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ON SOME DIFFERENTIAL SUBORDINATIONS
MAMORU NUNOKAWA AND JANUSZ SOKOL

ABSTRACT. The purpose of this work is to present a new geometric approach to some problems in
differential subordination theory. We also discuss the new results closely related to the generalized
Briot-Bouquet differential subordination.

1. INTRODUCTION

Let ‘H denote the class of all analytic functions in the unit disc D = {2 : |z| < 1} on the complex
plane C. Recall that a set E C C is said to be starlike with respect to a point wp € E if and only
if the linear segment joining wp to every other point w € E lies entirely in E, while a set E is said
to be convex if and only if it is starlike with respect to each of its points, that is if and only if the
linear segment joining any two points of E lies entirely in E. A univalent function f maps D onto a
convex domain F if and only if [6]

zf"(2) }
(1.1) Re {1+ ) >0 forallzeD
and then f is said to be convex in D (or briefly convex). Let A denote the subclass of H consisting
of functions normalized by f(0) = 0, f/(0) = 1. The set of all functions f € A that are convex
univalent in D we denote by K. We say that f € A is convex of order @, 0 < a < 1 when

zf"(z) }

1.2 D‘tc{1+—— >a forall zeD.

(12 7@
Functions that are convex of order a introduced Robertson in [5]. For two analytic functions f, g,
we say that f is subordinate to g, written as f < g, if and only if there exists an analytic function w
with property |w(2)| < |z| in D such that f(z) = g(w(z)). In particular, if g is univalent in D, then '
we have the following equivalence

(1.3) f(z) < g9(z) <= f(0) = g(0) and f(D) C g(D).
The idea of subordination was used for defining many of classes of functions studied in geometric
function theory. For obtaining the main result, we shall use the methods of differential subordinations.

The main results in the theory of differential subordinations was introduced by Miller and Mocanu
in [1],[3]. A function p, analytic in I, is said to satisfy a first order differential subordination if

(14) ¢ (p(2), 29'(2)) < h(2),
where (p(z), z0/(z)) € D c C?, ¢ : C? — C is analytic in D, h is analytic and univalent in D. The
function q is said to be a dominant of the differential subordination (1.4) if p < ¢ for all p satisfying
(1.4). If § is a dominant of (1.4) and § < g for all dominants q of (1.4), then we say that ¢ is the
best dominant of the differential subordination (1.4).

The following lemma will be required in our present investigation.

Lemma 1.1. {1], [3, p.24] Assume that Q s the set of functions f € H that are injective on D\ E(f),
where

E(f)={¢:( €D and lim f(z) = oo},
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and are such that
fQ)#0  (C€dD)\ E(f)).
Let ¢ € Q with ¢(0) = a and let
v(2) =a+ anz™+ -
be analytic in D with
¢(2) #a and m e N.

If ¢ £ in D, then there exist points
zo=19¢? €D and ¢ € ID\ E(g),

for which
o(|2| < 1o) C (D),
p(z0) = (o)
and
(1.5) 20" (20) = sa¥ (o),

for some s > m.
2. MAIN RESULTS
Theorem 2.1. Let h € Q be convez univalent in D, and let p(z) be analytic in D such that

(21 p(0) = h(0), MRe{p(h(z))} >0 z€D,
and
(2:2) p(2) + 20/ (2)(p(2)) < (2), z€D,

where ¢(z) is analytic in a domain D containing h(D). Then we have
p(z) < h(z) zeD.

Proof. Let us put

(2.3) p(2) + 2p'(2)6(p(2)) = h(2), p(0) = h(0).

Then, there is an unique solution p(z) which satisfies the equation (2.3). If p(z) A h(z), then there
exists a point 29, |2o| < 1 for which

(ZU) = h(CU) p(’ZI < leD - h(D)) ’COI = 1)
see Fig. 1 below. Then it follows that from (2.3) we have

(24) p(20) + 207 (20)$(p(20)) = h(Co) + 20 (20)B(h(Co))-

Let / be the tangential line at the point w = p(zp) = h(p) and let n be the perpendicular line at
this point. Further let a be the point of intersection with m and the real axis. The case when m is
parallel to the real axis, and a doesn’t exist, we shall consider afterwards. If a exists, then we have

(2.5) p(20) + 207 (20)(p(0)) = h(Go) + ‘E"’f)‘ %) (5(z0) - 2} $(h(G0).

