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ABSTRACT. The purpose of this work $is$ to prespnt a new geometric approech to some prob ems in

differential subordination theory. We also discuss the new results closely related to the generalized
Briot-Bouquet (lifferential subordination.

1. INTRODUCTION

Let $\mathcal{H}$ denote the class of all analytic functions in the unit disc $\mathbb{D}=\{z : |z|<1\}$ on the complex
plane $\mathbb{C}$ . Recall that a set $E\subset \mathbb{C}$ is said to be starlike with respect to a point $w_{0}\in E$ if and only
if the linear segment joining $w_{0}$ to every other point $w\in E$ lies entirely in $E$ , while a set $E$ is said
to be convex if and only if it is starlike with respect to each of its points, that is if and only if the
linear segment joining any two points of $E$ lies entirely in $E.$ $A$ univalent function $f$ maps $\mathbb{D}$ onto a
convex domain $P$, if and only if [6]

(1.1) $\mathfrak{R}c\{1+\frac{zf"(z)}{f’(z)}\}>0$ for all $z\in \mathbb{D}$

and then $f$ is said to be convex in $\mathbb{D}$ (or briefly $\infty nvex$). Let $A$ denote the subclass of $\mathcal{H}$ consisting
of functions normahzed by $f(O)=0,$ $f’(O)=1$ . The set of all functions $f\in A$ that are convex
umivalent in $\mathbb{D}$ we denote by $\mathcal{K}$ . We say that $f\in A$ is convex of order $\alpha,$ $0\leq\alpha<1$ when

(1.2) $\mathfrak{R}c\{1+\frac{zf"(z)}{f(z)}\}>\alpha$ for all $z\in \mathbb{D}.$

Functions that are convex of order $\alpha$ introduced Robertson in [5]. For two analytic functions $f,g,$

we say that $f$ is subordinate to $g$ , written as $f\prec g$ , if and only if there exists an analytic function $\omega$

with property $|\omega(z)|\leq|z|$ in $\mathbb{D}$ such that $f(z)=g(\omega(z))$ . In particular, if $g$ is univalent in $\mathbb{D}_{i}$ then
we have the following equivalence
(i.3) $f(z)\prec g(z)\Leftrightarrow f(O)=g(O)$ and $f(\mathbb{D})\subset g(\mathbb{D})$ .

$T\}_{1}\iota^{\backslash }$ idca of subordination was used for defining marsy of classes of furictions studied in $g_{L}omctric$

fmction theory. For obtaining the main result, we shall use the methods of differential subordinations.
The main results in the theory of differential subordinations was introduced by Miller and Mocanu
in [1],[3]. $A$ function $p$, analytic in $\mathbb{D}$ , is said to satisfy a first order differential subordination if

(1.4) $\phi(p(z), zp’(z))\prec h(z)$ ,

where $(p(z),\cdot zp’(z))\in D\subset \mathbb{C}^{2},$ $\phi$ : $\mathbb{C}^{2}arrow \mathbb{C}$ is analytic in $\mathbb{D},$ $h$ is analytic and univalent in $\mathbb{D}$ . The
function $q$ is said to be a $dmn,$inant of the differential subordination (1.4) if $p\prec q$ for all $p$ satisfying
(1.4). If $\tilde{q}$ is a dominant of (1.4) and $\tilde{q}\prec q$ for all dominants $q$ of (1.4), then we say that a is the
best $d\sigma rninar\iota l$ of the differential subordination (1.4).

The following lemma will be required in our present investigation.

Lemma 1.1. [1], [3, p.24] Assume that $Q$ is the set offunctions $f\in \mathcal{H}$ that are injective $on\overline{\mathbb{D}}\backslash E(f)$ ,
where

$E(f):=\{\zeta:\zeta\in\partial D$ and $\lim_{zarrow\zeta}f(z)=\infty\},$
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and are such that
$f’(\zeta)\neq 0 ((\in\theta(\mathbb{D})\backslash E(f))$ .

