite Ty-space corresponds to a finite poset.

Example 2.4. Let X = {a, b, c} be a finite space whose topology is {0, {a, b, c}, {b, c}, {b},
{c}}. This space is Ty. Immediately, U, = {a,b,c}, Uy = {b} and U, = {c}. Therefore
b < a and ¢ < a, but there exists no order relation between b and c.

Example 2.5. Let X = {a, b, ¢, d} be a finite space whose topology is {0, {a, b, ¢, d}, {b, c, d},

{b},{b,c},{b,d}}. This space is also Tp. Immediately, U, = {a,b,c,d}, U, = {b},U, =
{b,c} and Uy = {b,d}. On the order relation, we see the following Hasse diagram:

a

b
Figure 1.

Proposition 2.6. Let X be a preordered set. A set F, = {y € X |z <y} is a closed set
of X. Moreover F, is the closure of the set {z}.

Definition 2.7. A subset U of a preordered set X is a down-set if for every x € U and
y < z, it holds that y € U. Dually, a subset F' of a preordered set X is a up-set if for
every x € F and y > z, it holds that y € F. Open sets of finite spaces correspond to
down-sets and closed sets to up-sets.

Proposition 2.8. Let X and Y be finite spaces, and f be a map from X toY. Then f
is continuous if and only if f is an order-preserving map.

Proposition 2.9. Let X be a finite space, f a continuous map of X into itself. If f is
either one-to-one or onto, then it is a homeomorphism.

Next we state connectivity. First, for each U,, we let U, C AU B, where A and B
are open sets of a finite space X. Then z is in one set, say z € A, immediately U, C A.
Thus any finite space is locally connected.

Proposition 2.10. Let z,y be two comparable points of a finite space X and z <y. Then
there ezists a path from x to y in X, that is, a map o from the unit interval I to X such
that a(0) = z and (1) = y.
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Let X be a finite preordered set. A fence in X is a sequence zg, 1, - , Z, of points
such that any two consecutive are comparable. X is order-connected if any two points
z,y € X there exists a fence starting in z and ending in y.

Proposition 2.11. Let X be a finite space. Then the following are equivalent:
(z) X is a connected topological space.

(#) X is an order-connected preordered set.

(143) X is a path-connected topological space.

If X and Y are finite spaces, we can consider the finite set YX of continuous maps
from X to Y with the pointwise order: f < g if f(z) < g(z) for every z € X.

Proposition 2.12. Let X and Y be two finite spaces. Then pointwise order on YX
corresponds to the compact-open topology.

Corollary 2.13. Let f,g: X — Y be two maps between finite spaces. Then f ~ g if
and only if there is a fence f = fo < f1 2 fo < --- fo = g. Moreover, if A C X, then
f ~ g rel A if and only if there exists a fence f = fo < fi > fo < -+ fo = g such that
fila = fla for every 0 < < n.

Any finite space is homotopy equivalent to a finite Tp-space.

Proposition 2.14. Let X be a finite space. Let Xy be the quotient X/ ~ where z ~ y
ifr <yandy < z. Then Xy is Ty and the quotient map q¢ : X — Xy is a homotopy
equivalence.

Therefore , when studying homotopy types of finite spaces, we can restrict our atten-
tion to finite Ty-spaces.

Definition 2.15. A point z in a finite Tp-space X is a down beat point if x cover one
and only one element of X. This is equivalent to saying that the set U, = U,\{z} has
a maximum. Dually, z € X is an up beat point if z is covered by a unique element or
equivalently if F, = F,\{z} has a minimum, where F, denotes the closure of the set {z}.
In any of these cases, we say that x is a beat point of X.

Proposition 2.16. Let X be a finite Ty-space and let z € X be a beat point. Then X\{z}
s a strong deformation retract of X.

Definition 2.17. A finite Ty-space is a minimal finite space if it has no beat points. A
core of a finite space X is a strong deformation retract which is a minimal finite space.

Proposition 2.18. Let X be a minimal finite space. A map f: X — X is homotopic to
the identity if and only if f = 1x.

Immediately, we have the following corollary.

Corollary 2.19. (Classification Theorem) A homotopy equivalence between minimal
finite spaces is a homeomorphism. In particular, the core of a finite space is unique up
to homeomorphism and two finite spaces are homotopy equivalent if and only if they have
homeomorphic cores.

By the Classification Theorem, a finite space is contractible if and only if its core
is a point. In fact, a one-point finite space has a core of the one-point. Therefore any
contractible finite space has a point which is a strong deformation retract.This property
is false in general for non-finite spaces.



