TANGENTIAL REPRESENTATIONS ON A SPHERE

Toshio Sumi
Faculty of Arts and Science
Kyushu University

1. INTRODUCTION

Let G be a finite group. The Smith problem is as follows. Let Σ be a homotopy sphere with smooth G-action such that Σ has just two fixed points, say a and b. Are tangential representations $T_a(\Sigma)$ and $T_b(\Sigma)$ isomorphic as real G-modules? Two real G-modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere Σ such that $S^G = \{a, b\}$, $T_a(\Sigma) \cong U$ and $T_b(\Sigma) \cong V$ as real G-modules. We know infinitely many Oliver groups possessing non-isomorphic Smith equivalent real modules. We consider about the subset $\text{Sm}(G)$ of the real representation ring $\text{RO}(G)$ of G consisting of all differences $U - V$ of Smith equivalent real G-modules. Recently we have several results corresponding to the Smith set. In this note, we study a sufficient condition for the Smith set to be an additive subgroup of the real representation ring $\text{RO}(G)$. This work is a continuous study from [24].

2. SMITH PROBLEM

The Smith problem asks whether the Smith set $\text{Sm}(G)$ is zero or not. There are many results corresponding to the Smith problem.

Atiyah and Bott [1] or Milnor [7] showed that for a homotopy sphere Σ with semi-free smooth compact Lie group with just two fixed points, the tangential representations are isomorphic. Thus, any Smith equivalent real modules over an abelian simple group are isomorphic, that is, $\text{Sm}(C) = 0$ for a prime order cyclic group C. Sanchez [18] generalized the result as follows by computing G-signature and using Franz-Bass’s theorem. For a cyclic group P of odd prime power order, Smith equivalent real P-modules are isomorphic. Therefore $\text{Sm}(P) = 0$ for any group P of odd prime power order by combining the Smith theory.

On the other hand, Cappell and Shaneson [2] showed that there exists non-isomorphic, Smith equivalent real module over a cyclic group C_{4n} of order $4n$ for $n \geq 2$, that is, $\text{Sm}(C_{4n}) \neq \{0\}$. Petrie [17] showed that the Smith set of an abelian group of odd order which has at least four non-cyclic subgroups is nontrivial, eg. $\text{Sm}(C_{pqrs} \times C_{pqrs}) \neq 0$.

2000 Mathematics Subject Classification. 57S17, 20C15.

Key words and phrases. real representation, Smith problem, Oliver group.

This work is partially supported by KAKENHI No. 24540083.
where p, q, r, s are distinct odd primes. And in 1980's, Dovermann, Suh, Masuda, etc.
studied the Smith equivalent real modules.

Oliver [13] showed that G acts smoothly on a disk without fixed points if and only if
there are no subgroups P and H such that P is a p-group, H/P is cyclic, G/H is a q-group
for some primes p and q, possibly $p = q$. A group acting on a disk without fixed points
is called an Oliver group. Laitinen and Morimoto [5] showed that G is an Oliver group if
and only if there exists a one fixed point G-action on sphere. Laitinen and Pawafowski [6]
showed that there exists Smith equivalent, non-isomorphic real G-modules for a perfect
group G with $r_G \geq 2$ by connecting sum with a sphere with just one fixed point, where r_G
is the number of real conjugacy classes of elements of G not of prime power order. After
that, Pawafowski and Solomon [14] extended to that $\text{Sm}(G) \neq \emptyset$ if G is a gap Oliver group
with $r_G \geq 2$ except $\text{Aut}(A_6)$ and $\text{PSL}(2, 27)$. A group G is a gap group if there exists a real
G-module V such that

- $\dim V^L = 0$ for any prime power index subgroup L of G and
- for any subgroups P of prime power order and H with $H > P$,

$$\dim V^P \geq 2 \dim V^H.$$

In particular, a perfect group G with $r_G \geq 2$ is a gap Oliver group. A study for gap groups
is seen in [12, 19, 20, 22, 23].

