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ABSTRACT. We report some recent results on nonlinear Stefan problems used to describe
the spreading of an invasive species. Research on this rather new topic is fast progressing.
It is hoped that this brief survey helps the interested reader to gain a better view of the
current status of research in this area.

Dedicated to Professor Hiroshi Matano

1. INTRODUCTION

In this paper, we give a brief review of some recent results on nonlinear Stefan problems,
which reveal an interesting spreading-vanishing phenomenon. We start from the first paper
in tbis direction [8], and include several results whose proofs are contained in preprints
only. We will end with some discussions of possible future directions along this line of
research.

The problem considered in [8] has the following form:

(1.1) $[Matrix]$
where $x=h(t)$ is the moving boundary to be determined together with $u(t, x),$ $h_{0},$ $\mu,$ $d,$

$a$ and $b$ are given positive constants, and the initial function $u_{0}(x)$ satisfies

(1.2) $u_{0}\in C^{2}([0, h_{0}]),$ $u_{0}’(0)=u_{0}(h_{0})=0,$ $u_{0}>0$ in $[0, h_{0})$ .
The intention of [8] was to better understand the spreading of invasive species. $A$

systematic discussion of earlier mathematical models for ecological invasion can be found
in [22]. If $u(t, x)$ stands for the population density of an invasive species, then (1.1) may
be interpreted as describing the spreading of $u$ over a one dimensional environment. The
initial function $u_{0}(x)$ stands for the population of the invading species at a very early
stage, which occupies an initial region $[0, h_{0}]$ . It is assumed that the species can only
invade further int$0$ the environment from the right end of the initial region, and the
spreading front expands at a speed that is proportional to the population gradient at the
front, which gives rise to the Stefan condition $h’(t)=-\mu u_{x}(t, h(t))$ . $A$ deduction of this
condition based on some ecological assumptions can be found in [3].

If the right hand side of the differential equation in (1.1) is replaced by $0$ , this prob-
lem becomes the well-known one-phase Stefan problem (in one space dimension), which
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describes the meting of ice in contact with water, where the free boundary represents the
ice-water interphase, and $u$ stands for the water temperature. $A$ nonlinear Stefan problem
may arise if water is replaced by a chemically reactive and heat diffusive liquid. Therefore
the research on nonlinear Stefan problems may also be useful in such situations.

It was shown in [8] that (1.1) has a unique solution $(u(t, x), h(t))$ defined for all $t>0,$
with $u(t, x)>0$ and $h’(t)>0$ . The long-time dynamical behavior of (1.1) is characterized
by a spreading-vanishing dichotomy: as time $tarrow\infty$ , either

(i) (spreading) $h(t)arrow\infty$ and $u(t, x)arrow a/b$ , or
(ii) (vanishing) $h(t) arrow h_{\infty}\leq\frac{\pi}{2}\sqrt{\frac{d}{a}}$ and $u(t, x)arrow 0.$

Furthermore, when spreading occurs, for large time, the spreading speed approaches a
positive constant $k_{0}\in(0,2\sqrt{ad})$ , i.e., $h(t)=[k_{0}+o(1)]t$ as $tarrow\infty$ . It is shown that
vanishing indeed happens when $h_{0}< \frac{\pi}{2}\sqrt{\frac{d}{a}}$ and $\mu>0$ is less than a certain positive
threshold value $\mu^{*}$ , depending on $u_{0}.$

If the left boundary $x=0$ in (1.1) is replaced by a free boundary $x=g(t)$ governed
by $g’(t)=-\mu u_{x}(t,g(t))$ , it was proved in [8] that a similar spreading-vanishing dichotomy
holds, and in the case of spreading, both the left front $x=g(t)$ and the right front $x=h(t)$
go to infinity at the same asymptotic speed $k_{0}.$

This spreading-vanishing phenomenon of (1.1) is strikingly different from the result
obtained via the usu\‘al approach to describe the front propagation, where the Cauchy
problem of the following diffusive logistic equation over the entire space $\mathbb{R}^{1}$ is used:
(1.3) $u_{t}-d\Delta u=u(a-bu), t>0, x\in \mathbb{R}^{1}.$

In the pioneering works of Fisher [13] and Kolmogorov et al [19], traveling wave solutions
have been found for (1.3): For any $c\geq c^{*};=2\sqrt{ad}$ , there exists a solution $u(t, x)$ $:=$

$W(x-ct)$ with the property that

$W’(y)<0fory\in \mathbb{R}^{1}, W(-\infty)=a/b, W(+\infty)=0$;

no such solution exists if $c<c^{*}$ . The number $c^{*}$ is called the minimal speed of the traveling
waves. Fisher [13] claims that $c^{*}$ is the spreading speed for the advantageous genes in his
research, and used a probabilistic argument to support his claim. Skellam [23] was able
to use a linear model (i.e., (1.3) with $b=0$) and a similar probabilistic argument to show
that $c^{*}$ should be the speed of spreading. $A$ precise description and rigorous proof of this
fact were given by Aronson and Weinberger (see Section 4 in [1]), who showed that for a
new population $u(t, x)$ (governed by the above logistic equation) with initial distribution
$u(O, x)$ confined to a compact set of $x$ $(i.e., u(O, x)=0$ outside a compact set), one has

$\lim u(t, x)=a/b, \lim u(t, x)=0$
$tarrow\infty, |x|\leq(c^{*}-\epsilon)t tarrow\infty, |x|\geq(c^{*}+\epsilon)t$

for any small $\epsilon>0$ . (This result is also true in higher dimensions; see [2].)
The above result indicates that in the long run, the invading species $u$ determined by

the Cauchy problem of (1.3) always establishes itself in the new environment, with an
asymptotic spreading speed $c^{*}$ . In other words, spreading always happens.

