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ABSTRACT. In this note we review the characterization of global attrac-
tors for dissipative semiflows generated by scalar semilinear parabolic
equations of the form $u_{t}=u_{xx}+f(x, u-u_{x})$ defined on the interval
$0\leq x\leq\pi$ with Neumann boundary conditions. We outline the char-
acterization results for these global attractors –the Sturm attractors
-obtained by a permutation of the equilibrium solutions–the Sturm
permutation–associated to the second order $ODE$ satisfied by the sta-
tionary solutions of the parabolic equation. In particular we consider
the characterization results for the class of nonlinearities of the form
$f=f(u)$ –the Hamiltonian class. Using this characterization we then
outline some results on the geometry of Sturm attractors for the case of
periodic boundary conditions.

1. STURM ATTRACTORS

In the following notes we survey recent results on the characterization
of global attractors for dissipative semiflows generated by scalar semilinear
parabolic equations. In the first three sections we review the notions of
Sturm attractor and Sturm permutation for the case of Neumann boundary
conditions. In these sections we illustrate the characterization of Sturm at-
tractors by means of Sturm permutations, that is, in purely combinatorial
terms. In the fourth section we consider recent results on the characteriza-
tion of Sturm attractors for a restricted class that we call of Hamiltonian
type. Then in the fifth section we present some consequences of this char-
acterization for the case of periodic boundary conditions. In particular we
obtain a characterization of Sturm attractors for a class of spatially $S^{1}-$

equivariant problems.
We then start with the characterization of global attractors for dissipative

semiflows generated by scalar semilinear parabolic equations of the form
$u_{t}=u_{xx}+f(x, u, u_{x}), x\in I$ , (1)

defined on the interval $I=[0, \pi]$ , with Neumann boundary conditions.
If the nonlinearity $f=f(x, u, u_{x})$ satisfies adequate smooth and dissi-

pative conditions then (1) generates a dynamical system in an appropriate
phase space $X$ . Here we assume

$f\in C^{2}$ is dissipative. (2)

Sufficient, but not necessary, conditions for dissipativeness take the following
form of $sign$ and growth conditions

$vf(x, v, 0)<0$ for all large $|v|$ , (3)
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$|f(x, v,p)|<C(|v|)(1+|p|^{\gamma})$ , (4)

for all $(x, v,p)$ , some constant $0<\gamma<2$ , and some continuous function $C.$

Under these conditions (1) generates a semiflow $S_{f}(t)$ : $Xarrow X$

$S_{f}(t)$ : $u_{0}\mapsto S_{f}(t)u_{0}=u(t, \cdot),$ $t\geq 0$ , (5)

where $u(0, \cdot)=u_{0}$ and $X$ is the Sobolev space, (see, e.g., [2, 19, 28]),

$X=H^{2}(I)\cap\{u_{x}=0;x\in\partial I\}arrow C^{1}(I)$ (6)

By dissipativeness, the semiflow $S_{f}(t)$ has a global attractor

$\mathcal{A}=\mathcal{A}_{f}\subset X$ , (7)

which is a nonempty compact invariant set attracting every bounded subset
of $X$ . For references see, e.g., [16, 7, 17]. The global attractor $\mathcal{A}$ contains all
the information on the asymptotic behavior of the semiflow $S_{f}(t)$ . In fact,
any solution $u(t)=u(t, \cdot)$ of (1) has a nonempty $\omega$-limit in $\mathcal{A}$ . Therefore
the prime objective in the study of the semiflow generated by (1) is the
geometric characterization of $\mathcal{A}.$

In the context of the parabolic partial differential equation (1) the set
$\mathcal{A}$ is called the Sturm attractor. Undoubtedly the most useful tool in this
framework is the Sturm zero number decay property; see [34, 24, 4]. In
essence it states that the number of zeros of the difference $u_{1}-u_{2}$ between
any two different solutions of (1),

$t\mapsto z(u_{1}(t, \cdot)-u_{2}(t, \cdot))$ , (8)

is a monotone nonincreasing function of $t$ . This property is essential not only
for establishing the asymptotic behavior of the solutions of (1) but also to
determine the geometric characterization of the Sturm attractor. Moreover,
under the appropriate adaptations the same result holds for other types of
boundary conditions that include periodic boundary conditions.