Now we need some notations. A real conjugacy class $(x)^*$ of an element x of G is the
union of the conjugacy class

$$(x) = \{g^{-1}xg \mid g \in G\}$$

of x and one of its inverse x^{-1}. We denote by $\overline{\text{NPP}}(G)$ the set of elements of G not of prime
power order, by $\overline{\text{NPP}}(G)$ the set of elements of the real conjugacy classes of elements of
$\text{NPP}(G)$. Then r_G is the cardinality of the set $\overline{\text{NPP}}(G)$. For a prime p, let $N_p(G)$ be
the set of normal subgroups N of G with $[G : N] \leq p$. We denote by $\text{RO}(G)$ the real
representation ring, by $\mathcal{P}(G)$ the set of all subgroups of G of prime power, possibly 1,
order, by $O^p(G)$ the Dress subgroup of type p for a prime p defined as

$$O^p(G) = \bigcap_{L \leq G, [G:L]=p^a} L,$$

and by $\mathcal{L}(G)$ the set of all prime power, possible 1, index subgroups of G. Then for
$L \in \mathcal{L}(G)$, L contains $O^p(G)$ for some prime p. We put

$$\cap p(G) = \bigcap_{N \in \mathcal{P}(G)} N$$

which quotient is an elementary abelian p-group and denote by G^{nil} the smallest normal
subgroup of G by which quotient is nilpotent:

$$G^{\text{nil}} = \bigcap_p O^p(G).$$
Note that

\[G \supseteq \cap p(G) \supseteq O^p(G) \supseteq G^{\nil}. \]

For families \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) of subgroups of \(G \) and a subset \(A \) of \(\text{RO}(G) \), we put

\[
A_{\mathcal{F}_1} = \bigcap_{P \in \mathcal{F}_1} \ker(\text{Res}_P^G : \text{RO}(G) \to \text{RO}(P)) \cap A,
\]

\[
A_{\mathcal{F}_2} = \bigcap_{L \in \mathcal{F}_2} \ker(\text{Fix}^L : \text{RO}(G) \to \text{RO}(N_G(L)/L)) \cap A,
\]

and

\[
A_{\mathcal{F}_1} \cap A_{\mathcal{F}_2} = \bigcap_{P \in \mathcal{F}_1} \ker(\text{Res}_P^G) \cap \bigcap_{L \in \mathcal{F}_2} \ker(\text{Fix}^L) \cap A.
\]

The automorphism group \(\text{Aut}(A_6) \) of the alternating group \(A_6 \) is not a gap group, \(r_{\text{Aut}(A_6)} = 2 \), and \(\text{Sm}(G) = 0 \) [8]. Morimoto [8] gave a condition

\[\text{Sm}(G) \subset \text{RO}(G)_{\mathcal{P}_o(G)}^{N_G(G)} = \text{RO}(G)^{\mathcal{P}_o(G)} \]

for Smith equivalent real modules. The rank of \(\text{RO}(G)^{N_G(G)} \) is equal to

\[r_G - r_{G,\cap 2(G)}, \]

where \(r_{G,\cap 2(G)} \) is the cardinality of the set \(\pi(\text{NPP}(G)) \) for a canonical projection \(\pi : G \to G/\cap 2(G) \) (cf. [14]). This condition implies that there are Oliver solvable groups \(G \) such that \(r_G \geq 2 \) and \(\text{Sm}(G) = 0 \) [15]. The group \(\text{PSL}(2, 27) \) is an extension of \(\text{PSL}(2, 27) \) by a field automorphism group of order 3 which is a gap non-solvable group, \(r_{\text{PSL}(2, 27)} = 2 \) and \(\text{Sm}(\text{PSL}(2, 27)) \neq 0 \) [9]. Moreover, putting together with [16], for an Oliver non-solvable group \(G \) with \(r_G \geq 2 \), \(\text{Sm}(G) = 0 \) if and only if \(G \) is isomorphic to \(\text{Aut}(A_6) \).

3. SUBSETS OF THE SMITH SET

Sanchez’s criterion and Petrie’s observation says that

\[\text{Sm}(G) \subset \text{RO}(G)^{[G]}_{\mathcal{P}_o(G)}, \]

where \(\mathcal{P}_o(G) \) is the set of subgroups of \(G \) of order 1, 2, 4, or odd prime power. Thus we have

\[\text{Sm}(G) \subset \text{RO}(G)^{N_G(G)}_{\mathcal{P}_o(G)}. \]

Note that if \(G \) has no element of order 8 then \(\mathcal{P}_o(G) = \mathcal{P}(G) \). Recall that two real \(G \)-modules \(U \) and \(V \) are Smith equivalent if there exists a smooth action of \(G \) on a sphere \(\Sigma \) such that \(S^G = \{a, b\}, T_a(\Sigma) \cong U \) and \(T_b(\Sigma) \cong V \) as real \(G \)-modules and put

\[\text{Sm}(G) = \{[U] - [V] \mid U \text{ and } V \text{ are Smith equivalent}\}. \]