3 Finite Ty-G-spaces

In this section, we treat an equivariant version of finite Ty-spaces. Let G be a topological
group (a group, for short) and X a finite Ty-space. A G-invariant subspace A C X is
an equivariant strong deformation retract if there is an equivariant retraction » : X — A
such that ¢r is homotopic to 1x via a G-homotopy which is stationary at A. A finite
To-space which is a G-space will be a finite Ty-G-space.

Remark If a topological group G acts on a finite topological space effectively, then it
must be a finite topological group [7, Proposition 3.9]. Therefore, from now on, we assume
that G is finite.

Proposition 3.1. Let X be a finite To-G-space. Then there exists a core of X which is
G-invariant and an equivariant strong deformation retract of X.

Proposition 3.2. A contractible finite To-G-space has a point which is fized by the action
of G.

This proposition deduces Stong’s result stated in introduction. Note that A,(G) is a fi-
nite 7y-G-space by conjugation. If A,(G) is contractible, A,(G) has exactly one point core
which is G-invariant. Therefore A,(G) has a fixed point by the action of G. Consequently,
G has a non-trivial normal p-subgroup.

Proposition 3.3. Let X and Y be finite Ty-G-spaces and let f : X — Y be a G-map
which is a homotopy equivalence. Then [ is an equivariant homotopy equivalence.

Let X be a finite Ty-G-space and z, y points of X. If z € Uy, then gz € gU, = Uy,.
Therefore a G-action on a finite Tp-space X preserves the order. Thus A(X) is a G-
simplicial complex (in short, G-complex). Let Ny be the union set of natural numbers
{1, 2,3, ---} and {0}.

Definition 3.4. Let G be a finite group. A CW-complex Z with a G-action is called a
G-CW -complex if it satisfies the following conditions:

(i) The G-action determines a cellular map, that is, for any ¢ € G, gZ* C Z* for each
i € Ny, where Z¢ denotes the union of cells of dimension < 7 and is called the 7-skeleton

of Z.
(i) If g(e) = e, then g is trivial on €, that is, Z9 D €&, where € is the closure of e.

Proof of Theorem A.
Proof. For g € G and m € |A(X)|, we define a map g(m) : X — [0, 1] by
(9(m))(z) :=m(g~'(z)) forz € X.

Then we have

Y gm)(@) = mlg'@)= D mg ) =1

zeX zeX g~ Hz)eX
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on the other hand,

supp(g(m)) = {z € X | (¢(m))(z) > 0}
= {z e X|m(g7}(z)) > 0}
= {z € X |g7'(z) € supp(m)}
= g(supp(m)) € A(X).

Therefore we have that g(m) € |A(X)|. Thus we can define a isometric map g : |A(X)| —
|A(X)|. For each ¢ € A(X), it holds that g(|o|) = |g(o)|. In particular, a map g is a
cellular map.

Let g(|o|) = |o|. Immediately, we have g(c) = ¢. Since g is an automorphism between
totally ordered sets, it is an identity map. Therefore g™* : 0 — o is also an identity map.
Let m be any element of [o].

Case z € o : It follows that (g(m))(z) = m(g~}(z)) = m(z).

Case z € X\o : Since g7 }(z) € X\g7 (o) = X\o, we get that (g(m))(z) =
m(g™(z)) = 0 = m(a) -~
Therefore g(m) = m. Thus we obtain that |o| C [A(X)}9. O

Referring to [5, p.229], we now prepare the following technical properties concerning
a G-complex K:
(P;) For any g € G and simplex o of K, g leaves 0 N go pointwise fixed.
(Py) If go, 1, - - , gx are elements of G and (o, z1, -+ ,zx) and (goZo, g121, - , GrTk) are
both simplices of K, then there exists an element g of G such that gz; = g;x; for all <.
Here overlaps of some of z; are allowed.
(P3) Let g be an element of G and o a simplex of K. If g(0) = o, g leaves o pointwise
fixed.

Proposition 3.5. It holds that (Py) = (P1) == (P3).

Proposition 3.6. Let X be a finite To-G-space. Then a G-complex A(X) holds both
property (P,) and property (Ps).

On a G-complex, we can see a geometric simplex as a cell. One immediate consequence
of this observation is the following.

Proposition 3.7. Let |K| be the geometric realization of a G-complex K with property
(P3). Then |K| is a G-CW -complex.

The following result is an equivariant version of Proposition 1.1 in a sense.