In the case of Neumann boundary conditions the system $S_{f}(t)$ has a
gradient-like behavior due to the existence of a Lyapunov function; see [37,
25]. Therefore, as $tarrow+\infty$ any solution of (1) approaches the set $\mathcal{E}=\mathcal{E}_{f}$ of
equilibrium solutions, which in this case is the set of solutions of the $ODE$

Neumann boundary value problem

$v”+f(x, v, v’)=0, x\in I=[O, \pi],$
(9)

$v’(0)=v’(\pi)=0.$

In particular, the Sturm attractor is composed of the equilibria and the
set $\mathcal{H}$ of heteroclinic orbits, i.e. the set of orbits with $\omega$ and $\alpha$-limit in $\mathcal{E}$

(homoclinicity being excluded by the gradient-like behavior)

$\mathcal{A}=\mathcal{E}\cup \mathcal{H}$ . (10)

To guarantee finiteness and nondegeneracy of the equihbria $v\in \mathcal{E}$ we
assume hyperbolicity: an equilibrium $v\in \mathcal{E}$ is hyperbolic if $\lambda=0$ is not an
eigenvalue of the linearization at $v$

$\lambda u=u_{xx}+\partial_{p}f(x, v, v_{x})u_{x}+\partial_{v}f(x, v, v_{x})u, x\in I$ , (11)
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with Neumann boundary conditions. Then, if all the equilibria are hyper-
bolic, $\mathcal{E}=\{v_{j}, 1\leq j\leq n\}$ is a finite set and the Sturm attractor is the union
of the corresponding unstable manifolds (see [19]),

$\mathcal{A}=\bigcup_{v_{j}\in \mathcal{E}}W^{u}(v_{j})$
(12)

The set of nonlinearities $f=f(x, u, u_{x})$ satisfying (2) for which all equi-
libria $v\in \mathcal{E}_{f}$ are hyperbolic is called the Sturm class

Sturm$(x, u, u_{x})$ (13)

In the obvious way the classes Sturm$(u)$ , Sturm $(\dot{x}, u)$ , Sturm$(u, u_{x})$ , etc, of
nonlinearities $f$ are also defined.

2. STURM PERMUTATIONS

For $f\in$ Sturm$(x, u, u_{x})$ the graphs $\{(x, v_{j}(x), v_{j}’(x)) : x\in I\}$ of the $n$

equilibria $v_{j}\in \mathcal{E}_{f}$ define a braid of $n$ strands in the space $I\cross \mathbb{R}^{2}$ . For an
illustration see Figure 1. Associated to this braid of equilibria we have a

5 5

4 2

3 3

2 4

1 1

$x=0 x=\pi$
FIGURE 1. The $(x, v(x))$ -projection of a braid of 5 equilibria.

permutation $\sigma=\sigma_{f}\in S(n)$ . This permutation is called the Sturm permu-
tation and is defined by the ordering of the (hyperbolic) solutions $v_{j}(x)$ at
$x=0$ and $x=\pi$ . If the equilibria are labeled such that the ordering at
$x=0$ is

$v_{1}(0)<v_{2}(0)<\cdots<v_{n}(0)$ , (14)

then $\sigma\in S(n)$ is defined by the ordering at $x=\pi$

$v_{\sigma(1)}(\pi)<v_{\sigma(2)}(\pi)<\cdots<v_{\sigma(n)}(\pi)$ (15)

The Sturm permutation corresponding to the illustration in Figure 1 (as a
permutation of {1, 2, 3, 4, 5} and also in cycle notation) is given by

$\sigma=\{1,4,3,2,5\}=(24)$ (16)

The Sturm permutations are central objects of consideration in the char-
acterization of Sturm attractors. In fact, many of the main geometric fea-
tures of a Sturm attractor $\mathcal{A}_{f}$ are explicitly determined by the Sturm per-
mutation $\sigma_{f}$ . For references see [15, 11].

