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Abstract

The simplicial algorithm is a kind of branch-and-bound method for solving convex maxi-
mization problems. The subdivision rules sufficient for convergence include $\omega$-subdivision,
$\omega$-bisection and the conventional bisection. In this paper, we develop a new convergent
subdivision rule interpolating $\omega$-bisection and $\omega$-subdivision.
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1 Introduction

Branch-and-bound is a potent tool for solving convex maximization problems, a typical class
of multiextremal global optimization problems. Algorithms based on branch-and-bound can
be categorized roughly into three types: the conical algorithm [13], which subdivides the
feasible set using a set of cones in the branching step, and narrows down the cone containing an
optimal solution with the help of concavity cuts in the bounding step; the simplicial algorithm
[3], which uses simplices instead of cones in the branching step, and carries out the bounding
steps using concave envelopes; and the rectangular algorithm [1], which uses rectangles in
the branching step and can be applied to only separable objective function problems. Unlike
discrete optimization problems, no matter how many times the branching step is repeated,
continuous optimization problems never yield trivial subproblems in general. Therefore, the
convergence analysis is essential in developing deterministic branch-and-bound algorithms
for convex maximization. In each type of branch-and-bound algorithms, it is observed that
the convergence is accelerated by using the $\omega$-subdivision rule, which exploits a by-product
of the bounding step to subdivide cones, simplices or rectangles in the branching step. The
convergence when using this rule was proven by Jaumard-Meyer [5, 6], Locatelli [9] and
Kuno-Ishihama [8] for the conical algorithm, by Locatelli-Raber [10, 11] and Kuno-Buckland
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[7] for the simplicial algorithm, and by Falk-Soland [1] and Soland [12] for the rectangle
algorithm.

In [7, 8], they also proposed a new kind of subdivision rule, called $\omega$-bisection, which is
a hybrid of $\omega$-subdivision and the conventional bisection. In this paper, we extend this idea
and develop a rule for subdividing each simplex into a prescribed number of subsimplices
in the branching step of the simplicial algorithm. In Section 2, we formulate the convex
maximization problem and illustrate how the simplicial algorithm solves it. In Section 3, we
modify the relaxed problem solved in the bounding step and review the convergence under the
usual $\omega$-subdivision rule. In Section 4, for a given number $k$ , we develop a convergent rule
for subdividing each simplex into $k$ subsimplices in the branching step. If $k=2$, then this
subdivision rule coincides with $\omega$-bisection; and if $k$ is equal to the problem dimension, it is
the usual $\omega$-subdivision. In Section 5, we report the results of a numerical comparison among
$\omega$-bisection, trisection, quadsection, and the usual $\omega$-subdivision.

2 Simplicial algorithm for convex maximization

The problem considered in this paper is as follows:

maximize $f(x)$
(1)

subject to Ax $\leq b,$

where $A\in \mathbb{R}^{m\cross n}$ and $b\in \mathbb{R}^{m}$ . The objective function $f$ is a nonlinear convex function defined
on an open convex set, which is assumed to be large enough to contain an $n$-simplex $\Delta^{1}$

enclosing the feasible set
$D=\{x\in \mathbb{R}^{n}| Ax\leq b\}.$

Also the following are assumed throughout the paper:

(Al) The set $D$ is bounded and contains the origin $0\in \mathbb{R}^{n}$ as an interior point.

