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In this lecture we will discuss the energy critical nonlinear wave equation in 3 space
dimensions. This will correspond to a series of works [1], [2], [3], [4]. See also these
papers for details referrences.

We start by a review of the linear wave equation

$(LW)$ $[Matrix]$

We write the solution:

$w(t)=S(t)(w_{0}, w_{1})+D(t)(h)$ ,

where $S(t)$ denotes the solution of the homogeneous problem $(h=0)$ and $D(t)$ the
solution of the inhomogeneous one $((w_{0}, w_{1})=(0,0))$ .

One of the main properties of the linear wave equation is the finite speed of propa-
gation:

If $supp(w_{0}, w_{1})\cap\overline{B(x_{0},a)}=\phi,$ $supph\cap(\bigcup_{0\leq t\leq a}B(x_{0}, a-t)\cross\{t\})=\phi$ , then

$w\equiv 0$ on $\bigcup_{0\leq t\leq a}B(x_{0}, a-t)\cross\{t\}.$

$\frac{/_{w^{\underline{=}}0}\backslash _{\infty}}{x_{0}}$
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An important estimate (Strichartz estimate) is:

$\Vert w\Vert_{L_{x,t}^{8}}\leq C\{\Vert(w_{0}, w_{1})\Vert_{\dot{H}^{1}\cross L^{2}}+\Vert D^{1/2}h\Vert_{L_{x,t}^{4/3}}\}$

The energy critical nonlinear wave equation, in the focusing case is:

(NLW) $\{\begin{array}{ll}\partial_{t}^{2}u-\Delta u=u^{5} u|_{t=0}=u_{0}\in\cdot 1(\mathbb{R}^{3}) , x\in \mathbb{R}^{3}, t\in \mathbb{R}\partial_{t}u|_{t=0}=u_{1}\in L^{2}(\mathbb{R}^{3}) \end{array}$

The defocusing case has $-u^{5}.$

(NLW) is called energy critical because $\frac{1}{\lambda^{1/2}}u(\frac{x}{\lambda}, \frac{t}{\lambda})$ is also a solution and this

leaves unchanged the $\dot{H}^{1}\cross L^{2}$ norm.

Small data theory for (NLW): If $\Vert(u_{0}, u_{1})\Vert_{\dot{H}^{1}\cross L^{2}}$ is small $\exists$ ! solution $u$, defined for

all time, such that $u\in C((-\infty, +\infty);\dot{H}^{1}\cross L^{2})\cap L_{xt}^{8}$ , which scatters i.e.

$\Vert(u(t), \partial_{t}u(t))-S(t)(u_{0}^{\pm}, u_{1}^{\pm})\Vert_{\dot{H}^{1}\cross L^{2}}\vec{tarrow\pm\infty}0.$

Moreover, for any data $(u_{0}, u_{1})\in\dot{H}^{1}\cross L^{2}$ , we have short time existence and hence
there exists a maximal interval of existence $I=(-T_{-}(u), T_{+}(u))$ .

In thedefocusingcase,becomes 1
$/6 TheenergyE(u)=\frac{1}{-2}\int_{\overline{6}}|\nabla u(t)|^{2}+\frac{1}{2}.\int|\partial_{t}u(t)|^{2}-\frac{1}{6}\int|u(t)|^{6}$

is constant for $t\in I.$

In the defocusing case work of Struwe, Grillakis, Shatah-Struwe, Bahouri-Shatah
(80’s-90’s) proves that for any $(u_{0}, u_{1})\in\dot{H}^{1}\cross L^{2}$ , the solution exists globally and
scatters.