141



CARLOS ROCHA AND BERNOLD FIEDLER

To obtain the Sturm permutation $\sigma_{f}$ we solve the boundary value problem
(9) by the shooting method. We consider the $ODE$ initial value problem for
$w=w(x, a)$ with initial Neumann condition at $x=0,$

$w”+f(x, w, w’)=0, w(O, a)=a, w’(0, a)=0$ , (17)

where $’=\partial/\partial x$ , and compute the curve $\Gamma=\Gamma_{f}$ corresponding to the solu-
tions at $x=\pi$ (i.e. the shooting curve)

$\Gamma=\{\gamma(a), a\in \mathbb{R}\}\subset \mathbb{R}^{2}$
$\gamma$ : $a\mapsto(w(\pi, a), w’(\pi, a))$ (18)

This is a plane Jordan curve which intersects, with strict crossings, the
straight line of Neumann conditions at a sequence of $n$ points. Such a curve
is appropriately called a meander [6] and the permutation that arises from
the ordering of the intersection points, first along the straight line and then
along the meander, is a meander permutation. Then the intersection points
correspond to the solutions of the Neumann boundary value problem (9),
i.e. the equilibria $v_{j}\in \mathcal{E}$ , and the Sturm permutation $\sigma_{f}$ corresponds to the
meander permutation of $\Gamma$ . See the illustration in Figure 2.

FIGURE 2. $A$ shooting curve $\Gamma$ (left) and the corresponding
meander permutation (right) illustrating the Sturm permutation
$\sigma=\{1,4,3,2,5\}=(24)$ .

The Morse index of an equilibrium is one of the many geometric features
of $\mathcal{A}_{f}$ which is entirely determined in terms of the Sturm permutation $\sigma_{f}.$

Recall that the Morse index $i(v_{j})$ df an equilibrium $v_{j}\in \mathcal{E}$ is the number of
positive eigenvalues of the linearization (11) at $v_{j}$ . Hence the Morse index
of $v_{j}$ is the dimension of the corresponding unstable manifold,

$i(v_{j})=\dim W^{u}(v_{j})$ (19)

We next illustrate its computation. Given a permutation $\sigma\in \mathcal{S}(n)$ we define
the Morse numbers

$i_{j}( \sigma):=\sum_{k=1}^{j-1}(-1)^{k+1}sign(\sigma^{-1}(k+1)-\sigma^{-1}(k)),$ $1\leq j\leq n$ , (20)

where empty sums denote zero. Then, in terms of the Sturm permutation
$\sigma_{f}$ the Morse indices are explicitly given by $i(v_{j})=i_{j}(\sigma_{f})$ , see again [15, 11].

A meander permutation $\sigma\in S(n)$ is a Sturm permutation if there exists
a nonlinearity $f\in$ Sturm$(x, u, u_{x})$ such that $\sigma=\sigma_{f}$ . Obviously this places
restrictions on the set of Sturm permutations for which we give a purely
combinatorial characterization. For this purpose we introduce the following
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definitions: $A$ meander permutation $\sigma\in S(n)$ is called dissipative if $n$ is odd
and $\sigma$ satisfies:

$\sigma(1)=1, \sigma(n)=n$ ; (21)
Furthermore, $\sigma$ is called Morse if all its Morse numbers (20) are non-
negative,

$i_{j}(\sigma)\geq 0,1\leq j\leq n$ . (22)
Then we have the following combinatorial characterization of Sturm per-

mutations:

Theorem 1 ([12], Theorem 1.2). $A$ permutation $\sigma\in S(n)$ is a Sturm
permutation $\sigma=\sigma_{f}$ in the Sturm class $f\in$ Sturm$(x, u, u_{x})$ if, and only if,
$\sigma$ is a dissipative $Mor\mathcal{S}e$ meander permutation.

Most remarkably the heteroclinic orbits in a Sturm attractor $\mathcal{A}_{f}$ are also
obtained from the Sturm permutation $\sigma_{f}$ . In fact it is possible to determine
solely in terms of $\sigma_{f}$ if two equilibria in $\mathcal{E}_{f}$ are connected by a heteroclinic
orbit or not. This result is one of the major successes of the theory and
closed a long-standing open problem that involved the research of many
authors. For details and references see [11, 36].

3. A MODEL PROBLEM

The special case of the Chafee-Infante problem [8], which considers equa-
tion (1) for the family of cubic nonlinearities

$f_{\lambda}(u)=\lambda u-u^{3}, \lambda\in \mathbb{R}$ , (23)

was the first example where the Sturm attractor $\mathcal{A}=\mathcal{A}_{\lambda}$ was characterized
(see [20]). This model problem has always been a source of motivation for
the development of the theory and still provides a good show case where
many details can be explicitly computed. For example, the shooting curve
$S=\Gamma(\lambda)$ for this family of nonlinearities can be expressed in terms of
elliptic integrals (see e.g. [18]). The case corresponding to a parameter
value $1<\lambda<4$ is illustrated in Figure 3.

