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1. INTRODUCTION

Let G be a finite group. The Smith problem is as follows. Let  be a homotopy sphere
with smooth G-action such that Z has just two fixed points, say a and b. Are tangen-
tial representations T,(X) and T,,(Z) isomorphic as real G-modules? Two real G-modules
U and V are called Smith equivalent if there exists a smooth action of G on a sphere
such that S¢ = {a, b}, T,(Z) = U and T,(X) = V as real G-modules. We know infin-
itely many Oliver groups possessing non-isomorphic Smith equivalent real modules. We
consider about the subset Sm(G) of the real representation ring RO(G) of G consisting
of all differences U — V of Smith equivalent real G-modules. Recently we have several
results corresponding to the Smith set. In this note, we study a sufficient condition for the
Smith set to be an additive subgroup of the real representation ring RO(G). This work is
a continuous study from [24].

2. SmrtH PROBLEM

The Smith problem asks whether the Smith set Sm(G) is zero or not. There are many
results corresponding to the Smith problem.

Atiyah and Bott [1] or Milnor [7] showed that for a homotopy sphere X with semi-free
smooth compact Lie group with just two fixed points, the tangential representations are
isomorphic. Thus, any Smith equivalent real modules over an abelian simple group are
isomorphic, that is, Sm(C) = O for a prime order cyclic group C. Sanchez [18] general-

- ized the result as follows by computing G-signature and using Franz-Bass’s theorem. For
a cyclic group P of odd prime power order, Smith equivalent real P-modules are isomor-
phic. Therefore Sm(P) = O for any group P of odd prime power order by combining the
Smith theory.

On the other hand, Cappell and Shaneson [2] showed that there exists non-isomorphic,
Smith equivalent real module over a cyclic group Ca, of order 4n for n > 2, that is,
Sm(Cy4,) # {0}. Petrie [17] showed that the Smith set of an abelian group of odd order
which has at least four non-cyclic subgroups is nontrivial, eg. Sm(Cpgrs X Cpgrs) # 0,
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where p, g, r, s are distinct odd primes. And in 1980’s, Dovermann, Suh, Masuda, etc.
studied the Smith equivalent real modules.

Oliver [13] showed that G acts smoothly on a disk without fixed points if and only if
there are no subgroups P and H such that P is a p-group, H/ P is cyclic, G/H is a g-group
for some primes p and g, possibly p = g. A group acting on a disk without fixed points
is called an Oliver group. Laitinen and Morimoto [5] showed that G is an Oliver group if
and only if there exists a one fixed point G-action on sphere. Laitinen and Pawatowski [6]
showed that there exists Smith equivalent, non-isomorphic real G-modules for a perfect
group G with rg > 2 by connecting sum with a sphere with just one fixed point, where r¢
is the number of real conjugacy classes of elements of G not of prime power order. After
that, Pawatowski and Solomon [14] extended to that Sm(G) # O if G is a gap Oliver group
with rg > 2 except Aut(Ag) and PZL(2,27). A group G is a gap group if there exists a real
G-module V such that

e dim V* = 0 for any prime power index subgroup L of G and
e for any subgroups P of prime power order and H with H > P,

dim V" > 2dim V7.
In particular, a perfect group G with rg > 2 is a gap Oliver group. A study for gap groups
isseenin [12, 19, 20, 22, 23].

Now we need some notations. A real conjugacy class (x)* of an element x of G is the

union of the conjugacy class

(x) ={g"'xg | g € G}
of x and one of its inverse x~'. We denote by NPP(G) the set of elements of G not of prime
power order, by NPP(G) the set of elements of the real conjugacy classes of elements of
NPP(G). Then rg is the cardinality of the set NPP(G). For a prime p, let N,(G) be
the set of normal subgroups N of G with [G : N] < p. We denote by RO(G) the real
representation ring, by P(G) the set of all subgroups of G of prime power, possibly 1,
order, by OP(G) the Dress subgroup of type p for a prime p defined as

0%(G) = ﬂ L,
LaGi[G:L]=p"

and by L(G) the set of all prime power, possible 1, index subgroups of G. Then for
L € £(G), L contains O”(G) for some prime p. We put

Np(G) = Nnen, )N

which quotient is an elementary abelian p-group and denote by G"! the smallest normal
subgroup of G by which quotient is nilpotent:

Ghil = ﬂ 0°(G).
14
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Note that .
G2 Np(G) = 0°(G) &= G™,

For families 71 and %, of subgroups of G and a subset A of RO(G), we put

Ag, = [ ) ker(Res§: RO(G) — RO(P)) N A,
PeF,
A" = ﬂ ker(Fix“: RO(G) — RO(Ng(L)/L)) N A,
LeFr

and

A7 = Ar N A" = () kerResfn [ ) kerFix" nA.