Let $\psi\in Q$ with $q(O)=a$ and let
$\varphi(z)=a+a_{m}z^{m}+\cdots$

be analytic in $\mathbb{D}$ with
$\varphi’(z)\not\equiv a$ and $m\in N.$

If $\varphi\#\psi$ in $\mathbb{D}$ , then there exist points
$z_{0}=r_{0}e^{i\theta}\in D$ and $\zeta_{0}\in\partial \mathbb{D}\backslash E(q)$ ,

for which
$\varphi(|z|<r_{0})\subset\psi(\mathbb{D})$ ,

$\varphi(\vee)=\psi(\zeta_{0})$

and
(1.5) $z_{0}\varphi’(z_{0})=s\zeta_{0}\psi’(\zeta_{0})$ ,

for some $s\geq m.$

2, MAIN RESULTS

Theorem 2.1. Let $h\in Q$ be convex univalent in $\mathbb{D}$ , and let $p(z)$ be analytic in $\mathbb{D}$ such that
(2.1) $p(O)=h(0) , \mathfrak{R}e\{\phi(h(z))\}>0z\in \mathbb{D},$

and
(2.2) $p(z)+zp’(z)\phi(p(z))\prec h(z) , z\in \mathbb{D},$

where $\phi(z)$ is analytic in a domain $D$ containing $h(\mathbb{D})$ . Then we have
$p(z)\prec h(z)z\in \mathbb{D}.$

Proof. Let us put

(2.3) $p(z)+zp’(z)\phi(p(z))=h(z), p(O)=h(O)$ .
Then, there is an unique solution $p(z)$ which satisfies the equation (2.3). If $p(z)\# h(z)$ , then there
exists a point $z_{0},$ $|z_{0}|<1$ for which

$p(z_{0})=h(\zeta_{0}) , p(|z|<|z_{0}|)\subset h(\mathbb{D}) , |\zeta_{0}|=1,$

see Fig. 1 below, Then it follows that from (2.3) we have
(2.4) $p(z_{0})+z_{0}p’(z_{0})\phi(p(z_{0}))=h(\zeta_{0})+z_{0}p’(z_{0})\phi(h(\zeta_{0}))$ .

Let $l$ be the tangential line at the point $w=p(z_{0})=h(\zeta_{0})$ and let $m$ be the perpendicular line at
this point. Further let $\alpha$ be the point of intersection with $m$ and the real axis. The case when $m$ is
parallel to the real axis, and $\alpha$ doesn’t exist, we shall consider afterwards. If $\alpha$ exists, then we have

(2.5) $p(z_{0})+z_{0}p’(z_{0}) \phi(p(z_{0}))=h(\zeta_{0})+\frac{z_{0}p’(z_{0})}{p(z_{0})-\alpha}\{p(z_{0})-\alpha\}\phi(h((0))$.

Because $z_{0}p’(z_{0})$ is outdoor normal vector to the boundary of $h(|z|\leq 1)$ and $p(|z|\leq|z_{0}|)$ at the point
$w=p(z_{0})=h(\zeta_{0})$ thus both $z_{0}p’(z_{0})$ and $p(z_{0})-\alpha$ lie on the line $m$ and are of the same argument.
This geometric observation yields to that

$\frac{z_{0}p’(z_{0})}{p(z_{0})-\alpha}\geq 0.$

Therefore, we have

(2.6) $\arg\{\frac{z_{0}p^{l}(z_{0})}{p(z_{0})-\alpha}\{p(z_{0})-\alpha\}\phi(h(\zeta_{0}))\}=\arg\{p(z_{0})-\alpha\}+\arg\{\phi(h(\zeta_{0}))\}$
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and

(2.7) $| \arg\{\phi(h(\zeta_{0}))\}|<\frac{\pi}{2}.$

Using together (2.5), (2.6) and (2.7) we observe that $p(z_{0})+z_{0}p’(z_{0})\phi(p(z_{0}))$ lies outside the set $h(\mathbb{D})$

because $h(\mathbb{D})$ is convex, and $thiB$ contradicts (2.2).