-Because zgp/(2p) is outdoor normal vector to the boundary of h(|z] < 1) and p(|z| < |20]) at the point
w = p(zp) = h{(o) thus both zpp'(20) and p(zp) — a lie on the line m and are of the same argument.
This geometric observation yields to that

2P (%)
p(zo) — a
Therefore, we have

(26) arg { o (70) 1)~ a) qs(h(co))} = arg {p(z0) — a} + arg {$(h(G0))}

p(2) — a
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and

2.7) jarg {$(h(G)H < 3.

Using together (2.5), (2.6) and (2.7) we observe that p(zo) + z0p’(20)#(p(20)) lies outside the set h(D)
because h(D) is convex, and this contradicts (2.2).

Jm

m

(g
SO

Fig. 1. A= h(|z| < 1), B = p(|z| < |=l)

If 7n is parallel to the real axis, then p(z) and A((p) are real. Moreover, we have z0p/(20)/p(20) 2> 0.
Therefore, and by (2.4) we obtain that p(zo) + z0p'(20)#(p(20)) lies on the bounda.ry of h(D) but this
contradicts (2.2), too. It completes the proof.

0

The above proof of Theorem 2.1 is something else than that of Miller and Mocanu in [2, p.186],
see also [3, p.120].

Theorem 2.2. Let f(z) = z+ 3 oo, ca2™ be analytic in D, and convez of order a, 0 < a < 1. Then
we have

(28) ’fé‘;’ <q(z), z€D,

where q(z) satisfies the differential equation
2q(z) 14+ (1-2a)z

(29) q(Z) + q(Z) - 1 —z ? Q(O) = 1’
Proof. Let us put
(2.10) plz) = sz ((j) p(0)=1, z€D,

Because f(z) is convex of order a, from (2.10), it follows that

zp/(z) z2f"(z) 1+ (1 -2a)z
o YT 1o

On the other hand, from Theorem 2.1 we have p(z) < h(z), where h(2) is a convex function. If
p(z) £ g(z), then there exists a point 29 € D such that

p(z0) = q(G1), p(lzl < |zol) = R(D), |G| =1.

(2.11) p(z) + = h(z).
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Then, from Lemma 1.1, we have

zop/ (Zo)

P(Zo)

oy, 86d(G)
= d@)+ q(¢1)

_ ad(G) s
- s(«g»+7m5—)+(1 (G

(2.12) - s{}—i—(i%&}-i—(l—s)p(zo), (1<s).

p(20) +

On the other hand, it follows that

14+ (1-20)e?) _
m%*ﬁﬁ??“}—“

where 0 < 0 < 27.

Jm

e~

o AN
AN

P(2g)d zp'(z
(20) ¥ P Zo)\( P(z) = p(2) + 25
]

: ;
/] Re
{ /
\\ //
— h(Z) — 1+!11:3a!z
Fig.2. (D), c¢=a.
Therefore, from (2.12), we have
I o—
Re {p(zo) + 59-]-)-—(-@} = mRe {M} + (1 — m)Re {p(z0)}
p(20) 1-G
= ma + Re{p(2)}
< ma+(1-ma

(2.13) a.

This contradicts (2.11) and therefore, it completes the proof.
O

The above proof of Theorem 2.2 is different from the earlier one presented by Miller and Mocanu
in [1, p.165).

Theorem 2.3. Let h € Q be conver univalent in D, and let v # 0 with Rey > 0. If p(z) is analytic
in D such that

(2.14) p(z) + 2p'(2) /vy < Mz), z€D,
then we have
(2.15) p(z) < Mz) zeD.

Proof. From the hypothesis, we have

iRe{:ly-} = Re {Tj‘—z} > 0.
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If we put
d(z2)=- z€C,
then
Re {o(h(2))} >0 z€D.
Applying Theorem 2.1 we get (2.15). 0

The above proof of Theorem 2.3 is different from the earlier one presented by Miller and Mocanu
in [1, p.167].