(A2) The objective function value $f(x)$ is nonnegative and bounded for any $x\in\Delta^{1}.$

The simplicial algorithm is a kind of branch-and-bound algorithm for solving the multi-
extremal problem (1) to optimality. In the preprocessing, the feasible set $D$ is enclosed in the
$n$-simplex $\Delta^{1}$ , which is given as conv$\{v_{j}^{1}|j=1, \ldots,n+1\}$ , the convex hull of $n+1$ affinely
independent vectors. In the branching step, $\Delta^{1}$ is subdivided into a set of subsimplices $\Delta^{i},$

$i\in \mathscr{I}$ , satisfying

$\Delta^{1}=\bigcup_{i\in \mathscr{I}}\Delta^{i}$

; $int\Delta^{r}\cap int\Delta^{s}=\emptyset$ , if $r,s\in \mathscr{I}$ and $r\neq s,$

where $\mathscr{I}$ is an (infinite) index set, and int $\cdot$ represents the set of interior points. Associated
with each $\Delta^{i}$ is a subproblem:

maximize $f(x)$
(2)

subject to $x\in D\cap\Delta^{i}.$

98



Since (2) is essentially the same problem as the original (1), it cannot be solved directly.
In the bounding step, replacing $f$ by its concave envelope $g^{i}$ , a minimal concave function
overestimating $f$ on $\Delta^{i}$ , the following relaxed problem is solved:

maximize $g^{i}(x)$

subject to $x\in D\cap\Delta^{i}.$
(3)

In our case, where $f$ is convex, $g^{i}$ is an affine function which agrees with $f$ at the vertices of
$\Delta^{j}$ . This implies that (3) isjust alinear program and can be solved easily. Let $\omega^{i}$ be an optimal
solution of (3). Then we have

$g^{i}(\omega^{i})\geq f(x) , \forall x\in D\cap\Delta^{i}.$

Therefore, if $g^{i}(\omega^{i})\leq f(x^{*})$ for the incumbent solution $x^{*}$ of (1) obtained during the algo-
rithm, we can conclude that $\Delta^{i}$ contains no solution better than $x^{*}$ and discard it from further
consideration. Otherwise, $\Delta^{i}$ is again subdivided into smaller subsimplices in the branching
step. Unlike discrete optimization problems, no matter how many times the branching and
bounding steps are repeated, (2) can have infinitely many feasible solutions. In that case, at
least one infinite sequence of simplices is generated in a nested fashion:

$\Delta^{1}\supset\Delta^{2}\supset\cdots\supset\Delta^{i}\supset\Delta^{i+1}\supset\cdots.$ (4)

The convergence of the simplicial algorithm depends largely on how to subdivide the sim-
plex $\Delta^{i}=$ conv$\{v_{j}^{i}|j=1, \ldots,n+1\}$ . The simplest subdivision rule is bisection, where the
longest edge of $\Delta^{i}$ is cut at the midpoint. Then $\Delta^{i}$ is divided into two subsimplices, either
of which is the successor $\Delta^{i+1}$ in the sequence (4). Under this rule, the sequence gradually
shrinks to a single point. Since $\omega^{i}\in\Delta^{i}$ for $i=1,2,$ $\ldots$ , we have $|g^{i}(\omega^{i})-f(\omega^{i})|arrow 0$ , as
$iarrow\infty$ . This exhaustiveness guarantees that the incumbent $x^{*}$ converges to a globally optimal
solution of (1).

Although not exhaustive, an often-used altemative is $\omega$-subdivision. The simplex $\Delta^{i}$ is
subdivided into up to $n+1$ subsimplices, radially at $\omega^{i}$ . Let $J^{i}$ be an index set such that $r\in J^{i}$

if $\omega^{i}$ is affinely independent of $v_{j}$ ’s for $j\neq r$ . Then the children of $\Delta^{i}$ are given as

$\Delta^{i_{r}}=conv\{v_{1}^{i}, \ldots,v_{r-1}, \omega^{i},v_{r+1}^{i}, \ldots,v_{n+1}^{i}\}, r\in J^{i}.$

The $\omega-$subdivision rule has been said to be empirically more efficient than bisection. The
theoretical convergence was, however, an open question for some decades until Locatelli-
Raber proved it in 2000 [10, 11]. In the succeeding section, we will outline an easier altemative
proof given in [7], which provides a clue leading to another kind of convergent subdivision
rule.
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3 Relaxation of the relaxed subproblem

Introducing an auxiliary variable $\tau\geq 0$ , let us relax the feasible set $D$ a little bit into

$D(\tau)=\{x\in \mathbb{R}^{n}| Ax\leq(1+\tau)b\}.$

Since $b>0$ under the assumption (Al), it holds that

$D=D(0)\subset D(\tau’)\subset D(\tau") , if0\leq\tau’\leq\tau".$

Definition 3.1. For a positive constant $\sigma$ , a point $x$ is referred to as a $\sigma$-feasible solution of
(1) if $x\in D(\sigma)$ .