PeFy LeF
The automorphism group Aut(Ag) of the alternating group Ag is not a gap group,

Faucas) = 2, and Sm(G) = 0 [8]. Morimoto [8] gave a condition

Sm(G) c RO(GM@ = RO(G)™®
for Smith equivalent real modules. The rank of RO(G)*© is equal to
TG = 1G,n2(G)»

where rG,ny () is the cardinality of the set 7(NPP(G)) for a canonical projection 7: G —
G/N2(G) (cf. [14]). This condition implies that there are Oliver solvable groups G such
that g > 2 and Sm(G) = 0 [15]. The group PXL(2,27) is an extension of PSL(2,27) by a
field automorphism group of order 3 which is a gap non-solvable group, resL27) = 2 and
Sm(PZL(2,27)) # 0 [9]. Moreover, putting together with [16], for an Oliver non-solvable
group G with rg > 2, Sm(G) = 0 if and only if G is isomorphic to Aut(Ag).

3. SUBSETS OF THE SMITH SET

Sanchez’s criterion and Petrie’s observation says that
(G}
Sm(G) c RO(G)p, )

where P,(G) is the set of subgroups of G of order 1, 2, 4, or odd prime power. Thus we
have

Sm(G) c RO(G)XS).
Note that if G has no element of order 8 then P,(G) = P(G). Recall that two real G-
modules U and V are Smith equivalent if there exists a smooth action of G on a sphere
such that S¢ = {a, b}, To(X) = U and T,(X) = V as real G-modules and put

Sm(G) = {[U] = [V]| U and V are Smith equivalent}.

Similarly we consider the sets PSm‘(G) (resp. LSm(G)) of all differences [U] — [V] such
that U and V are Smith equivalent and in addition the homotopy sphere X satisfies that £”
is connected for any prime power order subgroups P of G (resp. for any 2-groups of G).
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The set PSm“(G) (resp. LSm(G)) is empty if and only if G is of order prime power (resp.
2-power). It holds the inclusions

PSm‘(G) ¢ LSm(G) ¢ Sm(G)

and
LSm(G) C RO(G);D(G).

PSm*(G)

|

LSm(G) RO(G)rc)

ﬂl nlﬂq&

SM(G)p < RO(GX2D) = RO(G)N2O) <, RO(G)QG)

PG) PG)
|3 |3 -|
c 2
SmG) —— RO(G)pS) —— RO(G)SE

TasLe 1. Diagram of inclusions

Theorem 3.1. Let G be an Oliver group whose nil-quotient G/G™ is not a 2-group. Then
RO(G)pg) C PSmC(G).
Moreover, we have

Theorem 3.2. Let G be an Oliver non-gap group with [G : 0*(G)] = 2. Suppose that all
elements x of G \ OXG) of order 2 such that C;(x) is not a 2-group. Then

RO(G)g) S PSm‘(G).

We denote by SG(m,n) the small group of order m and type n which is obtained
as SmallGroup(m, n) in the software GAP [3]. Morimoto studied (or is studying) the

set Sm(G)pG) \ SM(G)qa. He [9] showed that for G = PEL(2,27), SG(864,2666),

SG(864, 4666), Sm(G)ES) = 0 but Sm(G)p() = SM(G) = Z. Also he and his colleagues
[4] showed that if a Sylow 2-subgroup is normal, then

Sm(G) c RO(G)M©@
and in particular Sm(G) = 0 holds for G = SG(1176,220), SG(1176,221).

For an Oliver group, we see PSm‘(G) # 0 to show Sm(G)p) # 0. We have no rich
examples so that Sm(G)p) # Sm(G), whole Sm(G) \ Sm(G)p() is a finite set. We do



not have an example for an Oliver group G such that PSm(G) # Sm(G)p). It remains
the problem whether PSm‘(G) = Sm(G)g() for an Oliver group.

4. CRITERION FOR THE SMITH SET TO BE A GROUP

We discuss for Oliver groups G such that PSm°(G) is a subgroup of RO(G). We
introduce two condition. One is a part of a sufficient condition to show Sm(G)py \
Sm(G)“? # 0 and the other is a sufficient condition so that Sm(G)p(, is a group.