Similarly we consider the sets \(\text{PSm}^p(G) \) (resp. \(\text{LSm}(G) \)) of all differences \([U] - [V] \) such that \(U \) and \(V \) are Smith equivalent and in addition the homotopy sphere \(\Sigma \) satisfies that \(\Sigma^p \) is connected for any prime power order subgroups \(P \) of \(G \) (resp. for any 2-groups of \(G \)).
The set $\text{PSm}^c(G)$ (resp. $\text{LSm}(G)$) is empty if and only if G is of order prime power (resp. 2-power). It holds the inclusions

$$\text{PSm}^c(G) \subset \text{LSm}(G) \subset \text{Sm}(G)$$

and

$$\text{LSm}(G) \subset \text{RO}(G)^\mathcal{P}(G).$$

Theorem 3.1. Let G be an Oliver group whose nil-quotient G/G^{nil} is not a 2-group. Then

$$\text{RO}(G)^{L(G)}_\mathcal{P}(G) \subset \text{PSm}^c(G).$$

Moreover, we have

Theorem 3.2. Let G be an Oliver non-gap group with $[G : O^2(G)] = 2$. Suppose that all elements x of $G \setminus O^2(G)$ of order 2 such that $C_G(x)$ is not a 2-group. Then

$$\text{RO}(G)^{L(G)}_\mathcal{P}(G) \subseteq \text{PSm}^c(G).$$

We denote by $\text{SG}(m, n)$ the small group of order m and type n which is obtained as $\text{SmallGroup}(m, n)$ in the software GAP [3]. Morimoto studied (or is studying) the set $\text{Sm}(G)^\mathcal{P}(G) \setminus \text{Sm}(G)^{L(G)}_\mathcal{P}(G)$. He [9] showed that for $G = \text{PEL}(2, 27)$, $\text{SG}(864, 2666)$, $\text{SG}(864, 4666)$, $\text{Sm}(G)^{L(G)}_\mathcal{P}(G) = 0$ but $\text{Sm}(G)^{\mathcal{L}(G)}_{\mathcal{P}(G)} = \text{Sm}(G) \cong \mathbb{Z}$. Also he and his colleagues [4] showed that if a Sylow 2-subgroup is normal, then

$$\text{Sm}(G) \subset \text{RO}(G)^{N_2(G)}_\mathcal{P}(G)$$

and in particular $\text{Sm}(G) = 0$ holds for $G = \text{SG}(1176, 220), \text{SG}(1176, 221)$.

For an Oliver group, we see $\text{PSm}^c(G) \neq 0$ to show $\text{Sm}(G)^{\mathcal{P}(G)} \neq 0$. We have no rich examples so that $\text{Sm}(G)^{\mathcal{P}(G)} \neq \text{Sm}(G)$, whole $\text{Sm}(G) \setminus \text{Sm}(G)^{\mathcal{P}(G)}$ is a finite set. We do
not have an example for an Oliver group G such that $\text{PSm}^c(G) \neq \text{Sm}(G)_{\mathcal{P}(G)}$. It remains the problem whether $\text{PSm}^c(G) = \text{Sm}(G)_{\mathcal{P}(G)}$ for an Oliver group.

4. Criterion for the Smith set to be a group

We discuss for Oliver groups G such that $\text{PSm}^c(G)$ is a subgroup of $\text{RO}(G)$. We introduce two conditions. One is a part of a sufficient condition to show $\text{Sm}(G)_{\mathcal{P}(G)} \backslash \text{Sm}(G)^{G(G)} \neq 0$ and the other is a sufficient condition so that $\text{Sm}(G)_{\mathcal{P}(G)}$ is a group.

Let $Q = \bigcap_{p \neq 2} O^p(G)$ be a normal subgroup of G with odd index and let N be a normal subgroup of G with $G^{\text{nil}} \leq N \leq \cap 2(G) \cap Q$. Then

$$Q \geq \cap 2(G) \cap Q \geq N \geq G^{\text{nil}} \geq O^2(Q).$$

Definition 4.1. We say that G satisfies the quasi-N-\mathcal{P}-condition if there are real Q-modules U and V such that

- $\dim U^{\cap 2(G) \cap Q} = \dim V^{N} = 0$ and
- $[\mathbb{R} \oplus U] - [V] \in \text{RO}(Q)_{\mathcal{P}(Q)}$.