Let $\sigma>0$ be a prescribed tolerance, and let

$F^{i}= \max\{f(v_{j}^{i})|j=1, \ldots,n+1\}, i=1,2, \ldots.$

Note that $F^{i}$ is nonnegative under the assumption (A2), and besides nonincreasing in $i$ . Let us
select a number $M$ to satisfy

$M>F^{1}/\sigma,$

and define a problem in $x$ and $\tau$ :

$(P^{i})$
maximize $g^{i}(x)-M\tau$

subject to $x\in D(\tau)\cap\Delta^{i},$ $\tau\geq 0.$

It is easy to see that $(P^{i})$ is equivalent to a linear program

maximize $d\lambda-M\tau$

(5)
subject to $AV\lambda-b\tau\leq$ b, e$\lambda=1,$ $\lambda\geq 0,$ $\tau\geq 0,$

where $e\in \mathbb{R}^{n+1}$ is the all-ones vector, and

$d=[g^{i}(v_{1}^{i}), \ldots,g^{i}(v_{n+1}^{i})]=[f(v_{1}^{i}), \ldots,f(v_{n+1}^{i})], V=[v_{1}^{i}, \ldots,v_{n+1}^{i}].$

The dual problem of (6) is written as

minimize $\mu b+v$
(6)

subject to $\mu AV+ve\geq d,$ $vb\leq M,$ $\mu\geq 0.$

Since (5) is always feasible and the objective function is bounded from above by $F^{i}$ , both
(5) and (6) have optimal solutions, denoted $(\lambda^{i}, \tau^{i})$ and $(\mu^{i}, v^{i})$ , respectively. Obviously, an
optimal solution of $(P^{i})$ is then given by $(\omega^{i}, \tau^{i})$ with $\omega^{j}=V\lambda^{i}.$

Proposition 3.1. If $D\cap\Delta^{j}\neq\emptyset$, then the optimal $\nu alue$ of $(P^{i})$ is an upper bound on the sub-
problem (2), i. e.,

$g^{i}(\omega^{i})-M\tau^{i}\geq f(x) , \forall x\in D\cap\Delta^{i}.$
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Proposition3.2. If$g^{i}(\omega^{i})-M\tau^{i}<0$, then $D\cap\Delta^{i}=\emptyset$. Otherwise, $\omega^{i}$ is a $\sigma$-feasible solution
of (1).

If $D\cap\Delta$‘ tums out to be empty, then $\Delta^{i}$ is discarded from further consideration. We may
therefore assume that $g^{i}(\omega^{i})-M\tau^{i}\geq 0$ and $\omega^{i}\in D(\sigma)$ for every $i$ . Let

$\Delta$ conv$\{v_{j}^{i}|j\in J^{i}\},$ $J^{i}=\{j|\lambda_{j}^{i}>0\}.$

Then $\Delta_{+}^{i}$ is a $|J^{i}|$ -face of $\Delta^{i}$ , on which $\omega^{i}$ lies. Even more remarkable is the following:

Lemma 3.3. It holds that
$g^{i}(x)\leq\mu^{i}Ax+v^{i}, \forall x\in A.$

In particular,
$g^{i}(x)=\mu^{i}Ax+v^{i}$ , if $x\in A_{+}^{i}.$

Lemma 3.3 suggests that we can adopt $\mu^{i}A$ and $v^{i}$ as the coefficients and write $g^{i}$ explicitly
as follows:

$g^{i}(x)=\mu^{i}Ax+v^{i}, i=1,2, \ldots.$

Then we can show the following:

Lemma 3.4. The gradient of $g^{i}$ is bounded, i. e., there exists a constant $L$ such that

$\Vert\mu^{i}A\Vert\leq L, i=1,2, \ldots.$

Lemma 3.5. It holds that

$g^{k}(x)\leq g^{i}(x) , x\in\Delta_{+}^{k}, i=1, \ldots,k.$

Lemma 3.6. If $\Delta^{i+1}$ is generated by subdividing $\Delta^{i}$ radially at an arbitrary point $u^{i}\in\Delta_{+}^{i}for$

each $i$, then there exists a subsequence $\{i_{r}|r=1,2, \ldots\}$ such that

$u^{i_{2s-1}}\in\Delta_{+}^{i_{2s-1}}\cap\Delta_{+}^{i_{2s}}, s=1,2, \ldots.$

Using these lemmas, together with the bounded convergence principle (see e.g., Lemma
III.2 in [4] $)$ , we can derive a convergence result:

Theorem 3.7. If $\Delta^{i+1}$ is generated by subdividing $\Delta^{i}$ mdially at an arbitrary point $u^{i}\in\Delta_{+}^{i}$for
each $i$, then

$\lim_{iarrow}\inf_{\infty}|g^{i}(u^{i})-f(u^{i})|=0.$

Since $\omega^{i}\in\Delta_{+}^{i}$ , the convergence of the algorithm with the usual $\omega$-subdivision, where
$u^{i}=\omega^{i}$ for each $i$ , is just a corollary of Theorem 3.7:

Corollary 3.8. If $\Delta^{i+1}$ is generated by subdividing $\Delta^{i}$ radially at $\omega^{i}$ for each $i$, then

$\lim_{iarrow}\inf_{\infty}|g^{i}(\omega^{i})-f(\omega^{i})|=0.$
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Theorem 3.7 is, however, not sufficient to ensure the convergence to an optimal solution
or an approximately optimal solution of (1). For this purpose, we need to further restrict the
selection of $u^{i}$ for each $i$ . If we select $u^{i}=\omega^{i}\in\Delta_{+}^{i}$ for each $i$ , as in Corollary 3.8, and update
the incumbent $x^{*}$ with $\omega^{i}$ appropriately, then $x^{*}$ converges to an optimal $\sigma$-feasible solution
which satisfies

$x^{*}\in D(\sigma)$ and $f(x^{*})\geq f(x)$ , $\forall x\in D$

Although it is a rather satisfactory result from a theoretical viewpoint, $\omega$-subdivision rule has
a serious weakness, i.e., $\Delta^{i}$ is subdivided into up to $n+1$ subsimplices for each $i$ . This means
that we need to solve $n+1$ linear programs, in the worst case, to update the upper bound on
$f$ over $D\cap\Delta^{i}$ . To overcome this, we develop a new subdivision rule called $\omega$-ksection, which
holds the number of subsimplices generated at a time below a prescribed number $k\leq n+1.$

4 Simplicial algorithm based on $\omega\cdot ksection$

In establishing the $\omega$-ksection rule, we need to make an additional assumption:

(A3) The objective function $f$ of (1) is strictly convex.

Therefore, if $x^{1}\neq x^{2}$ , we assume

$f((1-\lambda)x^{1}+\lambda x^{2})<(1-\lambda)f(x^{1})+\lambda f(x^{2}) , \forall\lambda\in(0,1)$ .

Let
$k^{i}= \min\{k, |J^{i}|\}, i=1,2, \ldots.$

In the $\omega$-ksection rule, $\Delta^{i}$ is subdivided radially at a point in a $k^{i}$-face of $\Delta_{+}^{i}$ . Before giving the
detail, let us see how the sequence (4) behaves under the assumption (A3) if such a subdivision
rule is applied.