In the focusing case this fails. Levine (74) showed that if $E(u_{0}, u_{1})\leq 0$ , then
$\tau_{-},$ $\tau_{+}<\infty$ . (This is done by obstruction). Recently, Krieger-Schag-Tataru 09 con-
structed solutions for which $\tau_{+}<\infty$ . Also, in the focusing case, the elliptic equation
admits a non-negative solution $W$ (ground-state), which solves $\Delta u+u^{5}=0.$

This elliptic equation has been much studied in connection with the Yamabe prob-
lem in differential geometry. $W$ has the explicit form

$W(x)= \frac{1}{(1+W^{2/3})^{1/2}}$

$W$ is the unique non-negative solution of the elliptic equation (Gidas-Ni-Nirenberg

79) and the only $\dot{H}^{1}$ solution (Pohozaev 65). $W$ is a global in time solution of (NLW),

which we call a soliton. It does not scatter to a linear solution non-dispersive” solution.
Recently (2012) Donninger-Krieger have constructed global in time solutions, which

are bounded in $\dot{H}^{1}\cross L^{2}$ , are radial, and don’t scatter to either a linear solution or to $W.$

We now recall some results for (NLW) in the last few years.

Theorem 1: ($KM$ 08) If $E(u)<E(W)$ then:
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i$)$ If $||\nabla u_{0}\Vert<1\nabla W\Vert$ , we have global existence, scattering

ii) If $\Vert\nabla u_{0}\Vert>\Vert\nabla W\Vert$ , we have $T_{+},$ $T_{-}<\infty.$

The case $\Vert\nabla u_{0}\Vert=\Vert\nabla W\Vert$ is impossible.

A strengthening of this result is:

Theorem 2: (DKM 09) If

$\sup_{0<t<T_{+}}\Vert\nabla u(t)\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u(t)\Vert^{2}<\Vert\nabla W\Vert^{2}$

(or $\sup_{0<t<1}\Vert\nabla u(t)\Vert^{2}+\epsilon\Vert\partial_{t}u(t)\Vert^{2}<\Vert\nabla W\Vert^{2}$ in the radial case) we have global exis-
tence and scattering.

The next result deals with the case $E(u)=E(W)$ .

Theorem 3: ($DM$ 08) There exist $W_{-},$ $W+$ radial, with $E(W_{-})=E(W_{+})=E(W)$
s.t. if $E(u)=E(W)$ , then:

i$)$ If $\Vert\nabla u_{0}\Vert<\Vert\nabla W\Vert$ , then $u$ is globally defined, and $u$ scatters to linear solution
at $\pm\infty$ , or $u=W_{-}$ , which has: $W$-scatters $at-\infty$ to $W$ and at $+\infty$ to a linear
solution.

ii) If $\Vert\nabla u_{0}||=\Vert\nabla W||,$ $u=W.$

iii) If $\Vert\nabla u_{0}\Vert>\Vert\nabla W\Vert$ , then, either $T_{+},$ $T_{-}<\infty$ , or $u=W+$ , which has: $W+$

scatters $at-\infty$ to $W$ and $\tau_{+}(W_{+})<\infty$ . (DKM 11, KNS 11).

Next we tum to the existence of type II blow-up solutions, i.e. s.t. $T_{+}<\infty$ and
$0<t<T_{+}supp\Vert\nabla u(t)\Vert+\Vert\partial_{t}u(t)\Vert<\infty.$

Theorem 4: (Krieger-Schlag-Tataru 09) $\forall\eta_{0}>0\exists$ radial solution s.t. $T_{+}=1,$

$\sup_{0<t<1}\Vert\nabla u(t)\Vert+\Vert\partial_{t}u(t)\Vert<\infty,\sup_{0<t<1}\Vert\nabla u(t)\Vert\leq\Vert\nabla W\Vert+\eta_{0}$ and

$(u(t), \partial_{t}u(t))=(\frac{1}{\lambda(t)^{1/2}}W(\frac{x}{\lambda(t)}), 0)+\eta(x, t)$ ,

with $\eta$ continuous in $\dot{H}^{1}\cross L^{2}$ up to $t=1$ and $\lambda(t)=(1-t)^{1+\nu},$ $\nu>1/2$ . (It is
believed that $\nu>0$ works).