In the sections below, we report several extensions of the results of [8]. In section 2,
we discuss the case of high space dimension with radial symmetry and spatial-temporal
inhomogeneity. In section 3 we consider the situation of more general nonlinearities. In
section 4, we focus on the case of high space dimension with no radial symmetry, where
the regularity of the free boundary becomes an important issue. Finally, in section 5 we
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briefly mention some recent works on multi-species systems with free boundary and some
possible directions of future research.

2. HIGH SPACE DIMENSION WITH RADIAL SYMMETRY AND HETEROGENEITY

2.1. The spatially heterogeneous case. In [4], the following generalization of (1.1)
was considered:

(2.1) $\{\begin{array}{ll}u_{t}-d\triangle u=u(\alpha(r)-\beta(r)u) , t>0,0<r<h(t) ,u_{r}(t, 0)=0, u(t, h(t))=0, t>0,h’(t)=-\mu u_{r}(t, h(t)) , t>0,h(O)=h_{0}, u(0, r)=u_{0}(r) , 0\leq r\leq h_{0},\end{array}$

where Au $=u_{rr}+ \frac{N-1}{r}u_{r},$ $r=h(t)$ is the moving boundary, $h_{0},$ $\mu$ and $d$ are given positive
constants, $\alpha,$ $\beta\in C^{\nu_{0}}([0, \infty))$ for some $v_{0}\in(0,1)$ , and there are positive constants $\kappa_{1}\leq\kappa_{2}$

such that
(2.2) $\kappa_{1}\leq\alpha(r)\leq\kappa_{2},$ $\kappa_{1}\leq\beta(r)\leq\kappa_{2}$ for $r\in[O, \infty)$ .
The initial function $u_{0}(r)$ satisfies
(2.3) $u_{0}\in C^{2}([0, h_{0}]),$ $u_{0}’(0)=u_{0}(h_{0})=0,$ $u_{0}>0$ in $[0, h_{0})$ .
This describes the situation that the solution $u$ is radially symmetric $(u=u(t, r),$ $r=$
$|x|,$ $x\in \mathbb{R}^{N},$ $N\geq 2)$ and the environment may vary in space (but radially symmetrically).
The main features of (1.1) are retained in this case.
Theorem 2.1 $($Existence and uniqueness$)^{}$ Problem (2.1) has a unique solution $(u(t, r), h(t))$ ,
which is defined for all $t>0$ . Moreover, $u(t, r)>0,$ $h’(t)>0$ for $t>0$ and $0\leq r<h(t)$ ,
and $h\in C^{1}([0, \infty)),$ $u\in C^{1,2}(D)$ , with $D=\{(t, r):t>0,0\leq r\leq h(t)\}.$

It follows that $r=h(t)$ is monotonic increasing and therefore there exists $h_{\infty}\in(0, +\infty]$

such that $\lim_{tarrow+\infty}h(t)=h_{\infty}.$

Let $\lambda_{1}(d, \alpha, R)$ be the principal eigenvalue of the problem

(2.4) $\{\begin{array}{ll}-d\triangle\phi = \lambda\alpha(|x|)\phi in B_{R}\phi = 0 on \partial B_{R}.\end{array}$

It is well-known that $\lambda(d, \alpha, \cdot)$ is a strictly decreasing continuous function and
$\lim_{Rarrow 0^{+}}\lambda_{1}(d, \alpha, R)=+\infty, \lim_{Rarrow+\infty}\lambda_{1}(d, \alpha, R)=0.$

Therefore, for fixed $d>0$ and $\alpha\in C^{\nu_{0}}([0, \infty))$ , there is a unique $R^{*}$ $:=R^{*}(d, \alpha)$ such that
(2.5) $\lambda_{1}(d, \alpha, R^{*})=1$

and
$1>\lambda_{1}(d, \alpha, R)$ for $R>R^{*}$ ; $1<\lambda_{1}(d, \alpha, R)$ for $R<R^{*}.$

Theorem 2.2 $($ Spreading-vanishing dichotomy$)^{}$ Let $(u(t, r), h(t))$ be the solution of the
free boundary problem (2.1). Then the following alternative holds:

Either
(i) Spreading: $h_{\infty}=+\infty$ and

$\lim_{tarrow+\infty}u(t, r)=\hat{U}(r)$ locally uniformly for $r\in[0, \infty)$ ,

where $\hat{U}$ is the unique positive solution of
$-d\Delta\hat{U}=\hat{U}(\alpha(r)-\beta(r)\hat{U})$ for $r\in(O, \infty),\hat{U}’(0)=0,$
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$or$

(ii) Vanishing: $h_{\infty}\leq R^{*}$ and $\lim_{tarrow+\infty}||u(t, \cdot)||_{C([0,h(t)])}=0.$

Theorem 2.3 $($Spreading-vanishing criteria$)^{}$ If $h_{0}\geq R^{*}$ , then spreading always happens.

If $h_{0}<R^{*}$ , then there exists $\mu^{*}>0$ depending on $u_{0}$ such that vanishing occurs if $\mu\leq\mu^{*},$

and spreading happens if $\mu>\mu^{*}.$

When spreading happens, the following limits

$\lim\inf\frac{h(t)}{t}tarrow\infty, \lim_{tarrow}\sup_{\infty}\frac{h(t)}{t}$

can be estimated by making use of the numbers $\alpha_{\infty},$
$\alpha^{\infty},$ $\beta_{\infty}$ and $\beta^{\infty}$ , defined below,

$\alpha_{\infty}$ $:= \lim_{rarrow}\inf_{\infty}\alpha(r),$
$\alpha^{\infty}$ $:=$ li $m\sup_{rarrow\infty}\alpha(r)$ ,

$\beta_{\infty}$ $:= \lim_{rarrow}\inf_{\infty}\beta(r),$
$\beta^{\infty}$ $:=$ li$m\sup_{rarrow\infty}\beta(r)$ ,

and the asymptotic spreading speed of (1.1).
The asymptotic spreading speed of (1.1) is determined by the associated semi-waves.

