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Since A. Turing discovered the mechanism of periodic pattern generation induced
by diffusion in 1952, various patterns in nature have been explained by his idea, which
is called the diffusion-induced instab漉 $ty$ or I-劾短$ngs$ instab漉$ty[8]$ . To explain this in
detail, let us consider a system of the ordinary differential equations

$[Matrix]$ (1)

and the corresponding reaction-diffusion system

$[Matrix]$ (2)

in a bounded domain $\Omega$ and $t>0$ with homogeneous Neumann boundary condition. We
note that any homogeneous solutions of (2) can be regarded as those of (1). Suppose that
$(0,0)$ is a stable equilibrium of (1). Then $(0,0)$ is also a stationary solution of (2). How-
ever, $(0,0)$ may not be stable. If the nonlinear terms $f_{1},$ $f_{2}$ and the diffusion coefficients
$d_{1},$ $d_{2}$ are chosen appropriately, then it becomes unstable. The stability is transferred to
a spatially inhomogeneous steady state which bifurcates from the homogeneous one.

However, the diffusion-induced instability is caused only by a linear effect from the
mathematical viewpoint. We would like to extend this result to the changes of global
dynamics. It is also known that diffusion can be influenced on the global existence of
solutions. More precisely, we are concerned with finite-time blow-up of solutions caused
by diffusion. We say that a solution of (2) blows up in finite time if there is $T\in(0, \infty)$

such that
$\lim_{t\nearrow}\sup_{T}(\Vert u_{1}(\cdot, t)\Vert_{L(\Omega)}\infty+\Vert v(\cdot, t)\Vert_{L^{\infty}(\Omega)})=\infty.$
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Blow-up of solutions has been studied extensively by many authors. Most of them study
that a solution of (1) blow up in a finite time. Therefore the following question naturally
arises: can blow-up occur in (2), while (1) possesses a compact global attractor? Mi-
zoguchi, Ninomiya and Yanagida [4] presented the affirmative answer. They constructed
the following system:

$\{\begin{array}{l}u_{t}=d_{1}\Delta u+|u-v|^{p-1}(u-v)-u,v_{t}=d_{2}\triangle v+|u-v|^{p-1}(u-v)-v\end{array}$ (3)

with $p>1$ . and have shown that some solutions of (3) blow up in finite time if $0<d_{1}<$
$d_{2}$ , while all solutions of the corresponding ordinary differential equations (1) converge
to $(0,0)$ as $t$ tends to infinity. This phenomenon is called diffusion-induced blowup. We
note that the diffusion-inhibited blowup is also studied in [3, 2].

Let us consider the change of the global dynamics more precisely. This result holds
even for large diffusivity and says that a compact attractor for (1) imbedded in (3) is
only local for (3). We notice that all solutions of (3) with $d_{1}=d_{2}>0$ are bounded for
all $t>0$ . We may expect that solutions bifurcate from the infinity when $d_{1}$ varies from
$d_{2}.$

Along this context we refer to the bifurcation from infinity by Stuart [7] and Rabi-
nowitz [6]. To explain their idea, let us consider the following nonlinear problem:

$u_{t}=\triangle u+au+f(u)$ (4)

with Dirichlet homogeneous boundary condition. Suppose that $\lambda_{1,D}$ is the first eigenvalue
of- $A$ with Dirichlet boundary condition and

$f(u)=o(|u|)$ (5)

as $|u|$ tends to $\infty$ . The typical example of nonlinear term $f$ is $u/(1+u^{2})$ . Then the.
system possesses an unbounded bifurcation branch which includes $(\lambda_{1,D}, \infty)$ .

We cannot apply this result to the system (3) because the condition (5) is not satisfied
for (3). We need to construct the theory for the bifurcation from infinity for the system.
The partial result will be presented in this short note. See $\rfloor 1]$ for the details.

To begin with, we restrict the nonlinear terms $\tilde{f}_{1}$ and $f_{2}$ to $p$-homogeneous polyno-
mials where $p$ is a positive integer. Namely,

$\tilde{f}_{1}(su, sv)=s^{p}\tilde{f}_{1}(u, v) , \tilde{f}_{2}(su, sv)=s^{p}\tilde{f}_{2}(u, v)$

for $s>0.$

Consider

$\{\begin{array}{ll}u_{t}=d_{1}u_{xx}+f_{1}(u, v) , x\in(0,1), t>0,v_{t}=d_{2}v_{xx}+f_{2}(u, v) , x\in(O, 1), t>0,u_{x}(0, t)=v_{x}(0, t)=u_{x}(1, t)=v_{x}(1, t)=0, t>0,\end{array}$ (6)
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where
$f_{1}(u, v)=\tilde{f}_{1}(u, v)-\epsilon u, f_{2}(u, v)=\tilde{f}_{2}(u, v)-\epsilon v.$

Assume that all solutions of the ordinary differential equations

$\{\begin{array}{l}U_{t} = f_{1}(U, V) ,V_{t} = f_{2}(U, V)\end{array}$ (7)

exists globally in time and that (7) with $\epsilon=0$ possesses an stationary solution $(u_{*}, v_{*})$

where $u_{*}v_{*}\neq 0$ . The homogeniety of nonlinearities implies

$\{s(1, k_{*})|s\in \mathbb{R}, f(1, k_{*})=g(1, k_{*})=0\}$

is a set of stationary solutions of (7) with $\epsilon=0$ . Under these assumptions we have the
following theorem.