We next show that this is a“universal” phenomenon:

Theorem 5: (DKM 09, 10) Assume that $u$ is a solution so that $\tau_{+}=1,\sup_{0<t<1}\Vert\nabla u(t)\Vert+$

$\Vert\partial_{t}u(t)\Vert<\infty$ . (Type II solution)
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i$)$ Assume that $u$ is radial and

$\sup_{0<t<T_{+}}\lceil|\nabla u(t)\Vert\leq\Vert\nabla W\Vert+\eta_{0},$
$\eta_{0}$ small $>0.$

The $\exists(v_{0}, v_{1})\in\cdot 1\cross L^{2},$ $\lambda(t)>0,$ $i_{0}\in\{\pm 1\}$ s.t.

$(u(t), \partial_{t}u(t))=(v_{0}, v_{1})+(\frac{i_{0}}{\lambda(t)^{1/2}}W(\frac{x}{\lambda(t)}),$$0)+o(1)$ in $\dot{H}^{1}\cross L^{2}$

where $\lambda(t)=o(1-t)$ .
ii) Non-radial case. Assume that

$\sup_{0<t<T_{+}}\Vert\nabla u(t)\Vert^{2}+\frac{1}{2}\Vert\partial_{t}u(t)\Vert^{2}\leq\Vert VW\Vert^{2}+\eta_{0},$ $\eta_{0}$ small.

Then, after rotation and translation of $\mathbb{R}^{3},$ $\exists(v_{0}, v_{1})\in\dot{H}^{1}\cross L^{2},$ $i_{0}\in\{\pm 1\},$ $\ell$

small, $x(t)\in \mathbb{R}^{3},$ $\lambda(t)>0$ s.t.

$(u(t), \partial_{t}u(t)) = (v_{0}, v_{1})+(\frac{i_{0}}{\lambda(t)^{1/2}}W_{\ell}(\frac{x-x(t)}{\lambda(t)}, 0)$ ,

$\frac{i_{0}}{\lambda(t)^{3/2}}\partial_{t}W_{\ell}(\frac{x-x(t)}{\lambda(t)}, 0))+o(1)$ in $\dot{H}^{1}\cross L^{2},$

where $\lambda(t)=o(1-t),$ $\lim_{t\uparrow 1}\frac{x(t)}{1-t}=\ell\vec{e}_{1},\vec{e}_{1}=(1,0,0),$ $|\ell|\leq C\eta_{0}^{1/4}$

and $W_{\ell}(x, t)=W( \frac{x_{1}-t\ell}{\sqrt{1-\ell^{2}}}, x_{2}, x_{3})$

.
is the Lorentz transform of $W.$

Remark: Note that $($3/4$)^{1/4}(1-t)^{-1/2}$ is a solution. Using this and finite speed
of propagation it is easy to construct type I solutions, i.e. $T_{+}=1$ and $\lim_{t\uparrow 1}\Vert(u(t)$ ,

$\partial_{t}u(t))\Vert_{\dot{H}^{1}\cross L^{2}}=+\infty$. Note that type I and type $n$ solutions need not be mutually
exclusive.

Theorem 5 (DKM 11) $W+$ ($from$ Theorem 3) is type I.

Next, $I$ will tum to the main new topic in this lecture, namely soliton resolution for
radial solutions of ($NL$).

For a long time there has been a widespread belief that global in time solutions
of dispersive equations, asymptotically in time, decouple into a sum of finitely many
modulated solitons, a free radiation term and a term that goes to $0$ at infinity. Such a
result should hold for globally well-posed equations, or in general, with the additional
condition that the solution does not blow-up. When blow-up may occur such decom-
positions are always expected to be unstable. So far the only cases where a result of
this type has been proved is for the integrable $KdV$ and NLS equations in $Id.$
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For $\partial_{t}u+\partial_{x}^{3}u+u\partial_{x}u=0$ , for data with regularity and decay, this has been
established by Eckhaus and Schuur. Corresponding results for the other integrable
$KdV$ equation, the modified $KdV\partial_{t}u+\partial_{x}^{3}u+u^{2}\partial_{x}u=0$ were also obtained by the
same authors (Miura transform). Heuristic arguments for this conjecture, in the case of
the cubic NLS in $1-d,$ $i\partial_{t}u+\partial_{x}^{2}u+|u|^{2}u=0$ in $1-d$, another integrable model,
were given by Ablowitz-Segur 76 and Zakharov-Shabat 71.