In particular, the quasi-G^{nil}-\mathcal{P}-condition is simply called quasi-nil-\mathcal{P}-condition.

Definition 4.2. We say that G satisfies the weak-nil-\mathcal{P}-condition if there are real G-modules U and V such that

- $\dim U^{\cap 2(G)} = \dim V^{G^{\text{nil}}} = 0$ and
- $[\mathbb{R} \oplus U] - [V] \in \text{RO}(G)_{\mathcal{P}(G)}$.

Lemma 4.3. If G satisfies the quasi-nil-\mathcal{P}-condition, then G satisfies the weak Nil-\mathcal{P}-condition.

Proposition 4.4 (cf. [10, Lemma 15]). Let G be a finite group with $O^2(G) = G$. The following statements are equivalent.

1. G^{nil} has a sub-quotient isomorphic to D_{2pq} for distinct primes p, q.
2. G satisfies the quasi-nil-\mathcal{P}-condition.

Morimoto and Qi [11] obtained a sufficient condition for an Oliver group G to hold that $\text{Sm}(G)_{\mathcal{P}(G)}$ is not equal to $\text{Sm}(G)^{G(G)}$. This result supplies that $\text{Sm}(G) = \text{Sm}(G)_{\mathcal{P}(G)} \cong \mathbb{Z}$ for $G = \text{SG}(864, 2666)$ or $\text{SG}(864, 4666)$. For $G = \text{SG}(864, 2666)$ or $\text{SG}(864, 4666)$, G/G^{nil} is a cyclic group of order 3 and $\text{RO}(G)_{\mathcal{P}(G)}$ is generated by two element $\mathbb{R}[G/G^{\text{nil}}] + X_1$ and $3(\mathbb{R}[G/G^{\text{nil}}] - \mathbb{R}) + X_2$ for some elements $X_1, X_2 \in \text{RO}(G)^{G^{\text{nil}}}$ and thus, G satisfies the weak-nil-\mathcal{P}-condition since G/G^{nil} is a cyclic group of order 3. We see it in the next section. Indeed, G has a sub-quotient isomorphic to D_{12} and G satisfies the quasi-nil-\mathcal{P}-condition.

Definition 4.5. For a normal subgroup N of G, we say that G satisfies the N-\mathcal{P}-condition if there are real G-modules U and V such that $U^N = V^N = 0$ and $[\mathbb{R} \oplus U] - [V] \in \text{RO}(G)_{\mathcal{P}(G)}$. If $N = G^{\text{nil}}$ we say that G satisfies the Nil-\mathcal{P}-condition.
Lemma 4.6 or Theorem 4.8 in [9] essentially yields us the following two theorems.

Theorem 4.6. If a gap Oliver group G satisfies the weak-Nil-\mathcal{P}-condition with $NPP(G) \cap G^{ni1} \neq \emptyset$ and has an element of $NPP(G)$ outside $O^p(G)$ for some prime p, then

$$\text{PSm}^c(G) \setminus \text{RO}(G)^{l(G)}_{\mathcal{P}(G)} \neq 0.$$

Note that under the assumption that $NPP(G) \cap G^{ni1} \neq \emptyset$ the inequality $\text{RO}(G)^{N_2(G)}_{\mathcal{P}(G)} \neq \text{RO}(G)^{l(G)}_{\mathcal{P}(G)}$ if and only if $NPP(G) \setminus O^p(G)$ is not empty for some prime p. By using the multiplication of $\text{RO}(G)$, we get the following theorem.

Theorem 4.7. Let G be a gap Oliver group satisfying the Nil-\mathcal{P}-condition. Then

$$\text{PSm}^c(G) = \text{RO}(G)^{N_2(G)}_{\mathcal{P}(G)} = \text{Sm}(G)_{\mathcal{P}(G)}$$

and in particular $\text{Sm}(G)_{\mathcal{P}(G)}$ is an additive group.

If a Sylow 2-subgroup of G is normal, G does not satisfy the Nil-\mathcal{P}-condition. Although the Nil-\mathcal{P}-condition is a sufficient one for an Oliver group G such that $\text{Sm}(G)^{\mathcal{P}(G)}$ is an additive group, it is not a necessary condition. For example, $A_5 \times C_4$ does not satisfy the Nil-\mathcal{P}-condition but the following result holds.

Proposition 4.8. $\text{PSm}^c(A_5 \times C_4) = \text{Sm}(A_5 \times C_4) = \text{RO}(A_5 \times C_4)^{[A_5]}$.