Theorem 1 Consider the case $\epsilon=0$ in (6). Set $d_{2}=d_{1}\mu_{*}-\delta$ . Assume nonlinear
terms $f_{1}(u, v),$ $f_{2}(u, v)$ of (6) satisfy

(i) $f_{1}(1, k_{*})=f_{2}(1, k_{*})=0,$ $(k_{*}\neq 0, \infty)$ ,

(ii) $\mu_{*}\neq\nu_{*},$

(iii) $p$ is odd,

(iv) $f_{1}(1, k_{*}+k_{*}\delta/d_{1}(\nu_{*}-\mu_{*}))>0$ for any $\delta$ in some inetrval $\Lambda$

where
$\mu_{*}:=\lim_{karrow k_{*}}\frac{f_{2}(1,k)}{kf_{1}(1,k)}, \nu_{*}:=\lim_{karrow k_{*}}\frac{d}{dk}\frac{f_{2}(1,k)}{f_{1}(1,k)}.$

Then there exist an small interval $\Lambda^{*}\subset\Lambda$ and a non-constant solution $(u_{*}, v_{*})=(\overline{u},\overline{k}\overline{u})$

of (6) for any $\delta\in\Lambda^{*}$ such that $0\in\overline{\Lambda}^{*}$ and

$\overline{k}=k_{*}+\frac{k}{d_{1}(\nu_{*}-\mu_{*})}*\delta+O(\delta^{2})$ ,

$\overline{u}=\rho(\delta)U(x)^{1}$

$\rho(\delta)=(\frac{d_{1}}{f_{1}(1,\overline{k})})^{1/(p-1)}$

where $U(x)$ is a solution of

$\{\begin{array}{ll}U_{xx}+U^{p}=0, (0\leq x\leq L) ,U_{x}(0)=U_{x}(L)=0. \end{array}$

Moreover,
$\lim_{\deltaarrow 0,\delta\in\Lambda^{*}}\overline{u}(x)=\infty, \lim_{\deltaarrow 0,\delta\in\Lambda^{*}}\overline{k}=k_{*}$ . (8)
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It follows from (8) that non-constant solutions bifurcates from the infinity.

Theorem 2 Assume $(i)-(iv)$ in Theorem 1 replaced with

(ii)’ $\nu_{*}<\mu_{*}=1.$

Take $\Lambda^{*}$ as in Theorem 1 and choose $d_{1},$ $d_{2}$ satisfying $|(d_{2}-d_{1})/(d_{1}d_{2})|\leq\delta$ . Then there
is a positive constant $\epsilon^{*}$ such that a non-constant stationary solution of (6) exists for
any $\epsilon\in(0, \epsilon^{*})$ .

Under the assumptions of Theorem 2, the non-constant solution in (6) bifurcates
from infinity as $\delta$ and $\epsilon$ go to $0$ due to Theorem 1.

We can confirm that
$\mu_{*}=1, \nu_{*}=0$

for the case (3). Thus Theorems 1 and 2 imply the existence of solutions with large
norm for (3). We can understand the diffusion-induced blowup in the following way.
The global attractor when $d_{1}=d_{2}$ is compact. However, when $d_{1}\neq d_{2}$ , these solutions
come out from the infinity and these solutions and their unstable manifolds separate the
basin of domain. Thus some solutions which can go to infinity apper.

oo $\infty$

$\zeta J$ f$)$

$(a)d_{1}=d_{2}>0$ ( $b$ ) $0<d_{1}<d_{2}$

Figure 1: Heuristic understanding of the diffusion-induced blowup by the bifurcation
from infinity. (a) all solutions converge to $0;(b)$ some large solution blows up in a finite
time.

These theorems facilitate to construct the candidate systems for the diffusion-induced
blowup. We only need to construct examples satisfying the assumptions of Theorem 2.
For example, we have

$\{\begin{array}{ll}u_{t}=d_{1}u_{xx}+(u^{2}-v^{2})v-\epsilon u, x\in(0,1), t>0,v_{t}=d_{2}v_{xx}+(u^{2}-v^{2})u-\epsilon v, x\in(O, 1), t>0,u_{x}(0, t)=v_{x}(0, t)=u_{x}(1, t)=v_{x}(1, t)=0, t>0.\end{array}$ (9)
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Since $\mu_{*}=1,$ $v_{*}=-1$ , Theorem 2 immediately implies that the non-constant stationary
solutions bifurcate from the infinity.
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