These are all globally well-posed equations, for which one expects that these de-
compositions are stable, unlike in the case of equations where blow-up may occur.

For more general equations, so far, results have been found for data close to the
soliton, in subcritical nonlinearities, due to several authors. (Buslaev-Perelman 92 for
NLS with specific nonlinearities in $Id$, Soffer-Weinstein 90 in higher $d$, Martel-Merle
for $gKdV$ 2001. . . $)$ .

For corresponding results near the soliton, in the case of finite time blow-up, for
critical problems, besides the ones of DKM mentioned earlier, there has been work of
Martel-Merle $gKdV$ 2002, Merle-Raphae104,04 for the mass critial NLS, etc.

There have also been large solution results for critical equivariant wave maps into
the sphere due to Christodoulou-Tahvildar-Zadeh, Shatah-T-$Z$ and Struwe. They show
convergence along some sequence of times converging to the blow-up time, locally in
space, to a soliton (harmonic map).

In the finite time blow-up case, for the $1-d$ nonlinear wave equation, Merle-Zaag
have obtained results of this kind through the use of a global Lyapunov function in
self-similar variables.

In critical elliptic problems, such as the ones mentioned earlier, in domains ex-
cluding a small ball, considering radial solutions, there have been obtained results on
decompositions into”towering bubbles” (the analog of a finite sum of modulated soli-
tons), as the size of the ball goes to $0$ . (Musso-Pistoia 2006).

The first general results for radial solutions of (NLW), were for type II solutions,
and held only for a sequence of times (DKM 11).

We now have the full soliton resolution for radial solutions of (NLW), in the two
asymptotic regimes, finite time blow-up and global in time. (Work of Duyckaerts-$K$-

Merle 12).

Theorem: Let $u$ be a radial solution of (NLW). Then, one of the following holds:

a$)$ Type I blow-up: $\tau_{+}<\infty$ and

$\lim_{t\uparrow T_{+}}\Vert(u(t), \partial_{t}u(t))\Vert_{\dot{H}^{1}\cross L^{2}}=\infty$

b$)$ Type II blow-up: $T_{+}<\infty$ and $\exists(v_{0}, v_{1})\in\dot{H}^{1}\cross L^{2}$

$J\in \mathbb{N}\backslash \{O\}$ and $\forall j\in\{1, \ldots, J\},$ $i_{j}\in\{\pm 1\}$

and a positive $\lambda_{j}(t)$ s.t.

$\lambda_{1}(t)\ll\lambda_{2}(t)\ll\ldots\ll\lambda_{J}(t)\ll T_{+}-t,$
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and $(u(t), \partial_{t}u(t))=(v_{0}, v_{1})+(\sum_{j=1}^{J}\frac{i_{j}}{\lambda_{j}(t)^{1/2}}W(\frac{x}{\lambda_{j}(t)}),$ $0)+o(1)$

in $\dot{H}^{1}\cross L^{2}.$

c$)$ $\tau_{+}=+\infty$ and $\exists$ a solution $v_{L}$ of the ($LW$), $J\in \mathbb{N}$ and for all $j\in\{1, \ldots, J\},$

$i_{j}\in\{\pm 1\}$ and a positive $\lambda_{j}(t)$ s.t.

$\lambda_{1}(t)\ll\lambda_{2}(t)\ll\ldots\ll\lambda_{J}(t)\ll t,$

and

$(u(t), \partial_{t}u(t))=(v_{L}(t), \partial_{t}v_{L}(t))+(\sum_{j=1}^{J}\frac{i_{j}}{\lambda_{j}(t)^{1/2}}W(\frac{x}{\lambda_{j}(t)}),$ $0)+o(1)$

in $\dot{H}^{1}\cross L^{2}$

Remark 1: When $\tau_{+}<\infty,$ $a$), $b)$ imply that $\lim_{t\uparrow T+}\Vert(u(t), \partial_{t}u(t))\Vert_{\dot{H}^{1}\cross L^{2}}=\ell$
exists,

$\ell\in[\Vert\nabla W\Vert, +\infty]$ , i.e. no mixed asymptotics. Also, solutions split into type I, type
II. Note that by previous results, both type I, type 11 exist. We expect that solutions as
in b) with $J>1$ exist. For the $1-d$ non-linear wave equation situation mentioned
earlier, this has been shown by C\^ote-Zaag 11, while in the elliptic setting this is in the
work of Mussi-Pistoia mentioned earlier, also in the radial case.