Let us recall that for each $c\geq c^{*};=2\sqrt{ad}$ , the following problem

$-dw”-cw’=aw-bw^{2}, w(-\infty)=a/b, w(\infty)=0$

has a unique solution $w(x)$ (up to translation in $x$ ), and moreover, $w’(x)<0$ for all $x$ . If
$c<c^{*}$ , then no such solution exists. Such a solution is called a traveling wave with speed
$c$ because $u(t, x)$ $:=w(x-ct)$ satisfies

(2.6) $u_{t}-du_{xx}=au-bu^{2}$ for all $t,$ $x\in \mathbb{R}^{1},$

and as $t$ increases, the curve $u=u(t, x)$ in the $ux$-plane resembles a wave which does
not change its shape but travels to the right at speed $c$ . It is well known (see [2]) that
$c^{*}$ is the asymptotic spreading speed of the solution to the Cauchy problem of (2.6) with
initial function $u(O, x)=u_{0}(x)$ that is nonnegative, not identically zero, and with compact
support.

The semi-waves are determined by the following, problem over the half line:

(2.7) $-dV”-kV’=aV-bV^{2}$ in $(-\infty, 0)$ , $V(-\infty)=a/b,$ $V(0)=0.$

If $V$ is a solution to (2.7), then clearly $v(t, x)$ $:=V(x-kt)$ satisfies
$v_{t}-dv_{xx}=av-bv^{2}$ for $t\in \mathbb{R}^{1},$ $x<kt;v(t, kt)=0.$

We will call $V$ a semi-wave, since as $t$ increases the graph of the curve $v=v(t, x)$ , which
is defined on the half line $x<kt$ , resembles a wave traveling to the right at speed $k$ , with
the wave front at $x=kt.$

Set $U(x)=V(-x)$ ; then clearly (2.7) is equivalent to

(2.8) $-dU”+kU’=aU-bU^{2}$ in $(0, \infty)$ , $U(O)=0,$ $U(\infty)=a/b.$

We have the following result, which is a correction of Proposition 4.1 in [8] (see [3]).

Proposition 2.4. For any given constants $a>0,$ $b>0,$ $d>0$ and $k\in[0,2\sqrt{ad})$ ,
problem (2.8) admits a unique positive solution $U=U_{k}$ , and it satisfies $U_{k}’(x)>0$ for
$x\geq 0,$ $U_{k_{1}}’(0)>U_{k_{2}}’(0),$ $U_{k_{1}}(x)>U_{k_{2}}(x)$ $forx>0$ and $0\leq k_{1}<k_{2}<2\sqrt{ad}.$

Moreover, for each $\mu>0$ , there exists a unique $k_{0}=k_{0}(\mu, a, b, d)\in(O, 2\sqrt{ad})$ such that
$\mu U_{k_{0}}’(0)=k_{0}.$

124



SPREADING-VANISHING DICHOTOMY

It was shown in [8] that when spreading happens for (1.1), then

$\lim_{tarrow\infty}\frac{h(t)}{t}=k_{0}(\mu, a, b, d)$ .

This result was sharpened in [12] to

$\lim_{tarrow\infty}[h(t)-k_{0}t]=\hat{H}$ for some $\hat{H}\in \mathbb{R}$

and
lim $sup|u(t, x)-U_{k_{0}}(h(t)-x)|=0.$

$tarrow\infty_{x\in[0,h(t)]}$

Coming back to (2.1), we have the following result.

Theorem 2. $5^{[4]}$ If spreading happens for (2.1), then

(2.9) $\varlimsup_{tarrow+\infty}\frac{h(t)}{t}\leq k_{0}(\mu, \alpha^{\infty}, \beta_{\infty}, d), \varliminf_{tarrow+\infty}\frac{h(t)}{t}\geq k_{0}(\mu, \alpha_{\infty}, \beta^{\infty}, d)$.

2.2. The spatially asymptotically periodic case and pulsating semi-waves. If we
assume further that there exist positive $L$-periodic functions $a$ and $b$ in $C^{\nu_{0}}(\mathbb{R})$ such that

(2.10) $\lim_{rarrow+\infty}(|\alpha(r)-a(r)|+|\beta(r)-b(r)|)=0,$

then we can show that $\lim_{tarrow\infty}\frac{h(t)}{t}$ exists. This is the main result of [7]. To determine
this limit, we need to study the pulsating semi-waves of the one dimensional problem

(2.11) $\{\begin{array}{ll}u_{t}-du_{xx}=u[a(x)-b(x)u], t\in \mathbb{R}, -\infty<x<h(t) ,u(t, h(t))=0, h’(t)=-\mu u_{x}(t, h(t)) , t\in \mathbb{R}.\end{array}$

We call $(u(t, x), h(t))$ a pulsating semi-wave of (2.11) if it solves (2.11) and
(i) $u(t, x)=U(h(t), h(t)-x)>0$ for $t\in R,$ $x<h(t)$ ,
(ii) there exists $T>0$ such that $h’(t)$ is a positive $T$-periodic function and $h(t+T)-$