Proposition 3.8. Let X be a finite Ty-G-space. For each subgroup H of G, it holds that
A(XH) = A(X)H and the map p¥ : |A(X)|¥ — X¥ is a weak homotopy equivalence.

4 Orbit spaces

Next we will devote the study of the orbit space of a G-complex.



Proposition 4.1. Let X be a finite Ty-G-space. Then the orbit space X/G is a finite
To-space.

Let X and Y be finite sets, and P(X) the power set of X. A map f: X — Y induces
a map P(X) — P(Y), which we denote also by f. Let K be a simplicial complex such
that X is the set of vertices of K. Then it is easy to see that the image f(K) becomes a

simplicial complex such that f(X) is the set of vertices of f(K). We apply this observation

to our situation.

Let K be a G-complex and X be the set of vertices of K. Concerning the induced
G-action on X. we consider its orbit space X/G and the orbit map p : X — X/G. As
observes above, p induced a map P(X) — P(X/G), which we denote by p as well and
p(K) becomes a simplicial complex such that X/G is the set of vertices of p(K). For
s € K, we denote p(s) by 3.

Next we consider another kind of orbit space. Let K be a G-complex. Denote by K/G
the orbit space of the G-action on K and by 7 : K — K/G the orbit map. For s € K, we
denote 7(s) by [s]. Note that K/G is not a simplicial complex in general and K /G does
not coincide with p(K) in general.

Proposition 4.2. [5, Lemma 5.10] Let K be a G-complez satisfying property (P,) and
X be the set of vertices of K. Then the orbit space K/G becomes a simplicial complex such
that the set of vetrices K/G is X/G and K/G 1is naturally isomorphic to p(K). Moreover
the orbit map m: K — K/G 1is a simplicial map preserving dimension of simplezes.

Corollary 4.3. If K is a G-complez satisfying property (Ps), |K|/G is homeomorphic to
|K/G].

Furthermore, we add simplicial notion for both posets and (finite) cell complexes to
investigate the simplicial structure of the orbit spaces in detail.

Definition 4.4. A simplicial poset P is a finite poset with a smallest element 0 such that

every interval
[0,y ={z e P|0<z <y}

for y € P is a boolean algebra, i.e., [ﬁ, y] is isomorphic to the set of all subsets of a finite
set, ordered by inclusion. When a boolean algebra is the set of all subsets of a finite set
consisting of n elements, we denote the boolean algebra by B,. Let x be an element of P
such that [O,x] is isomorphic to a boolean algebra B,. Then the dimension of z is said
to be n — 1, denoted by dimz = n — 1. Remark that dim 0 = —1. Moreover, a simplicail
poset P is n-dimensional, if it contains at least one point x such that dimz = n but no
(n + 1)-dimensional points.

The set of all faces of a (finite) simplicial complex with empty set added forms a
simplicial poset ordered by inclusion, where the empty set is the smallest element. Such
a simplicial poset is called the face poset of a simplicial complex, and two simplicial
complexes are isomorphic if and only if their face posets are isomorphic. Therefore, a
simplicial poset can be thought of as a generalization of a simplicial complex. Figure 2
shows that a 2-simplicial complex and its face poset.
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1 123

2 3
a 2-simplicial complex

a face poset
Figure 2.

A CW-complex is said to be regular if all closed cells are homeomorphic to closed disks.
Although a simplicial poset is not necessarilly the face poset of a simplicial complex, it
is always the face poset of a regular CW-complex. Let P be a simplicial poset. To each
element y € P\{0} = P, we assign a (geometric) simplex whose face poset is [0,%] and
glue those geometric simplices according to the order relation in P. Then, we get the
CW -complex in which the closure of each cell is identified with a simplex, the structure
of faces being preserved; moreover, all characteristic mappings are embeddings. This CW-
complex is called a simplicial cell complex associated to P and is denoted by |P|. For
instance, if two 2-simplices are identified on their boundaries via the identity map, then
it is not a simplicial complex but a CW-complex obtained from a simplicial poset (see
Figure 3). Clearly, this CW-complex is homeomorphic to the 2-sphere S%. The simplicial
cell complex |P| has a well-defined barycentric subdivision which is isomorphic to the
order complex A(P) of the poset P.

123 123

1 1
1 3
1 3 A/\A
2 3 2 3

x a simplicial cell complex |P|

0
a simplicial poset P Two 2-simplicial complexes are identified on
(123 is a copy of 123) their boundaries.

Figure 3.

By definition, we have the following proposition.