Remark 2: When $\tau_{+}=\infty,$ $c$) in particular implies that $\sup_{t>0}\Vert(u(t), \partial_{t}u(t))\Vert_{\dot{H}^{1}\cross L^{2}}<$

$\infty.$

More precisely, $\lim_{t\uparrow\infty}\Vert(u(t), \partial_{t}u(t))\Vert_{\dot{H}^{1}\cross L^{2}}^{2}=\ell$ , and 2 $E(u)\leq\ell\leq 3E(u)$ . Also

$J\leq E(u)/E(W)$ . In this case we also expect that solutions with $J>1$ exist.

Remark 3: It is known that the set $S_{1}$ of initial data such that the corresponding
solution scatters to a linear solution is open. It is believed that the set $S_{2}$ of initial data
leading to type I blow-up is also open. Our theorem gives a description of solutions
whose data is in $S_{3}$ , the complementary set to $S_{1}\cup S_{2}$ . We believe that from our
Theorem one can show that $S_{3}$ is the boundary of $S_{1}\cup S_{2}$ . In particular we conjecture
that the asymptotic behavior of solutions with data in $S_{3}$ is unstable.

Ideas for the proof (global case): The fundamental new ingredient of the proof is the
following dispersive property that all radial solutions to (NLW) (other than $0$ and $\pm W$

up to scaling) must have:

$\exists R>0,$ $\eta>0$ s.t. for all $t\geq 0$ or all $t\leq 0$

$(*)$ $\int_{|x|>R+|t|}|\nabla_{x,t}u(x, t)|^{2}dx\geq\eta.$
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We establish this only using the behavior of $u$ in outside regions, $|x|>R+|t|,$
without using any global integral identity of $val$ (Pohozaev) type. In fact, this ap-
proach gives a new proof, without integral identities, of Pohozaev’s result that $0,$ $\pm W$

are the only radial $\dot{H}^{1}$ solutions of $\triangle u+u^{5}=0$ and also of th\’e result of DKM 09,
which characterizes“compact” radial solutions of (NLW) as $0,$ $\pm W.$

Next, we show that a global radial solution must be bounded for at least one se-
quence of times going to infinity. This uses an adaptation of Levine’s blow-up argu-
ment. Then we show that an expansion as in the conclusion in c) must hold on any
sequence of times going to infinity along which the sequence is bounded. In order to
show this we first show that if a solution is bounded for a sequence times, then the
solution has linear behavior in the region outside a finite distance from the boundary of
the light cone $|x|=|t|$ . This constructs the free radiation term $v_{L}.$

Then we use the profile decomposition of Bahouri-G\’erard (99). We combine this
with the finite speed of propagation to see that $(*)$ (with $R>0$) decouples the dy-
namics of different profiles in regions $|x|>R+|t|$ . This is accomplished through
a ”perturbation theorem”. If {tu} is the sequence of times on which the solution is
bounded, we apply the profile decomposition to $(u(tu), \partial_{t}u(tu))-$ ( $v_{L}$ (tu), $\partial_{t}v_{L}$ (tu))
and use the above argument. Assuming that there is a non-zero profile which is not
$\pm W$ , using $(*)$ we can see that this profile sends an ”energy charmel” into the fu-
ture, which contradicts the fact that outside finite distance from the boundary of the
light cone $u(tu)-v_{L}$ (tu) is small, or into the past, which eventually contradicts the
uniform $\dot{H}^{1}\cross L^{2}$ bound on $(u(tu), \partial_{t}u(tu))$ . Finally, once this is done, continuity
arguments give the general statement.
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