Theorem 2.4. Let p(z) = 1+ 3 oo ) caz™ be analytic in D, and suppose that

(2.16) p(z) - ";’('S) <q(z). z€D,
where q(2) satisfies the differential equation
27) o) - HE 1T 01

Then we have
(2.18) ‘ p(2) < g(2) z€D.
Proof. From the hypothesis (2.17), we have

(2.19) q(z) =
If p(z) £ q(z), then there exists a point zp € D such that

p(z0) = q(¢o),  P(l2l < |20]) = R(D), |G| = 1.
It follows that from (1.5) we have

_ 2P (=) _ slod (Co)
= ( () - 4"‘{(5)")) +(1-9)aG), s>1.

From (2.17) and (2.19) we have
e {pm) . ﬂ”—@} = e {q(co) - 59-4‘“—’} + (1~ 5)Re {a(G0)}

() a(¢o)
= 0+0=0.
because {Co| = 1. Therefore, p(z0) — (20p'(20))/P(20) & q(D) = {w : Re {w} > 0}. By subordination
principle, this contradicts (2.16) and therefore, it completes the proof. O

Theorem 2.5. Let 3 and v be complex with 3 # 0 and let p(z) and ¢(2) be analytic in D with
p(0) = (0). If Re{Bq(z) + v} > 0 and Bq(z) + v is convez univalent in D and if
zp'(2)

)+ < q(2), z€D,

(2.20) p(z) +

then we have
(2.21) p(z) < g(z) z€D.
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Proof. If p(z) £ ¢(z), then there exists a point zy € D such that

p(20) = q(Co),  P(l2] < |20]) = K(D), ol =1.
Then, from Lemma 1.1, we have
zp'(20) 3¢oq’ (Co)
ot ————— + e
Bp(z) + v (@) B8q(Go) +
where 1 < s. With the notation as as in the figure Fig. 1 and in the same way as in the proof of

Theorem 2.1 we obtain
006y {S601G) lG) 2 )
Aq(Co) + (o) — a Ba(Go) + v

g(¢o) —a }
= A —_—
¢ {ﬁq(Co) T
(2.23) arg {q(Co) — a} — arg {3a(Co) +},
where o is the point of intersection with m and the real axis. From the hypothesis, we have

(2.24) Jarg {Ba(Go) + M} < 5.

Using together (2.22), (2.23) and (2.24) we observe that p(zp) + 20p'(20)/(5p(20) + ) lies outside the
set g(D) because g(D) is convex, and this contradicts (2.20). In the case when m is parallel to the
real axis, then as in the proof of Theorem 2.1 we obtain that p(z) + zop'(20)/(8p(20) + ) lies on the
boundary of Q(D), Q(z) = q(z) + z¢'(2)/(3g(z) + 7) but this contradicts (2.20), too. It completes
the proof. |

(2:22) p(z0) +

I

The Theorem 2.5 above was proved earlier differently as Corollary 1.1 in {2, p.167].

Theorem 2.6. Let A be a complexr number with |A\| < 1, and let p(z) be analytic in D with p(0) = 0.
If p(2) satisfics

zp/ (z) < 2(2+4 Az)

Ap(z) +1 1+Az 7 <D,

(2.25) p(z) +
then we have
(2.26) p(z) <z 2€D.
Proof. If p(2) £ z, then there exists a point 2z € D such that

P(z0) = o, p(z <lz) = A(D), [¢o] =1.
_Then, from Lemma 1.1, we have

zop'(20) s¢oq (o)

2.27 ) + 2PF) ,
where 1 < s. A simple calculation shows that either

5604’ (o)
(2.28) Co+ o) + 1 € h(]z]| =1) when s
or

s¢oq’' (o)

. — ) < s> 1

(2.29) Go+ YAFS] € h(|z] <1) when s>1
This contradicts (2.25) and therefore it finishes the proof. O

For other results on the subordination in geometric function theory we refer also to the recent
papers [4] and [7].
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