FIGURE 3. Shooting curve $S=\Gamma(\lambda)$ for the Chafee-Infante prob-
lem (24) with $1<\lambda<4.$
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FIGURE 4. Bifurcation diagram for the Chafee-Infante equihbria.

$i$From the analysis of the curve $S=\Gamma(\lambda)$ one immediately obtains rele-
vant information on the set of equilibria $\mathcal{E}_{\lambda}\subset \mathcal{A}_{\lambda}$ for our model problem

$u_{t}=u_{xx}+\lambda u-u^{3},0<x<\pi,$

(24)
$u_{x}(t, 0)=u_{x}(t, \pi)=0.$

The diagram representing the set of equilibria $\mathcal{E}_{\lambda}$ as a function of $\lambda\in \mathbb{R}$ is
known as the bifurcation diagram of the equilibria and is illustrated in Figure
4. For $\lambda=k^{2}$ , with $k=0,1,$ $\ldots$ , the equilibrium $u\equiv 0$ corresponding to
the origin in $X$ is not hyperbolic. Moreover, as $\lambda$ increases across a squared
integer the origin undergoes a supercritical pitchfork bifurcation and two
hyperbolic nonhomogeneous solutions of (24) arise from the trivial solution
$u\equiv 0$ . Then, for $\lambda\neq k^{2},$ $k=0,1,$ $\ldots$ , all the equilibria in $\mathcal{E}_{\lambda}$ are hyperbolic
and the nonlinearities (23) belong to the special Sturm class $f_{\lambda}\in$ Sturm$(u)$ .

The Sturm permutations $\sigma_{\lambda}$ for the Chafee-Infante problem (24) are easily
obtained from the meanders $\Gamma(\lambda)$ . In fact, $\mathcal{E}_{\lambda}$ has exactly $n=2k+1$
equilibria for $k^{2}<\lambda<(k+1)^{2}$ and we have

$\sigma_{\lambda}=\{1,2k, 3,2k-2, \ldots, 2,2k+1\}=(22k)(42k-2)\ldots(\underline{k}\overline{k})$ , (25)

where $\overline{k}=2k+2-\underline{k}$ and $\underline{k}$ is the largest even integer not exceeding $k.$

$\lambda<0 0<\lambda<1 1<\lambda<4 4<\lambda<9$

$\bullet$ $\iota$

$k^{2}<\lambda<(k+1)^{2}$

$0\bullet\searrow_{\bulletarrow}\nearrow^{\bullet}\vec{X}\ldots *Xarrow\bulletarrow\bullet-\lambda^{\iota/2}$

$arrow\bulletarrow\bullet\lambda^{\iota/2}$

FIGURE 5. Chafee-Infante Sturm attractors $\mathcal{A}_{\lambda}.$
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The heteroclinic orbit connections of the Chafee-Infante Sturm attractors
$\mathcal{A}_{\lambda}$ are then obtained from the Sturm permutations $\sigma_{\lambda}\in \mathcal{S}(n)$ . Figure 5
illustrates some graphic representations of these Sturm attractors $\mathcal{A}_{\lambda}.$

$n=1$ :
$\sigma_{1,1}=\{1\}=id$ ;

$n=3$ :
$\sigma_{3,1}=\{1,2,3\}=id$ ;

$n=5$ :
$\sigma_{5,1}=\{1,2,3,4,5\}=id$ ;
$\sigma_{5,2}=\{1,4,3,2,5\}=(24)$ ;

$n=7$ :
$\sigma_{7,1}=\{1,2,3,4,5,6,7\}=id$ ;
$\sigma 7,2=\{1,2,3,6,5,4,7\}=(46)$ ;
$\sigma 7,3=\{1,4,5,6,3,2,7\}=(246)(35)$ ;
$\sigma_{7,4}=\{1,6,3,4,5,2,7\}=(26)$ ;
$\sigma_{7,5}=\{1,6,5,4,3,2,7\}=(26)(35)$ ;

TABLE 1. List of all Sturm permutations $\sigma_{n,k}\in \mathcal{S}(n)$ with $n\leq 7.$

$n=1$ $n=7$

$\overline{/1}$

’
$\frac{\wedge\wedge\wedge r}{/t2.34.56.7}$–

$n=3$

$\frac{\wedge\prime}{/t2.3}$ –

$n=5$

$\frac{\wedge\wedge\nearrow}{/12345}$ –

FIGURE 6. List of stylized meanders corresponding to the Sturm
permutations $\sigma_{n,k}\in S(n)$ (left) and the Sturm attractors $\mathcal{A}_{n,k}$

(right) with $n\leq 7$ equilibria.