Let O = (1,4, OP(G) be a normal subgroup of G with odd index and let N be a normal
subgroup of G with G™ < N < N2(G) N Q. Then

Q02nN2AG)N Q=N >G" > 0*0).

Definition 4.1. We say that G satisfies the quasi-N-P-condition if there are real Q-
modules U and V such that

e dim UM = dim VN = 0 and

e [R® U] -[V] € RO(Q)p(p).
In particular, the quasi-G™!-P-condition is simply called quasi-Nil-P-condition.

Definition 4.2. We say that G satisfies the weak-Nil-P-condition if there are real G-
modules U and V such that

o dim U™ = dim V" = 0 and

¢ [R® U] - [V] € ROG)p().

Lemma 4.3. If G satisfies the quasi-Nil-P-condition, then G satisfies the weak Nil-P-
condition.

Proposition 4.4 (cf. [10, Lemma 15]). Let G be a finite group with O*(G) = G. The
Jollowing statements are equivalent.

(1) G™ has a sub-quotient isomorphic to D, pq Jor distinct primes p, q.

(2) G satisfies the quasi-Nil-P-condition.

Morimoto and Qi [11] obtained a sufficient condition for an Oliver group G to hold that
Sm(G)p(g) is not equal to Sm(G),ng;. This result supplies that Sm(G) = Sm(G)p(G) = Z for
G = 5G(864,2666) or SG(864, 4666). For G = SG(864,2666) or SG(864, 4666), G /G™!
is a cyclic group of order 3 and RO(G)p() is generated by two element R[G/G"] + X,
and 3(R[G/G""] = R) + X, for some elements X;,X, € RO(G)!°™ and thus, G satisfies
the weak-Nil-P-condition since G/G"! is a cyclic group of order 3. We see it in the next
section. Indeed, G has a sub-quotient isomorphic to D;, and G satisfies the quasi-Nil-P-

condition.

Definition 4.5. For a normal subgroup N of G, we say that G satisfies the N-P-condition if
there are real G-modules U and V such that UY = V¥ = 0and [Re U] -[V] € RO(G)pc)-
If N = G we say that G satisfies the Nil-P-condition.
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Lemma 4.6 or Theorem 4.8 in [9] essentially yields us the following two theorems.

Theorem 4.6. If a gap Oliver group G satisfies the weak-Nil-P-condition with NPP(G) N
G"!' + @ and has an element of NPP(G) outside OP(G) for some prime p, then

PSm“(G) \ RO(G)g) # 0.

Note that under the assumption that NPP(G) N G™' # @ the inequality RO(G)pey #

RO(G)#% if and only if NPP(G) \ OP(G) is not empty for some prime p. By using the
multiplication of RO(G), we get the following theorem.

Theorem 4.7. Let G be a gap Oliver group satisfying the Nil-P-condition. Then
PSm‘(G) = RO(G)pzy = Sm(G)ps)
and in particular Sm(G)p(G) is an additive group.

If a Sylow 2-subgroup of G is normal, G does not satisfy the Nil-P-condition. Although
the Nil-P-condition is a sufficient one for an Oliver group G such that Sm(G)p( is a
additive group, it is not a necessary condition. For example, As X C4 does not satisfy the
Nil-P-condition but the following result holds.

Proposition 4.8. PSm°(As x C4) = Sm(As X C4) = RO(As x C4)\4s).

Problem. PSm°(As X (C4)") = Sm(As X (C4)") holds. Is it true that PSm(As X (Cy)") =
RO(As X (C4)")AsXC") for p > 272

5. Quasi-Nil-P-coNDITION

In this section we study properties for the weak-Nil-P-condition. Remark that there is
an Oliver group which satisfies the weak-Nil-P-condition but does not satisfy the Nil-P-
condition (eg. SG(864, 2666), SG(864, 4666)).

Proposition 5.1. Let K be a subgroup of G such that N12(G) - K = G. If K satisfies the
weak-(G™' N K)-P-condition, then G satisfies the weak-Nil-P-condition.

Theorem 5.2. Let G be a gap Oliver group. Suppose that NPP(G) N G™' is not empty
and that there is an element NPP(G) outside of OF(G) for some prime p. If an odd index
subgroup K of G satisfies the weak-(G™ N K)-P-condition, then

PSm‘(G) \ RO(G)pcy) # O.