Fig. 1. $A=h(|z|\leq 1),$ $B=p(|z|\leq|z_{0}|)$

If $m$ is parallel to the real axis, then $p(z_{0})$ and $h(\zeta_{0})$ are real. Moreover, we have $z_{0}p’(z_{0})/p(z_{0})\geq 0.$

Therefore, and by (2.4) we obtain that $p(z_{0})+a)p’(z_{0})\phi(p(z_{0}))$ lies on the boundary of $h(\mathbb{D})$ but this
contradicts (2.2), too. It completes the proof.

$\square$

The above proof of Theorem 2.1 is something else than that of Miner and Mocanu in [2, p.186],
see also [3, p.120].

Theorem 2.2. Let $f(z)=z+ \sum_{n=1}^{\infty}c_{n}z^{n}$ be analytic in $\mathbb{D}$, and convex of order $\alpha,$ $0\leq\alpha<1$ . Then
we have

(2.8) $\frac{zf’(z)}{f(z)}\prec q(z) , z\in \mathbb{D},$

where $q(z)$ satisfies $tJ_{h}e$ differential $rqt\iota ation$

(2.9) $q(z)+ \frac{zq’(z)}{q(z)}=\frac{1+(1-2\alpha)z}{1-z}, q(0)=1.$

Proof. Let us put

(2.10) $p(z)= \frac{zf’(z)}{f(z)}, p(O)=1, z\in \mathbb{D},$

Because $f(z)$ is convex of order $\alpha$ , from (2.10), it follows that

(2.11) $p(z)+ \frac{zp’(z)}{p(z)}=1+\frac{zf"(z)}{f’(z)}\prec\frac{1+(1-2\alpha)z}{1-z}=h(z)$ .

On the other hand, from Theorem 2.1 we have $p(z)\prec h(z)$ , where $h(z)$ is a convex function. If
$p(z)\# q(z)$ , then there exists a point $z_{0}\in \mathbb{D}$ such that

$p(z_{0})=q(\zeta_{i}) , p(|z|<|z_{0}|)=h(\mathbb{D}) , |\zeta_{1}|=1.$
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Then, from Lemma 1.1, we have

$p(z_{0})+ \frac{z_{0}p’(z_{0})}{p(z_{0})} = q(\zeta_{1})+\frac{s\zeta_{1}q’(\zeta_{1})}{q(\zeta_{i})}$

$=s(q( \zeta_{1})+\frac{\zeta_{1}q(\zeta_{1})}{q(\zeta_{1})})+(1-s)q(\zeta_{1})$

(2.12) $=s \{\frac{1+(1-2\alpha)\zeta_{1}}{1-\zeta_{1}}\}+(1-s)p(z_{0}) , (1\leq s)$ .

On the other hand, it follows that

$\Re e\{\frac{1+(1-2\alpha)e^{i\theta}}{1-c^{i\theta}}\}=\alpha,$

where $0\leq\theta<2\pi.$

Fig.2. $h(\mathbb{D})$ , $c=\alpha.$

Therefore, from (2.12), we have

$\mathfrak{R}\epsilon\{p(z_{0})+\frac{z_{0}p’(z_{0})}{p(z_{0})}\} = m\mathfrak{R}e\{\frac{1+(1-2\alpha)\zeta_{1}}{1-(1}\}+(1-m)\mathfrak{R}c\{p(z_{0})\}$

$= m\alpha+\mathfrak{R}c\{p(z_{0})\}$

$\leq m\alpha+(1-m)\alpha$

(2.13) $=\alpha.$

This contradicts (2.11) and therefore, it completes the proof.
$\square$

The above proof of Theorem 2.2 is different from the earlier one presented by Miller and Mocanu
in [1, p.165].