$h(t)=L,$

(iii) $U(\tau, \xi)$ is a function in $C^{1,2}(\mathbb{R}\cross[0, +\infty))$ that is $L$-periodic in $\tau.$

Theorem 2. $6^{[7]}$ Problem (2.11) always has a pulsating semi-wave $(\tilde{u},\tilde{h})$ . The pulsat-
ing semi-wave is unique up to translations in $t$ . Furthermore, $\lim_{tarrow\pm\infty}\tilde{h}(t)/t=L/T,$

$\tilde{u}_{t}(t, x)>0$ , and $\tilde{u}(t, x)arrow\phi(x)$ as $tarrow+\infty$ uniformly in any interval of the form
$(-\infty, M],$ $M\in \mathbb{R}$ , where $\phi$ is the unique positive solution of

$-d\phi_{xx}=\phi[a(x)-b(x)\phi], x\in \mathbb{R}^{1}.$

Theorem 2. $7^{[7]}$ Suppose that (2.10) holds, and $(u, h)$ is the unique solution of (2.1) and
$\lim_{tarrow\infty}h(t)=\infty$ ; then

$\lim_{tarrow\infty}\frac{h(t)}{t}=L/T.$

2.3. Heterogeneity in both space and time. In [6], the following generalization of
(2.1) is considered:

(2.12) $\{\begin{array}{ll}u_{t}-d\triangle u=u(\alpha(t, r)-\beta(t, r)u) , t>0,0<r<h(t) ,u_{r}(t, 0)=0, u(t, h(t))=0, t>0,h’(t)=-\mu u_{r}(t, h(t)) , t>0,h(O)=h_{0}, u(0, r)=u_{0}(r) , 0\leq r\leq h_{0},\end{array}$
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where $\Delta u=u_{rr}+\frac{N-1}{r}u_{r}(N\geq 1);r=h(t)$ is the free boundary; $h_{0},$
$\mu$ and $d$ are given

positive constants; $u_{0}\in C^{2}([0, h_{0}])$ is positive in $[0, h_{0})$ and $u_{0}’(0)=u_{0}(h_{0})=0$ ; the
functions $\alpha(t, r)$ and $\beta(t, r)$ satisfy the following conditions:

$\{$

(i) $\alpha,$
$\beta\in c^{\nu_{0}/2,\nu_{0}}(\mathbb{R}\cross[0, \infty))$ for some $\nu_{0}\in(0,1)$ ,

(2.13) and are $T$-periodic in $t$ for some $T>0$ ;
(ii) there are positive constants $\kappa_{1},$ $\kappa_{2}$ such that

$\kappa_{1}\leq\alpha(t, r)\leq\kappa_{2},$ $\kappa_{1}\leq\beta(t, r)\leq\kappa_{2},$ $\forall r\in[O, \infty),$ $\forall t\in[O,T].$

This describes the situation that the solution $u$ is radially symmetric $(u=u(t, r),$ $r=$

$|x|,$ $x\in \mathbb{R}^{N})$ and the environment may vary in time and space (but radially symmetric).
In this situation, similar results to those proved in the previous sections hold.

Theorem 2.8 $($Existence and uniqueness$)^{[6]}$ Problem (2.12) admits a unique solution
$(u(t, r), h(t))$ , which is defined for all $t>0$ . Moreover, $h\in C^{1}([0, \infty)),$ $u\in C^{1,2}(D)$ with
$D=\{(t, r) : t>0,0\leq r\leq h(t)\}$ , and $u(t, r)>0$ for $t>0$ and $0\leq r<h(t),$ $h’(t)>0$ for
$t>0.$

Theorem 2.9 $($Spreading-vanishing dichotomy$)^{}$ Let $(u(t, r), h(t))$ be the solution of
(2.12). Then the following alternative holds:

Either
(i) Spreading: $\lim_{tarrow\infty}h(t)=+\infty$ and

$\lim_{tarrow\infty}|u(t, r)-\hat{U}(t, r)|=0$ locally uniformly for $r\in[0, \infty)$ ,

where $\hat{U}(t, |x|)$ is the unique positive $T$ -periodic solution of
$U_{t}-d\Delta U=U[\alpha(t, |x|)-\beta(t, |x|)U], (t, x)\in \mathbb{R}^{1}\cross \mathbb{R}^{N},$

$or$

(ii) Vanishing: $\lim_{tarrow\infty}h(t)\leq R^{*}$ and $\lim_{tarrow+\infty}||u(t, \cdot)||_{C([0,h(t)])}=0$ , where $R^{*}>0$

is the unique value such that the following linear problem has a positive $T$ -periodic
solution when $R=R^{*}$ :

$\{\begin{array}{ll}\phi_{t}-d\Delta\phi = \alpha(t, |x|)\phi for t\in \mathbb{R}^{1} and |x|<R,\phi = 0 for t\in \mathbb{R}^{1} and |x|=R.\end{array}$

Theorem 2.10 $($ Spreading-vanishing criteria$)^{[6]}$

(a) If $h_{0}\geq R^{*}$ , then spreading always occurs.
(b) If $h_{0}<R^{*}$ , then there exists a unique $\mu^{*}>0$ depending on $u_{0}$ such that vanishing

occurs if $0<\mu\leq\mu^{*}$ , and spreading happens if $\mu>\mu^{*}.$

Let us note that, when $h_{0}<R^{*}$ , since $\mu^{*}$ varies with $u_{0}$ , for fixed $\mu$ , whether spreading
or vanishing happens depends on the size of $u_{0}.$

Theorem 2.11 $($ Spreading speed and profile $)^{}$ Suppose that

$\lim_{rarrow\infty}\alpha(t, r)=\alpha_{*}(t),\lim_{rarrow\infty}\beta(t, r)=\beta_{*}(t)$

uniformly for $t\in[0, T]$ . Then in the case of spreading, there exists a positive $T$-periodic
function $k_{0}(t)$ such that

$\lim_{tarrow\infty}\frac{h(t)}{t}=\overline{k}_{0} :=\frac{1}{T}\int_{0}^{T}k_{0}(t)dt.$
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Moreover, for any $c\in(O, \overline{k}_{0})$ , we have

$\lim_{tarrow\infty 0}\max_{\leq r\leq ct}|u(t, r)-\hat{U}(t, r)|=0.$

We remark that while the proofs of Theorems 2.8, 2.9 and 2.10 are similar to those of
the corresponding ones in subsection 2.1, the proof of Theorem 2,11 requires completely
new techniques.