Morimoto and Qi [10, Lemma 21 and Theorem 22] showed that Sm(G)p(G) # Sm(G)ﬁ((g;

for an odd integer n > 1, an odd prime p, and G = Dy, f C,, the wreath product of the



dihedral group D, of order 2x by a cyclic group C p of order p. The group G satisfies the
assumption of Proposition 5.1 as follows. The group G has a presentation

al = b? = (aiby)? = 1, (i),
(a1, by, ... »Ap, bp, c| aa;= ajai,dibj = bjai,bibj = bjbi, (@ #)),),
¢? = 1,cae = ajy, 7' bic = by, (Vi)

where ap.1 = a; and b, = b,. The group G"! is a subgroup of G generated by elements
ai,...,ap and b;b; (i < j), and then G/G"! = C2p. Thus G is a gap Oliver group. Put
K = OP(G). Let f: Dé’” — D,, be the first projection and let U and V be P(D,,)-
matched real D,,-modules such that I/P» = R and ¥ = 0. The real K-modules f*/
and f*V implies that X satisfies the assumption of Proposition 5.1 since f(G"!) = D,,.
(Or directly, two real G-modules Indg f*U and Indg v implies that G satisfies the weak-
Nil-P-condition.)

Before closing this section, we should say the strongness of the weak-Nil-P-condition.
Let G be a finite group such that G/G™! is a nilpotent group of odd order and there are an
element of G™ not of prime power order and an element of G outside G! not of prime
power order. Then

RO(G)lr) # RO(G)LSL. .

Note that if a Sylow 2-subgroup of G is normal then Sm(G) ¢ RO(G)W+©)s! (¢f, [4]) and G
does not satisfy the weak-Nil-P-condition. Otherwise, if G has a sub-quotient isomorphic
to Dy, for some distinct primes ¢ and r, there are real G-modules U and V such that the
equalities U™ = 0 = V™ hold and that R[G/G"| @ U and V are P(G)-matched:

R+ [(RIG/G™] - R)® Ul - [V] = R[G/G""] + [U] - [V] € RO(G)p().
Thus, G satisfies the weak-Nil-P-condition and in addition if G is a gap Oliver group then

PSm‘(G)®™ # PSm°(G).

6. Nil-P-conprTion
In this section we study properties for the Nil-P-condition.

Proposition 6.1. If G satisfies the Nil-P-condition, then G satisfies the weak-Nil-P-
condition.

Proposition 6.2. If a quotient group of G satisfies the Nil-P-condition, then G also satis-
fies the Nil-P-condition.

Proposition 6.3. Let N be a normal subgroup of G. If there are a subgroup K of G and
an epimorphism f: K — H such that f(K N N) = H, KN = G and H has sub-quotient
isomorphic to Dypy, where p and q are distinct primes, then G satisfies the N-P-condition.
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For a perfect group G, the weak-Nil-P-condition and Nil-P-conditionare equivalent
and moreover equivalent to that G has a sub-quotient isomorphic to a dihedral group D,
for distinct primes p and q.

Proposition 6.4 (cf. [21]). Simple groups except the following groups satisfy the Nil-P-
condition.
(1) Cyclic group
(2) Projective special linear groups: PSL(2,4) = PSL(2,5) = As, PSL(2,7) =
PSL(3,2), PSL(2, 8), PSL(2,9) = A¢, PSL(2, 17), PSL(3,4), PSL(3, 8)
(3) Suzuki groups Sz(8), Sz(32)
(4) Projective unitary groups: PSU(3,3), PSU(3, 4), PSU(3, 8)

Theorem 6.5. Let g > 1 be a prime power. The following groups are gap groups satisfying
the Nil-P-condition.

(1) Symmetric groups S,, n>"7

(2) Projective general linear groups PGL(2,q), q # 2,3,4,5,7,8,9, 17

(3) Projective general linear groups PGL(3,q), q # 2,4,8

(4) Projective general linear groups PGL(n,q), n > 4

(5) General linear groups GL(2,q), q # 2,3,4,5,7,8,9, 17

(6) General linear groups GL(3,q), q # 2,4,8

(7) General linear groups GL(n,q),n > 4

(8) The automorphism group of sporadic groups

The Smith sets of PGL(2, g) and PGL(3, g) have been already obtained in [24]. This can
be proved by finding subgroups as in Proposition 6.3. The groups listed up in Theorem 6.5
are non-solvable gap group. Then we have the following theorem.

Theorem 6.6. Let G be a group which has quotient isomorphic to a group in Theorem 6.5.
Then

PSm*(G) = Sm(G)p(g) = RO(G)pe-

Corollary 6.7. Let K be a group in Theorem 6.5 and F any finite group. Then for G =
KXxF,
PSm‘(G) = Sm(G)p) = RO(G)p2sy -
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