Theorem 2.3. Let $h\in Q$ be convex univalent in $\mathbb{D}$ , and let $\gamma\neq 0$ with $\mathfrak{R}e\gamma\geq 0$ . If $p(z)$ is analytic
in $\mathbb{D}$ such that
(2.14) $p(z)+zp’(z)/\gamma\prec h(z) , z\in \mathbb{D},$

then we have
(2.15) $p(z)\prec t\iota(z)z\in \mathbb{D}.$

Proof. From the hypothesis, we have

$\mathfrak{R}c\{\frac{1}{\gamma}\}=\mathfrak{R}e\{\frac{\overline{\gamma}}{|\gamma|^{2}}\}\geq 0.$
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If we put

$\phi(z)=\frac{1}{\gamma}z\in C,$

then
$\mathfrak{R}c\{\phi(h(z))\}>0z\in \mathbb{D}.$

Applying Theorem 2.1 we get (2.15). $\square$

The above proof of Theorem 2.3 is different from the earlier one presented by Miller and Mocanu
in [1, p.167].

Theorem 2.4. Let $p(z)=1+ \sum_{n=1}^{\infty}c_{r}z^{n}$ be andytic in $D$, and suppose that

(2.16) $p(z)- \frac{zp’(z)}{p(z)}\prec q(z)_{:} z\in \mathbb{D},$

where $q(z)satisfie_{\wedge}s$ the differr,$n,tide\eta\tau\iota ation$

(2.17) $q(z)- \frac{zt(z)}{q(z)}=\frac{1+}{1-z^{2}}, q(0)=1.$

Then we have

(2.18) $p(z)\prec q(z)z\in \mathbb{D}.$

Proof. From the hypothesis (2.17), we have

(2.19) $q(z)= \frac{1+z}{1-z}.$

If $p(z)\# q(z)$ , then there exists a point $z_{0}\in \mathbb{D}$ such that
$p(z_{0})=q(\zeta_{0}) , p(|z|<|.0|)=h(\mathbb{D}) , |\zeta_{0}|=1.$

It follows that from (1.5) we have

$p(z_{0})- \frac{z_{0}p’(z_{0})}{p(z_{0})} = q(\zeta_{0})-\frac{n(0q’(\zeta_{0})}{\phi(\zeta_{0})}$

$=s(q( \zeta_{0})-\frac{\zeta_{0}q’(\zeta_{0})}{q(\zeta_{0})})+(1-9)q((0), \epsilon\geq 1.$

From (2.17) and (2.19) we have

$\mathfrak{R}e\{p(z_{0})-\frac{z_{0}p’(z_{0})}{p(z_{0})}\} = s\mathfrak{R}c\{q(\zeta_{0})-\frac{\zeta_{0}q’(\zeta_{0})}{q(\zeta_{0})}\}+(1-s)\mathfrak{R}c\{q(\zeta_{0})\}$

$=0+0=0.$

because $|\zeta_{0}|=1$ . Therefore, $p(z_{0})-(z_{0}p’(z_{0}))/p(z_{0})\not\in q(\mathbb{D})=\{w:\mathfrak{R}c\{w\}>0\}$ . By subordination
principle, this contradicts (2.16) and therefore, it completes the proof. $\square$

Theorem 2.5. Let $\beta$ and $\gamma$ be complex with $\beta\neq 0$ and let $p(z)$ and $q(z)$ be analytic in $\mathbb{D}$ with
$p(O)=q(0)$ . If $\mathfrak{R}e\{\beta q(z)+\gamma\}>0$ and $\beta q(z)+\gamma$ is convex univalent in $\mathbb{D}$ and if

(2.20) $p(z)+ \frac{zp’(z)}{\beta p(z)+\gamma}\prec q(z) , z\in \mathbb{D},$

then we have

(2.21) $p(z)\prec q(z)z\in \mathbb{D}.$
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Proof. If $p(z)\# q(z)$ , then there exists a point $z_{0}\in D$ such that
$p(z_{0})=q(\zeta_{0}) , p(|z|<|z_{0}|)=h(\mathbb{D}) , |\zeta_{0}|=1.$