Remark 2.12. In [21], similar results are obtained for a logistic model with seasonal
successions.

3. MORE GENERAL NONLINEARITIES

In [10], the following problem was considered:

(3.1) $\{\begin{array}{ll}u_{t}=u_{xx}+f(u) , g(t)<x<h(t), t>0,u(t, g(t))=u(t, h(t))=0, t>0,g’(t)=-\mu u_{x}(t,g(t)) , t>0,h’(t)=-\mu u_{x}(t, h(t)) , t>0,-g(O)=h(O)=h_{0}, u(O, x)=u_{0}(x) , -h_{0}\leq x\leq h_{0},\end{array}$

where $x=g(t)$ and $x=h(t)$ are the moving boundaries to be determined together with
$u(t, x),$ $\mu$ is a given positive constant, $f$ : $[0, \infty)arrow \mathbb{R}$ is a $C^{1}$ function satisfying
(3.2) $f(0)=0.$

The initial function $u_{0}$ belongs to $\mathscr{X}(h_{0})$ for some $h_{0}>0$ , where

$\mathscr{X}(h_{0})$ $:=\{\phi\in C^{2}([-h_{0}, h_{0}])$ : $\phi(-h_{0})=\phi(h_{0})=0,$ $\phi’(-h_{0})>0,$
(3.3)

$\phi’(h_{0})<0,$ $\phi(x)>0$ in $(-h_{0}, h_{0})\}.$

Though [10] contained some results which hold for rather general $f(u)$ , the long-time
dynamics is better understood for three special types of nonlinearities:

$(f_{M})$ monostable case, $(f_{B})$ bistable case, $(f_{C})$ combustion case.
In the monostable case $(f_{M})$ , it is assumed that $f$ is $C^{1}$ and it satisfies

(3.4) $f(O)=f(1)=0, f’(0)>0, f’(1)<0, (1-u)f(u)>0foru>0, u\neq 1.$

Clearly $f(u)=u(1-u)$ belongs to $(f_{M})$ .
In the bistable case $(f_{B})$ , it is assumed that $f$ is $C^{1}$ and it satisfies

(3.5) $f(0)=f(\theta)=f(1)=0,$ $f(u)\{\begin{array}{l}<0 in (0, \theta) ,>0 in (\theta, 1) ,<0 in (1, \infty)\end{array}$

for some $\theta\in(0,1),$ $f’(O)<0,$ $f’(1)<0$ and

(3.6) $\int_{0}^{1}f(s)ds>0.$

A typical bistable $f(u)$ is $u(u-\theta)(1-u)$ with $\theta\in(0, \frac{1}{2})$ .
In the combustion case $(f_{C}),$ $f$ is $C^{1}$ and it satisfies

(3.7) $f(u)=0in[0, \theta], f(u)>0in(\theta, 1) , f’(1)<0, f(u)<0in[1, \infty)$

for some $\theta\in(0,1)$ , and there exists a small $\delta_{0}>0$ such that
(3.8) $f(u)$ is nondecreasing in $(\theta, \theta+\delta_{0})$ .
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It follows from the general result in [10] that for these cases (3.1) always has a unique
solution defined for all $t>0.$

The next three theorems give a rather complete description of the long-time behavior
of the solution, and they also reveal the related but different sharp transition natures
between vanishing and spreading for these three types of nonlinearities.

Theorem 3.1 $($Monostable case$)^{[10]}$ Assume that $f$ is of $(f_{M})$ type, and $h_{0}>0,$ $u_{0}\in$

$\mathscr{X}(h_{0})$ . Then either
(i) Spreading: $(g_{\infty}, h_{\infty})=\mathbb{R}^{1}$ and

$\lim_{tarrow\infty}u(t, x)=1$ locally uniformly in $\mathbb{R}^{1},$

$or$

(ii) Vanishing: $(g_{\infty}, h_{\infty})$ is a finite interval with length no bigger than $\pi/\sqrt{f’(0)}$ and

$\lim \max u(t, x)=0.$
$tarrow\infty g(t)\leq x\leq h(t)$

Moreover, if $u_{0}=\sigma\phi$ with $\phi\in \mathscr{X}(h_{0})$ , then there exists $\sigma^{*}=\sigma^{*}(h_{0}, \phi)\in[0, \infty]$ such that
vanishing happens when $0<\sigma\leq\sigma^{*}$ , and spreading happens when $\sigma>\sigma^{*}$ . In addition,

$\sigma^{*}\{\begin{array}{ll}=0 if h_{0}\geq\pi/(2\sqrt{f’(0)}) ,\in(0, \infty] if h_{0}<\pi/(2\sqrt{f’(0)}) ,\in(0, \infty) if h_{0}<\pi/(2\sqrt{f’(0)}) and if f is globally Lipschitz.\end{array}$