Problem. $\text{PSm}^c(A_5 \times (C_4)^n) = \text{Sm}(A_5 \times (C_4)^n)$ holds. Is it true that $\text{PSm}^c(A_5 \times (C_4)^n) = \text{RO}(A_5 \times (C_4)^n)^{[A_5 \times (C_2)^p]}$ for $n \geq 2$?

5. **Quasi-Nil-\mathcal{P}-condition**

In this section we study properties for the weak-Nil-\mathcal{P}-condition. Remark that there is an Oliver group which satisfies the weak-Nil-\mathcal{P}-condition but does not satisfy the Nil-\mathcal{P}-condition (eg. SG(864, 2666), SG(864, 4666)).

Proposition 5.1. Let K be a subgroup of G such that $\cap 2(G) \cdot K = G$. If K satisfies the weak-$(G^{ni1} \cap K)$-\mathcal{P}-condition, then G satisfies the weak-Nil-\mathcal{P}-condition.

Theorem 5.2. Let G be a gap Oliver group. Suppose that $NPP(G) \cap G^{ni1}$ is not empty and that there is an element $NPP(G)$ outside of $O^p(G)$ for some prime p. If an odd index subgroup K of G satisfies the weak-$(G^{ni1} \cap K)$-\mathcal{P}-condition, then

$$\text{PSm}^c(G) \setminus \text{RO}(G)^{l(G)}_{\mathcal{P}(G)} \neq 0.$$

Morimoto and Qi [10, Lemma 21 and Theorem 22] showed that $\text{Sm}(G)^{\mathcal{P}(G)} \neq \text{Sm}(G)^{l(G)}_{\mathcal{P}(G)}$ for an odd integer $n > 1$, an odd prime p, and $G = D_{2n} \int C_p$, the wreath product of the
dihedral group D_{2n} of order $2n$ by a cyclic group C_p of order p. The group G satisfies the assumption of Proposition 5.1 as follows. The group G has a presentation

$$a_i^n = b_j^2 = (a_i b_j)^2 = 1, \ (\forall i),$$

$$\langle a_1, b_1, \ldots, a_p, b_p, c \mid a_i a_j = a_j a_i, a_i b_j = b_j a_i, b_i b_j = b_j b_i, \ (i \neq j), \rangle,$$

$$c^p = 1, c^{-1}a_i c = a_{i+1}, c^{-1}b_i c = b_{i+1}, \ (\forall i)$$

where $a_{p+1} = a_1$ and $b_{p+1} = b_1$. The group G^{nil} is a subgroup of G generated by elements a_1, \ldots, a_p and $b_i b_j$ ($i < j$), and then $G/G^{\text{nil}} \cong C_{2p}$. Thus G is a gap Oliver group. Put $K = O^p(G)$. Let $f: D_{2n}^p \to D_{2n}$ be the first projection and let \hat{U} and \hat{V} be $\mathcal{P}(D_{2n})$-matched real D_{2n}-modules such that $\hat{U}^{D_{2n}} = \mathbb{R}$ and $\hat{V}^{D_{2n}} = 0$. The real K-modules $f^* \hat{U}$ and $f^* \hat{V}$ implies that K satisfies the assumption of Proposition 5.1 since $f(G^{\text{nil}}) = D_{2n}$. (Or directly, two real G-modules $\text{Ind}_K^G f^* \hat{U}$ and $\text{Ind}_K^G f^* \hat{V}$ implies that G satisfies the weak-Nil-\mathcal{P}-condition.)

Before closing this section, we should say the strongness of the weak-Nil-\mathcal{P}-condition. Let G be a finite group such that G/G^{nil} is a nilpotent group of odd order and there are an element of G^{nil} not of prime power order and an element of G outside G^{nil} not of prime power order. Then

$$\text{RO}(G)^{[G^{\text{nil}}]}_{\mathcal{P}(G)} \neq \text{RO}(G)^G_{\mathcal{P}(G)}.$$