Then, from Lemma 1.1, we have

(2.22) $p(z_{0})+ \frac{z_{0}p’(z_{0})}{\beta p(z_{0})+\gamma}=q(\zeta_{0})+\frac{s\zeta_{0}q’(\zeta_{0})}{\beta q(\zeta_{0})+\gamma},$

where $1\leq s$ . With the notation as as in the figure Fig. 1 and in the same way as in the proof of
Theorem 2.1 we obtain

$\arg\frac{s\zeta_{0}q^{\acute{}}(\zeta_{0})}{j9q(\zeta_{0})+\gamma} = \arg\{\frac{s\zeta_{0}\phi(\zeta_{0})q(\zeta_{0})-\alpha}{q(\zeta_{0})-\alpha\beta q(\zeta_{0})+\gamma}\}$

$= axg\{\frac{q(\zeta_{0})-\alpha}{\beta q(\zeta_{0})+\gamma}\}$

(2.23) $= \arg\{q(\zeta_{0})-\alpha\}-\arg\{_{\wedge’}tq(\zeta_{0})+\gamma\},$

where $\alpha$ is the point of intersection with $m$ and the real axis. From the hypothesis, we have
$(2_{\blacksquare}24)$ $\uparrow\arg\{\beta q(\zeta_{0})+\gamma)\}|<\frac{\pi}{2}.$

Using together (2.22), (2.23) and (2.24) we observe that $p(z_{0})+z_{0}p’(z_{0})/(\beta p(z_{0})+\gamma)$ lies outside the
set $q(\mathbb{D})$ because $q(\mathbb{D})$ is convex, and this contradicts (2.20). In the case when $m$ is parallel to the
real axis, then as in the proof of Theorem 2.1 we obtain that $p(z_{0})+z_{0}p’(z_{0})/(\beta p(z_{0})+\gamma)$ lies on the
boundary of $Q(\mathbb{D}),$ $Q(z)=q(z)+zq’(z)/(\beta q(z)+\gamma)$ but this contradicts (2.20), too. It completes
the proof. $\square$

The Theorem 2.5 above was proved earlier differently as Corollary 1.1 in [2, p.167].

Theorem 2.6. Let $\lambda$ be a complex number with $|\lambda|\leq 1$ , and let $p(z)$ be analytic in $\mathbb{D}$ with $p(O)=0.$
If $p(z)$ satisfies

(2.25) $p(z)+ \frac{ZJ^{](z)}}{\lambda p(z)+1}\prec\frac{z(2+\lambda z)}{1+\lambda z}, z\in \mathbb{D},$

then we have
(2.26) $p(z)\prec zz\in \mathbb{D}.$

Proof. If $p(z)\# z$ , then there exists a point $z_{0}\in \mathbb{D}$ such that
$p(z_{0})=(0, p(z<|z_{0}|)=h(\mathbb{D}) , |\zeta_{0}|=1.$

Then, from Lemma 1.1, we have

(2.27) $p(z_{0})+ \frac{z_{0}p’(z_{0})}{\lambda p(z_{0})+1}=\zeta_{0}+\frac{s\zeta_{0}q’(\zeta_{0})}{\lambda\zeta_{0})+1},$

where $1\leq s.$ $A$ simple calculation shows that either

(2.28) $\zeta_{0}+\frac{s\zeta_{0}q’(\zeta_{0})}{\lambda\zeta_{0})+1}\in h(|z|=1)$ when $s=1$

or

(2.29) $\zeta_{0}+\frac{s\zeta_{0}q’(\zeta_{0})}{\lambda\zeta_{0})+1}\not\in h(|z|\leq1)$ when $s\geq 1.$

This contradicts (2.25) and therefore it finishes the proof. $\square$

For other results on the subordination in geometric function theory we refer also to the recent
papers [4] and [7],
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