Theorem 3.2 $($Bistable case$)^{[10]}$ Assume that $f$ is of $(f_{B})$ type, and $h_{0}>0,$ $u_{0}\in \mathscr{X}(h_{0})$ .
Then either

(i) Spreading: $(g_{\infty}, h_{\infty})=\mathbb{R}^{1}$ and

$\lim_{tarrow\infty}u(t, x)=1$ locally uniformly in $\mathbb{R}^{1},$

$or$

(ii) Vanishing: $(g_{\infty}, h_{\infty})$ is a finite interval and

$\lim \max u(t, x)=0,$
$tarrow\infty g(t)\leq x\leq h(t)$

$or$

(iii) Transition: $(g_{\infty}, h_{\infty})=\mathbb{R}^{1}$ and there exists a continuous function $\gamma$ : $[0, \infty)arrow$

$[-h_{0}, h_{0}]$ such that

$\lim_{tarrow\infty}|u(t, x)-v_{\infty}(x+\gamma(t))|=0$ locally uniformly in $\mathbb{R}^{1},$

where $v_{\infty}$ is the unique positive solution to
$v”+f(v)=0(x\in \mathbb{R}^{1}), v’(0)=0, v(-\infty)=v(+\infty)=0.$

Moreover, if $u_{0}=\sigma\phi$ for some $\phi\in \mathscr{X}(h_{0})$ , then there exists $\sigma^{*}=\sigma^{*}(h_{0}, \phi)\in(0, \infty]$ such
that vanishing happens when $0<\sigma<\sigma^{*}$ , spreading happens when $\sigma>\sigma^{*}$ , and transition
happens when $\sigma=\sigma^{*}$ . In addition, there exists $Z_{B}>0$ such that $\sigma^{*}<\infty$ if $h_{0}\geq Z_{B}$ , or
if $h_{0}<Z_{B}$ and $f$ is globally Lipschitz.

Theorem 3.3 $($Combustion case$)^{[10]}$ Assume that $f$ is of $(f_{C})$ type, and $h_{0}>0,$ $u_{0}\in$

$\mathscr{X}(h_{0})$ , Then either
(i) Spreading: $(g_{\infty}, h_{\infty})=\mathbb{R}^{1}$ and

$\lim_{tarrow\infty}u(t, x)=1$ locally uniformly in $\mathbb{R}^{1},$

$or$
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(ii) Vanishing: $(g_{\infty}, h_{\infty})$ is a finite interval and

$\lim \max u(t, x)=0,$
$tarrow\infty g(t)\leq x\leq h(t)$

$or$

(iii) Transition: $(g_{\infty}, h_{\infty})=\mathbb{R}^{1}$ and

$\lim_{tarrow\infty}u(t, x)=\theta$ locally uniformly in $\mathbb{R}^{1}.$

Moreover, if $u_{0}=\sigma\phi$ for some $\phi\in \mathscr{X}(h_{0})$ , then there exists $\sigma^{*}=\sigma^{*}(h_{0}, \phi)\in(0, \infty]$ such
that vanishing happens when $0<\sigma<\sigma^{*}$ , spreading happens when $\sigma>\sigma^{*}$ , and transition
happens when $\sigma=\sigma^{*}$ . In addition, there exists $Z_{C}>0$ such that $\sigma^{*}<\infty$ if $h_{0}\geq Z_{C}$ , or
if $h_{0}<Z_{C}$ and $f$ is globally Lipschitz.

Remark 3.4. The value of $\sigma^{*}$ in the above theorems can be $+\infty$ if we drop the assumption
that $f$ is globally Lipschitz when $h_{0}$ is small. Indeed, this is the case if $f(u)$ goes $to-\infty$

fast enough as $uarrow+\infty$ , and examples are given in [10].

Remark 3.5. In Section 2, to determine whether spreading or vanishing happens for the
special monostable nonlinearity, a threshold value of $\mu$ was established, which was shown
to be always finite. Here we use $\sigma$ in $u_{0}=\sigma\phi$ as a varying parameter, which appears more
natural especially for the bistable and combustion cases, since in these cases the dynamical
behavior of (3.1) is more responsive to the change of the initial function than to the change
of $\mu$ ; for example, when $\Vert u_{0}\Vert_{\infty}\leq\theta$ , then vanishing always happens regardless of the value
of $\mu.$

When spreading happens, the asymptotic spreading speed is determined by the following
problem

(3.9) $\{\begin{array}{l}q_{zz}-cq_{z}+f(q)=0 for z\in(O, \infty) ,q(0)=0, \mu q_{z}(0)=c, q(\infty)=1, q(z)>0forz>0.\end{array}$

Proposition 3. $6^{[10]}$ Assume that $f$ is of $(f_{M})$ , or $(f_{B})$ , or $(f_{C})$ type. Then for each $\mu>0,$

(3.9) has a unique solution $(c, q)=(c^{*}, q^{*})$ .
We note that $q^{*}$ is a “semi-wave” with speed $c^{*}$ , since the function $v(t, x)=q^{*}(c^{*}t-x)$

satisfies
$v_{t}=v_{xx}+f(v)(t\in \mathbb{R}^{1}, x<c^{*}t), v(t, c^{*}t)=0, v(t, -\infty)=1,$

and it resembles a wave moving to the right at constant speed $c^{*}$ , with front at $x=c^{*}t.$

In comparison with the normal traveling wave generated by the solution of
(3.10) $q_{zz}-cq_{z}+f(q)=0$ for $z\in \mathbb{R}^{1},$ $q(-\infty)=0,$ $q(+\infty)=1,$

the generator $q^{*}(z)$ of $v(t, x)$ here is only defined on the half line $\{z\geq 0\}.$

Making use of the above semi-wave, we have the following result.