Lemma 4.1. If $\Delta^{i+1}$ is generated by subdividing $\Delta^{i}$ radially at a point $u^{i}$ in a $k^{i}$ face of $\Delta_{+}^{i}for$

each $i$, then $\{v_{j}^{i}|i=1,2, \ldots\}$ has an accumulation point $v_{j}^{0}$ for $j=1,$ $\ldots,n+1$ . Among $v_{j}^{0\prime}s,$

there exists an accumulation point $u^{0}$ of $\{u^{i}|i=1,2, \ldots\}.$

On the basis of this observation, let us develop the procedure for $\omega$-ksection (also see
Figure 1). For each subset $K\subset J^{i}$ with $|K|=k^{i}$ , let

$u_{K}=\sum_{j\in K}\frac{\lambda_{j}^{i}}{\Lambda_{K}}v_{j}^{i}, \Lambda_{K}=\sum_{j\in K}\lambda_{j}^{i}.$

Also let
$p_{K}= \min\{\Vert v_{j}^{k}-u_{K}\Vert|j\in K\}.$

Among $u_{K}$ ’s we select as $u^{i}$ the one with the largest $p_{K}$ , say

$p_{K^{i}}= \max\{p_{K}|K\subset J^{i}, |K|=k^{i}\}.$
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Figure 1: $\omega$-Bisection when $J^{i}=\{1,2,4\}.$

For $u^{i}=u_{K^{i}}$ , the children of $\Delta^{i}$ are given as

$\Delta^{i_{r}}=conv\{v_{1}^{i}, \ldots,v_{r-1}^{i},u^{i},v_{r+1}^{i}, \ldots,v_{n+1}^{i}\}, r\in K^{i},$

some one of which is adopted as $\Delta^{i+1}$ in (4).

Lemma 4.2. There exist a number $k^{0}\in\{2, \ldots,k\}$ and a set $J^{0}\subset\{1, \ldots,n+1\}$ such that
$k^{i}=k^{0}$ and $J^{i}=J^{0}$ for infinitely many $i$ . Moreover,

(i) for each $K\subset J^{0}$ with $|K|=k^{0}$ , the sequence $\{v_{K}^{i}|i=1,2, \ldots\}$ has an accumulationpoint
$v_{K}^{0}\in\{v_{j}^{0}|j\in K\}$, and

(ii) for each $j\in J^{0}$, the sequence $\{\lambda_{j}^{i}|i=1,2, \ldots\}$ has an accumulation point $\lambda_{j}^{0}\geq 0$ such
that $\sum_{j\in J^{0}}\lambda_{j}^{0}=1.$

Theorem 4.3. If$\Delta^{i+1}$ is generated by subdividing $\Delta^{i}$ according to the $\omega$-ksection rulefor each
$i$, then

$\lim_{karrow}\inf_{\infty}|g^{i}(\omega^{i})-f(\omega^{i})|=0$ . (7)

Let us incolporate the $\omega$-ksection rule into the simplicial algorithm. For two prescribed
tolerances $\epsilon\geq 0,$ $\sigma>0$ and a number $k\in\{2, \ldots,n\}$ , the algorithm can be described as follows:

algorithm $simplicia1_{-}\omega_{-}ksection$

find an $n$-simplex $\Delta^{1}=$ conv$\{v_{1}^{1}, \ldots,v_{n+1}^{1}\}$ enclosing $D$ ;
select a number $M>F^{1}/\sigma$ for $F^{1}= \max\{f(v_{j}^{1})|j=1, \ldots,n+1\}$ ;
define the convex envelope $g^{1}$ of $f$ on $\Delta^{1}$ ;
solve $(P^{1})$ of maximizing $g^{1}(x)-M\tau$ subject to $x\in D(\sigma)\cap\Delta^{1}$ and $\tau\geq 0$ ;
let $\alpha(\Delta^{1})arrow g^{1}(\omega^{1})-M\tau^{1}$ for an optimal solution $(\omega^{1}, \tau^{1})$ of $(P^{1})$ ;
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$(x^{1},\beta^{1})arrow(\omega^{1},f(\omega^{1}));\mathscr{L}arrow\{\Delta^{1}\};iarrow 1$ ;