Note that if a Sylow 2-subgroup of G is normal then $\text{Sm}(G) \subset \text{RO}(G)^{N(G)}_{\mathcal{P}(G)}$ (cf. [4]) and G does not satisfy the weak-Nil-\mathcal{P}-condition. Otherwise, if G has a sub-quotient isomorphic to D_{2qr} for some distinct primes q and r, there are real G-modules U and V such that the equalities $U^{G^{\text{nil}}} = 0 = V^{G^{\text{nil}}}$ hold and that $\mathbb{R}[G/G^{\text{nil}}] \oplus U$ and V are $\mathcal{P}(G)$-matched:

$$\mathbb{R} + [(\mathbb{R}[G/G^{\text{nil}}] - \mathbb{R}) \oplus U] - [V] = \mathbb{R}[G/G^{\text{nil}}] + [U] - [V] \in \text{RO}(G)^{G^{\text{nil}}}_{\mathcal{P}(G)}.$$

Thus, G satisfies the weak-Nil-\mathcal{P}-condition and in addition if G is a gap Oliver group then

$$\text{PSm}^c(G)^{[G^{\text{nil}}]} \neq \text{PSm}^c(G).$$

6. Nil-\mathcal{P}-condition

In this section we study properties for the Nil-\mathcal{P}-condition.

Proposition 6.1. If G satisfies the Nil-\mathcal{P}-condition, then G satisfies the weak-Nil-\mathcal{P}-condition.

Proposition 6.2. If a quotient group of G satisfies the Nil-\mathcal{P}-condition, then G also satisfies the Nil-\mathcal{P}-condition.

Proposition 6.3. Let N be a normal subgroup of G. If there are a subgroup K of G and an epimorphism $f: K \to H$ such that $f(K \cap N) = H$, $KN = G$ and H has sub-quotient isomorphic to D_{2pq}, where p and q are distinct primes, then G satisfies the N-\mathcal{P}-condition.
For a perfect group G, the weak-Nil-\mathcal{P}-condition and Nil-\mathcal{P}-condition are equivalent and moreover equivalent to that G has a sub-quotient isomorphic to a dihedral group D_{2pq} for distinct primes p and q.

Proposition 6.4 (cf. [21]). *Simple groups except the following groups satisfy the Nil-\mathcal{P}-condition.*

1. **Cyclic group**
2. **Projective special linear groups**: $\text{PSL}(2, 4) = \text{PSL}(2, 5) = A_5$, $\text{PSL}(2, 7) = \text{PSL}(3, 2)$, $\text{PSL}(2, 8)$, $\text{PSL}(2, 9) = A_6$, $\text{PSL}(2, 17)$, $\text{PSL}(3, 4)$, $\text{PSL}(3, 8)$
3. **Suzuki groups** $\text{Sz}(8)$, $\text{Sz}(32)$
4. **Projective unitary groups**: $\text{PSU}(3, 3)$, $\text{PSU}(3, 4)$, $\text{PSU}(3, 8)$

Theorem 6.5. *Let $q > 1$ be a prime power. The following groups are gap groups satisfying the Nil-\mathcal{P}-condition.*

1. **Symmetric groups** S_n, $n \geq 7$
2. **Projective general linear groups** $\text{PGL}(2, q)$, $q \neq 2, 3, 4, 5, 7, 8, 9, 17$
3. **Projective general linear groups** $\text{PGL}(3, q)$, $q \neq 2, 4, 8$
4. **Projective general linear groups** $\text{PGL}(n, q)$, $n \geq 4$
5. **General linear groups** $\text{GL}(2, q)$, $q \neq 2, 3, 4, 5, 7, 8, 9, 17$
6. **General linear groups** $\text{GL}(3, q)$, $q \neq 2, 4, 8$
7. **General linear groups** $\text{GL}(n, q)$, $n \geq 4$
8. **The automorphism group of sporadic groups**

The Smith sets of $\text{PGL}(2, q)$ and $\text{PGL}(3, q)$ have been already obtained in [24]. This can be proved by finding subgroups as in Proposition 6.3. The groups listed up in Theorem 6.5 are non-solvable gap group. Then we have the following theorem.

Theorem 6.6. *Let G be a group which has quotient isomorphic to a group in Theorem 6.5. Then*

$$\text{PSm}^c(G) = \text{Sm}(G)_{\mathcal{P}(G)} = \text{RO}(G)_{\mathcal{P}(G)}^{N(G)}.$$

Corollary 6.7. *Let K be a group in Theorem 6.5 and F any finite group. Then for $G = K \times F$,*

$$\text{PSm}^c(G) = \text{Sm}(G)_{\mathcal{P}(G)} = \text{RO}(G)_{\mathcal{P}(G)}^{N(G)}.$$

References

Faculty of Arts and Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819–0395, Japan
E-mail address: sumi@artsci.kyushu-u.ac.jp