Theorem 3. $7^{[10]}$ Assume that $f$ is of $(f_{M})$ , or $(f_{B})$ , or $(f_{C})$ type, and spreading happens.
Let $c^{*}$ be given by Proposition 3.6. Then

$\lim_{tarrow\infty}\frac{h(t)}{t}=\lim_{tarrow\infty}\frac{-g(t)}{t}=c^{*},$

and for any small $\epsilon>0$ , there exist positive constants $\delta,$ $M$ and $T_{0}$ such that
(3.11) $\max$ $|u(t, x)-1|\leq Me^{-\delta t}$ for all $t\geq T_{0}.$

$|x|\leq(c^{*}-\epsilon)t$
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Remark 3.8. The asymptotic spreading speed $c^{*}$ depends on the parameter $\mu$ appearing
in the free boundary conditions and in (3.9). Therefore we may denote $c^{*}$ by $c_{\mu}^{*}$ to stress
this dependence. It is well-known (see, e.g., [1, 2]) that when $f$ is of $(f_{M})$ , or $(f_{B})$ , or $(f_{C})$

type, the asymptotic spreading speed determined by the corresponding Cauchy problem
of (3.1) is given by the speed of certain traveling wave solutions generated by a solution
of (3.10). Let us denote this speed by $c_{0}$ . Then it is shown in [10] that $c_{\mu}^{*}$ is increasing in
$\mu$ and

$\lim_{\muarrow\infty}c_{\mu}^{*}=c_{0}.$

The conclusion in Theorem 3.7 has been significantly strengthened in [12], where the
following result is proved:

Theorem 3. $9^{[12]}$ Under the conditions of Theorem 3.7, there exist $\hat{H},\hat{G}\in \mathbb{R}$ such that

$\lim_{tarrow\infty}(h(t)-c^{*}t-\hat{H})=0,\lim_{tarrow\infty}h’(t)=c^{*},$

$t arrow\infty hm(g(t)+c^{*}t-\hat{G})=0,\lim_{tarrow\infty}g’(t)=-c^{*},$

and

(3.12) lim $sup|u(t, x)-q_{c}*(h(t)-x)|=0,$
$tarrow\infty_{x\in[0,h(t)]}$

(3.13) lim $sup|u(t, x)-q_{C}*(x-g(t))|=0.$
$tarrow\infty_{x\in[g(t),0]}$

Remark 3.10. In [18, 17], for monostable and bistable nonlinearities, a variant of (3.1)
is considered. Instead of considering the problem over $g(t)<x<h(t)$ , with $x=g(t)$ and
$x=h(t)$ the free boundaries, they assume that the reaction-diffusion equation is satisfied
for $x\in[0, h(t))$ , where $x=h(t)$ is a free boundary but $x=0$ is a fixed boundary where
the solution $u$ satisfies the Dirichlet boundary condition $u(t, 0)=0$ for a$1It>0.$

Remark 3.11. In [20], the authors consider the case that the Dirichlet boundary condition
at $x=0$ in [18, 17] is replaced by a Robin type boundary condition: $u(t, 0)=bu_{x}(t, 0)$

$(b\geq 0)$ (which includes the Dirichlet case by taking $b=0$). It is shown in [20] that for
monostable and bistable nonlinearities, all the results of [10] can be extended to this new
case.

4. HIGH DIMENSION WITHOUT RADIAL SYMMETRY

In space dimension $N\geq 2$ and without assuming radial symmetry, the free boundary
problem was considered in [5] and [11]. In such a case, the regularity of the free boundary is
not easy to understand, and the free boundary problem can be formulated in the following
form

(4.1) $\{\begin{array}{ll}u_{t}-d\triangle u=g(u) for x\in\Omega(t), t>0,u=0 and u_{t}=\mu|\nabla_{x}u|^{2} for x\in\Gamma(t), t>0,u(O, x)=u_{0}(x) for x\in\Omega_{0},\end{array}$

where $\Omega(t)\subset \mathbb{R}^{n}(n\geq 2)$ is bounded by the free boundary $\Gamma(t)$ , with $\Omega(0)=\Omega_{0},$ $\mu$

and $d$ are given positive constants. It is assumed that $\Omega_{0}$ is a bounded domain that
agrees with the interior of its closure $\overline{\Omega}_{0},$ $\partial\Omega_{0}$ satisfies the interior ball condition, and
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$u_{0}\in C(\overline{\Omega}_{0})\cap H^{1}(\Omega_{0})$ is positive in $\Omega_{0}$ and vanishes on $\partial\Omega_{0}$ . For the nonlinear function $g,$

the following assumptions are made:

(4.2) $\{\begin{array}{l}(i) g(O)=0 and g\in C^{1,\alpha}([0, \delta_{0}]) for some \delta_{0}>0 and \alpha\in(0,1) ,(ii) g(u) is locally Lipschitz in [0, \infty), g(u)\leq 0 in [M, \infty) for some M>0.\end{array}$

We note that these conditions are satisfied by standard monostable, bistable and com-
bustion type nonlinearities.

It was shown in [5] that (4.1) has a unique weak solution $u(t, x)$ defined for all $t>0$ ;
the free boundary is understood as $\Gamma(t)=\partial\Omega(t),$ $\Omega(t)=\{x : u(t, x)>0\}$ . Moreover,
any classical solution of (4.1) is a weak solution, and any weak solution with regular free
boundary $\Gamma(t)$ is a classical solution.

The following result reveals the connection of the free boundary problem with the
corresponding Cauchy problem.