while $\mathscr{L}\neq\emptyset$ do
select a simplex $\Delta^{i}=$ conv $\{v_{1}^{i}, \ldots,v_{n+1}^{i}\}$ with the largest value of $\alpha$ from $\mathscr{L}$ ;

if
$\alpha(\Delta^{i})\leq \mathscr{L}arrow\emptyset(1+\epsilon)\beta^{i}$

then

else
let $\omega^{i}$ denote the $\sigma$-feasible solution providing $\alpha(\Delta^{i})$ ;

identify the set $K^{i}\subset\{1, \ldots,n+1\}$ and the point $u^{i}\in\Delta^{i}$ according to $\omega$-ksection;

subdivide $\Delta^{i}$ into $\Delta^{i_{r}}=$ conv $\{v_{1}^{i}, \ldots,v_{r-1}^{i},u^{i},v_{r+1}^{i}, \ldots,v_{n+1}^{i}\}$ for $r\in K^{i}$ ;

for $r\in K^{i}$ do
define the concave envelope $g^{i_{r}}$ of $f$ on $\Delta^{i_{r}}$ ;

solve $(P^{i_{r}})$ of maximizing $g^{i_{r}}(x)-M\tau$ subject to $x\in D(\sigma)\cap\Delta^{i_{r}}$ and $\tau\geq 0$ ;

let $\alpha(\Delta^{i_{r}})arrow g^{i_{r}}(\Phi^{i_{r}})-M\tau^{i_{r}}$ for an optimal solution $(\omega^{i_{r}}, \tau^{i_{r}})$ of $(P^{i_{r}})$

end for
$x^{i+1}arrow$ argmax$\{f(x)|x=x^{i}, \omega^{i_{r}},r\in K^{i}\}$ and let $\beta^{i+1}arrow f(x^{i+1})$ ;
$\mathscr{L}arrow \mathscr{L}\cup\{\Delta^{i_{r}}|r\in K^{i_{r}}\}\backslash \{\Delta^{i}\};iarrow i+1$

end if
end while

end.

Theorem 4.4. Suppose $\epsilon=0$. If the algorithm $simplicial_{-}\omega$-ksection terminates afler $i$ itera-
tions, then $x^{i}$ is an optimal $\sigma$-feasible solution of$(l)$ . Even ifnot, every accumulation point of
the sequence $\{x^{i}|i=1,2, \ldots\}$ is an optimal $\sigma$-feasible solution.

Let us introduce the following notion of solution to the convex maximization problem (1):

Definition 4.1. For two positive constants $\epsilon$ and $\sigma$ , a point $x^{*}$ is referred to as an $(\epsilon, \sigma)-$

optimal solution of (1) if

$x^{*}\in D(\sigma)$ and $f( x^{*})\geq\frac{1}{1+\epsilon}f(x)$ , $\forall x\in D.$

Corollary 4.5. If $\epsilon>0$, then the algorithm $simplicial_{-}\omega$-ksection terminates after finitely
many iterations and yields an $(\epsilon, \sigma)$ -optimal solution $x^{k}$ of(1).