$i$From the characterization of Sturm permutations provided by Theorem 1
we also obtain the complete list of Sturm permutations $\sigma_{f}\in S(n)$ . In Table
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1 we list all the Sturm permutations with $n\leq 7$ up to trivial equivalence.
Moreover, for completeness we also show in Figure 6 stylized illustrations
of the corresponding meanders $\Gamma_{f}$ and graphic representations of the Sturm
attractors $\mathcal{A}_{f}.$

4. HAMILTONIAN TYPE

In the restricted class $f\in$ Sturm$(u)$ already considered in the previous
section, viz. the Chafee-Infante problem, the stationary problem (9) for the
equilibria of (1) has the form

$v”+f(v)=0$ . (26)

This nonlinear pendulum equation corresponds to the Hamiltonian planar
system

$v’=p, p’=-f(v)$ , (27)

with Hamiltonian function $H(v,p)= \frac{1}{2}p^{2}+F(v)$ , where $F$ is a potential
satisfying $dF(u)/du=f(u)$ . For this reason, when $f\in$ Sturm$(u)$ we say
that the Sturm attractor $\mathcal{A}_{f}$ is of Hamiltonian type.

In this section we present the characterization of Sturm attractors $\mathcal{A}_{f}$ of
Hamiltonian type. This characterization has obvious important implications
for the strict modeling question concerning spatial inhomogeneity or exis-
tence of drifting terms. Moreover, it is also useful for the characterization of
Sturm attractors in the case of periodic boundary conditions. We postpone
to the last section a demonstration of the implications for this case.

Let then $f\in$ Sturm $(u)$ . Due to the reversibility of (26) with respect to
the reflection $x\mapsto-x$ , any equilibrium solution $v_{j}\in \mathcal{E}_{f}$ can be extended to
$-\infty<x<\infty$ by reflection through the boundaries. With this extension we
obtain from each $v_{j}(x)$ a periodic solution of (26) with possibly non-minimal
period $2\pi$ . Conversely, from any $2\pi$-periodic solution of (26) after an appro-
priate $x$-shift we obtain an equilibrium $v_{j}(x)$ of (1). This correspondence
between equilibria $v_{j}\in \mathcal{E}_{f}$ of (1) and $2\pi$-periodic solutions of (26) is the key
to the characterization of the Sturm attractors $\mathcal{A}_{f}$ of Hamiltonian type. For
details see [14].

In fact, the Sturm permutation $\sigma_{f}$ necessarily reflects the nesting struc-
ture of the $2\pi$-periodic orbits of (1) in the phase plane $(v, v’)$ . Figure 7
illustrates a phase portrait obtained from a potential $F$ with five stationary
points. Each stationary point of $F$ is a zero of $f=F’$ , hence the Sturm
attractor $\mathcal{A}_{f}$ possesses exactly $m=5$ spatially homogeneous equilibria. The
phase portrait also illustrates the bounded regions of periodic orbits. In
particular it shows two punctured disk regions, $\mathcal{C}_{2},$ $\mathcal{C}_{3}$ , and one annular re-
gion $\mathcal{C}_{1}$ . These are the regions where the $2\pi$-periodic orbits of (27) are to be
found. Moreover, recalling the Neumann boundary conditions, for each $2\pi-$

periodic orbit in the phase portrait of (27) we obtain two nonhomogeneous
equilibrium solutions of (1). Therefore, if the phase portrait obtained from
$f\in$ Sturm$(u)$ has $m$ fixed points and $q2\pi$-periodic orbits, the corresponding
Sturm attractor $\mathcal{A}_{f}$ has exactly $n=m+2q$ equilibria.

The standard way of studying the $2\pi$-periodic orbits of (26) uses the period
map $T_{f}=T_{f}(a)$ , which is defined as the minimal period of the solution
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FIGURE 7. Phase portrait corresponding to a potential $F$ with
five stationary points, $e_{1}-e_{5}$ . The regions $\mathcal{C}_{1}-\mathcal{C}_{3}$ of periodic orbits
are shaded.