Proposition 4.5. Let S is a finite cell complex. Then S is simplicial if and only if for
each cell o C S, the closure @ of o is isomorphic to a simplex A of the same dimension
with o as a cell complez.

In a word, a simplicial cell complex is a cell complex such that each closed cell is a
geometric simplex. Obviously, the geometric realization of any finite simplicial complex
is a simplicial cell complex.

Definition 4.6. Let S be a simplicial cell complex and V(S) the set of all O-cells of S.
Let o be a cell of S. We put V(o) = V(S)NG. For each cell o C S, there is an embedding

Vo Adim"(V(a)) -7 C S,



where AY™?(V (o)) is the dim o-simplex whose vertex set is V(o). We say ¢, a charac-
teristic map of o.

Proposition 4.7. A simplicial poset corresponds to a simplicial cell complez.

Let P be a simplicial poset and z € P. A half-open interval (0, z] is a subset {y €
P|0 <y <z} of P.

Definition 4.8. Let P and @ be simplicial posets. A simplz'cial poset map f: P — Q is
a map such that for any z € P, dim f(z) < dimz and f((0, z]) = (0, f(z)).

For a simplicial poset P, we put V(P) := {z € P|dimz = 0}, which is called the
vertez set of P. Similarly, for each z € P, V(z) := V([0,z]) = [0,z] N V(P), which is
also called the verter set of z. A simplicial poset map f is order-preserving and satisfies
f(V(z)) = V(f(z)) for z € P. Note that V(P) = |J V(). Moreover we put

Kp:={V(z)|z € P},

which is a simplicial complex whose vertex set is V(P). Here we see Kp as a simplicial
poset, so that a surjection pp : P — Kp defined by pp(z) = V(z) is a simplicial poset
map.

Definition 4.9. Let X and Y be simplicial cell complexes. A simplicial cell complex
map f: X — Y is a cellular map such that for any cell ¢ € X, f(o) is a cell of Y and
flz:3 = f(0) C Y extends linearly the map f lve): V(o) = V(f(c)) C Y. Note that
f(7) is the compact set of a HausdorfF space Y.

Let X and Y be simplicial cell complexes. Let F(X) (respectively, F(Y)) be a simpli-
cial poset corresponding to X (respectively,Y). A simplicial cell complex map f:X=>Y
defines a simplicial poset map F(f) : F(X) — F(Y) by 0 — f(o) for each cell ¢ € X.
Conversely, we have the following.

Proposition 4.10. For any simplicial poset map o : F(X) — F(Y), there exists uniquely
a stmplicial cell complex map f : X — Y such that F(f) = a. In particular, if a simplicial
poset map o : F(X) — F(Y) is bijective, then f is an isomorphism from X to Y.

Proposition 4.11. For any simplicial poset P, there exists some simplicial cell complex
X with F(X) = P.

From the above two propositions, there is uniquely an isomorphism class [X ] such that
F(X) = P. Then a simplicial cell complex X is said to be a realization of P, denoted by
| P| as well. Under this notation, we have a simplicail cell complex map |pp| : |P| — |Kp|.

Let K be a G-complex. Now, we shall investigate the structure of the orbit space
K/G. Let o and 7 be simplices of K. We define a partial ordering on K/G as follows:

m(7) < m(o) if and only if there exists an element g € G such that g(7) C o,

where the map 7 : K — K/G is the orbit map. Note that the orbit space K/G has the
minimum 0 = 7(@). Moreover we denote the orbit map from |K| to |K|/G by 7 as well.
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Proposition 4.12. If a G-complezx K has property (P1), K/G is a simplicial poset.
Moreover |K|/G is a simplicial cell complez such that {n(lo|)|o € K\{0}} is the set of
all cells of |K|/G.

Proposition 4.13. If a G-complez K has property (P1), it holds that |K|/G = |K/G]| as
a simplicial cell complez.

Corollary 4.14. Let X be a finite Ty-G-space. The orbit space |A(X)|/G s a fi-
nite simplicial cell complex associated to a simplicial poset A(X)/G. Moreover we have

|AX)I/G = |AX)/Gl.

Let X be a finite Typ-G-space. Since the orbit map p : X — X/G is continuous, it is
an order-preserving map. It determines a simplicial map

Alp) : A(X) = A(X/G),

and also a continuous map |A(p)| : |A(X)| = |A(X/G)|. Noting |A(X/G)| is a G-space
with a trivial G-action, we have a continuous map p : |A(X)|/G — |A(X/G)| such that
the following diagram commutes

|A(X))]

| L

|AX)]/G —~|A(X/G)]

where ¢ is the orbit map from |A(X)]| to |A(X)|/G.
Proposition 4.15. Let X be a finite To-G-space. A simplicial compler Ka(x)/c concides
with A(X/G).