Theorem 4. $1^{[5]}$ Let $u_{\mu}$ be the unique solution to problem (4.1) and $\Omega_{\mu}(t)=\{x:u(t, x)>$

$0\}$ . Then

(4.3) $\lim_{\muarrow\infty}\Omega_{\mu}(t)=\mathbb{R}^{N}\forall t>0,$

and

(4.4) $u_{\mu}arrow U$ $in$ $C_{1}^{\frac{1+\theta}{OC2},1+\theta}((0, \infty)\cross \mathbb{R}^{N})as\muarrow\infty,$

where $\theta$ can be any number in $(0,1)$ and $U(t, x)$ is the unique solution of the Cauchy
problem

(4.5) $\{\begin{array}{l}U_{t}-d\triangle U=g(U) in (0, \infty)\cross \mathbb{R}^{N},U(0, x)=\tilde{u}_{0}(x) in \mathbb{R}^{N}.\end{array}$

Here $\tilde{u}_{0}$ denotes the zero extension of $u_{0}$ into $\mathbb{R}^{N}.$

The regularity of the weak solution and its long-time dynamical behavior are studied
in [11], and the following theorems are the main results.

$The_{\sim}orem4.2^{[11]}$ For any fixed $t>0,\tilde{\Gamma}(t)$ $:=\Gamma(t)\backslash \overline{co}(\Omega_{0})$ is a $C^{2,\alpha}$ hypersurface in $\mathbb{R}^{n},$

and $\Gamma$

$:=\{(t, x) : x\in\Gamma(t), t>0\}$ is a $C^{2,\alpha}$ hypersurface in $\mathbb{R}^{n+1}$ . In particular, the freeboundary is always $C^{2,\alpha}$ if $\Omega_{0}$ is convex.

Here $\overline{co}(\Omega_{0})$ stands for the closed convex hull of $\Omega_{0}.$

Theorem 4. $3^{[11]}\Omega(t)$ is expanding in the sense that $\overline{\Omega}_{0}\subset\Omega(t)\subset\Omega(s)$ if $0<t<s.$
Moreover, $\Omega_{\infty}$ $:= \bigcup_{t>0}\Omega(t)$ is either the entire space $\mathbb{R}^{n}$ , or it is a bounded set. Further-
more, when $\Omega_{\infty}=\mathbb{R}^{n}$ , for all large $t,$ $\Gamma(t)$ is a smooth closed hypersurface in $\mathbb{R}^{n}$ , and
there exists a continuous function $M(t)$ such that

(4.6) $\Gamma(t)\subset\{x:M(t)-\frac{d_{0}}{2}\pi\leq|x|\leq M(t)\}$ ;

and when $\Omega_{\infty}$ is bounded, $\lim_{tarrow\infty}\Vert u(t, \cdot)\Vert_{L\infty(\Omega(t))}=0.$

Here $d_{0}$ is the diameter of $\Omega_{0}.$
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Theorem 4. $4^{[11]}$ If $g(u)=au-bu^{2}$ with $a,$
$b$ positive constants, then there exists $\mu^{*}\geq 0$

such that $\Omega_{\infty}=\mathbb{R}^{n}$ if $\mu>\mu^{*}$ , and $\Omega_{\infty}$ is bounded if $\mu\in(0, \mu^{*}]$ . Moreover, when $\Omega_{\infty}=\mathbb{R}^{n},$

the following holds:

$t arrow\infty hm\frac{M(t)}{t}=k_{0}(\mu),\lim_{tarrow\infty}\max_{|x|\leq ct}|u(t, x)-\frac{a}{b}|=0\forall c\in(O, k_{0}(\mu))$,

where $k_{0}(\mu)=k_{0}(\mu, a, b, d)$ is given in Proposition 2.4 above, with $\lim_{\muarrow\infty}k_{0}(\mu)=2\sqrt{ad}.$

There exists $R^{*}>0$ such that $\mu^{*}>0$ if $\overline{\Omega}_{0}$ is contained in a ball with radius $R^{*}$ , and
$\mu^{*}=0$ if $\Omega_{0}$ contains a ball of radius $R^{*}$ (see Theorem 5.11 in [11]).

5. DISCUSSIONS

In the previous sections, we reported some recent results on nonlinear Stefan problems
involving a single equation. As mentioned already, such a mathematical model may be
used to describe the spreading of an invasive species into a new environment. From an
ecological point of view, it is more realistic to consider the situation that the invasive
species invades into an environment where there are already some native species.

The simplest case is that there is one native species in the environment being invaded.
Then a two species model have to be used to describe the invasion process. If the native
species is a competitor of the invading species, such a situation is considered in [9]; if the
native species is a prey to the invading species, the problem is studied in [25]. In [16] and
[26], a competition system is considered under the assumption that both species invade
along a common free boundary, and [24] considered such a common free boundary case
for a predator-prey model. In all these cases, some kind of spreading-vanishing dichotomy
has been established. However, no satisfactory result on the spreading speed has been
obtained so far.

Even in the single equation case, there are still many questions remain to be investigated.
For example, the case where the available environment is a proper unbounded subset of
$\mathbb{R}^{N}$ has not been studied yet. There are also many interesting cases with heterogeneous
environment not considered so far. Furthermore, apart from [12], there is no sharp estimate
on the spreading speed and spreading profile of the solution when spreading happens in
the various free boundary problems. It is also more realistic to consider situations where
simple diffusion is replaced by general diffusion with advection. $A$ first step in this direction
is taken in [14, 15], where a problem of the form (3.1) with $f(u)=u(1-u)$ is considered,
but with $u_{xx}$ replaced by $du_{xx}+\beta u_{x}.$
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