5 Numerical results

Lastly, let us report numerical results of comparing the algorithm when using $\omega$-bisection,
$\omega$-trisection, $\omega$-quadsection, and the usual $\omega$-subdivision. The test problem was a convex
quadratic maximization problem of of the form

maximize $f(x)+5.0dy$
(8)

subject to Ax $+$ By $\leq b$ , (x,y) $\geq 0,$
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$\frac{Tab1e1:Averagenumber.ofbranchingsand.CPUtime(inseconds)}{m\cross nk\frac{q=02n}{\# time}\frac{q=03n}{\# time}\frac{q=0.4n}{\# time}}$

$60\cross 100$ 2 3.2 0.0819 11.2 0.2304 204.4 4.044
3 3.0 0.0774 6.7 0.1526 272.2 4.459
4 3.0 0.0797 6.8 0.1593 326.7 5.218

$q+1$ 3.0 0.0794 6.8 0.1594 296.2 4.528
$60\cross 150$ 2 3.6 0.1373 10.4 0.3861 19.6 0.8458

3 3.6 0.1280 10.0 0.3319 24.5 0.8985
4 3.9 0.1378 11.1 0.3556 25.0 0.8913

$\frac{q+13.90.135411.30.340121.20.7353}{80\cross 15025.40.333342.42.486}$
1.8 0.1458

3 1.8 0.1459 5.3 0.3161 112.2 5.556
4 1.8 0.1492 5.5 0.3179 206.4 9.914

$q+1$ 1.8 0.1463 5.5 0.3117 134.6 6.118

where
$f(x)=0.5x^{T}Qx+cx.$

To make the feasible set bounded, the vector $b\in \mathbb{R}^{m}$ was fixed to $[$ 1, $\ldots$ , 1, $n]^{T}$ and all com-
ponents of the last law of $A\in \mathbb{R}^{m\cross q}$ and $B\in \mathbb{R}^{m\cross(n-q)}$ were set to ones. Other entries of $A,$

together with components of $c\in \mathbb{R}^{q}$ and $d\in \mathbb{R}^{n-q}$ , were generated randomly in the interval
$[-0.5,1.0]$ , so that the percentages of zeros and negative numbers were about 20% and 10%,
respectively. The matrix $Q\in \mathbb{R}^{q\cross q}$ was symmetric, tridiagonal, and the tridiagonal entries
were random numbers in [0.0, 1.0]. Note that the objective function of (8) can be linearized
simply by replacing the nonlinear part $f$ with its concave envelope. Therefore, we may per-
form the branching procedure in the $x$-space of dimension $q\leq n$, not in the whole space of
dimension $n$ . In accordance with this decomposition principle [4], we coded all computer pro-
grams in GNU Octave [2], and tested those on a single core of Intel Core i7 $(3.20GHz)$ . The
values of the two tolerances $\epsilon$ and $\sigma$ were fixed at $10^{-5}$ and $10^{-10}$ , respectively.

Table 1 shows the computational results. Three different sizes $(60, 100)$ , $(60, 150)$ and
$(80, 150)$ were selected as $(m,n)$ , and $q$ was set to 20%, 30% and 40% of the whole set of
variables for each $(m,n)$ , i.e., the triple $(m,n,q)$ was up to $(80, 150,60)$ . Ten instances were
solved for each $(m,n,q)$ . The column labeled $\#$

’ lists the average number of iterations, and
‘time’ lists the average computational time in seconds; and the rows $k=2,3,4$, and $q+1$

represent the results of $\omega$-bisection, $\omega$-trisection, $\omega$-quadsection, and the usual $\omega$-subdivision,
respectively.

We immediately see from Table 1 that both the number of iterations and the CPU time in-
crease rather rapidly, as the percentage of nonlinear variables increases, for every subdivision
rule. It is, however, a well-known characteristic common to deterministic global optimization
algorithms. Instead, we should notice that there is a little difference in performance among
the four subdivision rules. It is presumed that the number $|J^{i}|$ of $v_{j}^{i\prime}s$ spanning $\omega^{i}$ is in general
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rather small compared with $q$ . As a result, the number $k^{i}$ of children of $\Delta^{i}$ would be often de-
fined by $|J^{i}|$ . This finding needs to be confirmed in further studies. Anyway, we may conclude
that the $\omega$-ksection rule performs at least as well as the usual $\omega$-subdivision when $k=2,3,4.$
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