In consequence we have the following commutative diagram:

IAX)|/G —— |A(X)/G]

ﬁl ll‘PA(X)/GI

AX/G)] — IAX/G)],

A simplicial action of G on a simplicial complex K is called regular in the sense of
Bredon if K possesses property (P2) for the action of each subgroups of G. Now, we shall

present an interesting example.

Example 4.16. Let n be an integer larger than one. Let Xsn4o be a set consisting of

2n + 2 elements as follows: .
n+

Xoni2 =: U{ﬂ%, f-i}-
i=1



We set -
U(z;) = {z;} 'Ul{xj, z_;}, and
J:

Ue-) = {o-} Uley, 25k

for 2 =1,2,--+,n+ 1. First note that each point z; determines the smallest open set
U(z;) on Xonyo, that is, U, = U(z;). Therefore we define a Ty-topology on Xs,.o. Let
g be a map from Xpnyo to itself by g(z;) = z_;. We set G := (g)(that is, a group is
generated by g). Evidently, G is a cyclic group whose order is two. Since |A(Xsn42)]
is homeomorphic to the n-sphere S”, it holds that |A(Xsn42)l/G = RP™, where RP™
is the n-dimensional real projective space. Note that |A(Xan10)|/G is a simplicial cell
complex by Proposition 4.12. On the other hand, X,,.2/G is a totally ordered set with
n + 1 elements. Therefore |A(X3n42/G)| is homeomorphic to a n-simplex A™(Xon12/G).
Since the map 7 : |[A(Xzn42)|/G — |A(Xany2/G)] is not a weak homotopy equivalence, 5
is not an isomorphism between simplicial cell complexes. If A(Xy,42)/G is a simplicial
complex, the map |pa(x,..,)/c| is an isomorphism, and # is also an isomorphism. This
is a contradiction. Hence A(Xs,42)/G is not a simplicial complex, thereby G-action on
A(Xan42) is not regular in the sense of Bredon.

Proof of Theorem B.

Let X be a finite Tp-G-space. By Proposition 1.1, there is a weak homotopy equivalence
px + |A(X)] = X. Then px determines a continuous map jix : |A(X)|/G — X/G such
that the following diagram commutes.

|AX)]/G L~ |A<)I/G>r

X/G

Bx

Therefore p is a weak homotopy equivalence if and only if fix is so. In general, fix is not
a weak homotopy equivalence (see Example 4.16).

Remark that both |A(X)|/G and [A(X/G)| are CW-complexes. Therefore, we have
Claim 1. jix is a weak homotopy equivalence if and only if 5 is a homotopy equivalence.

We consider the case where p is a homeomorphism.

Claim 2. Let X be a finite T5-G-space. Then the following conditions are equivalent:
(1) p is a homeomorphism.

(2) A(X)/G is a simplicial complex.

(3) A(X) has property (Ps).

Proof. (1) == (2) Since p is a homeomorphism, @ x)/c is injective. Let U be a subset of
X/G. Then there exists only one element s of A(X)/G at most with V(s) = U. Therefore
A(X)/G is a simplicial complex. (2) = (1) Since A(X)/G is a simplicial complex, it
holds that |A(X)/G| = |A(X/G)|. Noting that pa(x)/c Is surjective, p is also surjective.

99



100

By Proposition 2.9, 5 is a homeomorphism. (2) = (3) Let ¢ = {z;]i=0,--- ,k} and
r={g:z;| g€ G, i=0,---,k} be simplices of A(X). If z; = z;, then

9;%; = (959 ) (9iw:) € 7N (9597 1)

Since a G-complex A(X) has property (P;), we have g;z; = (g;9;7 ") (g;z;) = giz;, s0
that g,x; = g;z; = g;z;. Hence we assume that each z; (¢ = 0, - , k) is distinct, then both
o and T are k-simplices of A(X). Therefore both (o) and 7 (7) are elements of A(X)/G
such that V(n(0)) = V(n(r)) = {n(z;)|: = 0,--- ,k}. By assumption, n(c) = n(7).

In consequence there is some g € G such that 7 = g(o) and g;z; = gz;(: = 0, -+ , k).
(3) = (2) It follows from Proposition 4.2. O

Combining Claim 1 and Claim 2, we obtain Theorem B. O
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