$v=v(x, a)$ of (26) with $v(T_{f}(a), a)=v(O, a)=a$ . In its domain $D\subset \mathbb{R}$ of
definition $T_{f}$ : $Darrow \mathbb{R}$ is given by

$T_{f}(a)= \sqrt{2}\int_{a}^{b(a)}[F(a)-F(s)]^{-1/2}ds$ (28)

This period map has been widely used to characterize the solutions of bound-
ary value problems of the form (26), see e.g. [35, 33, 32] and their references.
It was also used in [30] to characterize the set of $2\pi$-periodic orbits of (26).

Using the relation between the Neumann boundary value problem. (9) with
$f=f(u)$ and the phase portrait of (27) we obtain a characterization of the
Sturm permutations $\sigma_{f}$ for $f\in$ Sturm$(u)$ . The first immediate conclusion
is that $\sigma_{f}$ in this class must be an involution. In fact, consider the braid
of equilibria associated to the Sturm permutation $\sigma=\sigma_{f}\in \mathcal{S}(n)$ . If we
perform the change of variables $xarrow\pi-x$ we obtain a new problem for
which the corresponding braid of equilibria runs from $x=\pi$ to $x=0.$
Hence the corresponding Sturm permutation is $\sigma^{-1}\in\dot{S}(n)$ . On the other
hand, due to the reversibility of (26) our problem is invariant under the
given change of variables. Therefore we conclude that $\sigma$ is an involution:

$\sigma=\sigma^{-1}$ or $\sigma^{2}:=\sigma\circ\sigma=id$ (29)
As a result of this involutive property the Sturm permutations $\sigma=\sigma_{f}$ in

the restricted Hamiltonian class $f\in$ Sturm$(u)$ have unique combinatorial
representations as products of 2-cycles:

$\sigma=(\underline{c}_{1}\overline{c}_{1})\ldots(\underline{c}_{r}\overline{c}_{r})$ (30)
Recalling our list of Sturm permutations $\sigma_{n,k}\in S(n)$ with $n\leq 7$ in Table

1, we observe that $\sigma_{7,3}$ is not an involution and hence cannot be realized in
the Hamiltonian class $f\in$ Sturm$(u)$ . All the other permutations in this list
are involutions and, in fact, can be realized in the Hamiltonian class.

However, due to the topological restrictions that arise from the nesting
structure of $2\pi$-periodic orbits in the phase plane, not all Sturm involutions
can be realized in the class of $f\in$ Sturm$(u)$ . In fact, $\sigma_{f}$ must also respect this
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nesting structure. The topological phase plane restrictions are essentially the
following (for more specific details see [14]):

(a) different $2\pi$-periodic orbits cannot intersect;
(b) on each connected region of periodic orbits $\mathcal{C}_{j}$ , the $2\pi$-periodic orbits

are nested with a total ordering;
(c) the boundaries of the connected regions $\mathcal{C}_{j}$ contain saddle points of

the $ODE$ planar system (27).
For the characterization of the Hamiltonian class $f\in$ Sturm$(u)$ in purely

combinatorial terms we introduce some definitions. Recall the Morse num-
bers (20) for a given permutation $\sigma\in S(n)$ . Then the point $k$ is called
$\sigma$ -stable if

$i_{k}(\sigma)=0$ . (31)
Moreover, if $\sigma\in S(n)$ is an involution, having in mind the cycle repre-
sentation (30) we define’the $\sigma$ -stable core $C_{\alpha}$ of the 2-cycle $(\underline{c}_{\alpha}\overline{c}_{\alpha})$ as the
set

$C_{\alpha}=\{k:i_{k}(\sigma)=0, \underline{c}_{\alpha}<k<\overline{c}_{\alpha}\}$ (32)
We remark that, for $f\in$ Sturm$(u)$ , the $ODE$ saddle points of (27) are in one-
to-one correspondence with the stable (and hence homogeneous) equilibria
$v_{j}\in \mathcal{E}_{f}$ of the PDE problem (1). For details we refer again to [14].

In view of the topological restrictions (a-c) the integer boundary labels of
the 2-cycles composing the involution $\sigma=\sigma_{f}$ have to satisfy some conditions
which we condense in the following additional definitions. For $\alpha\neq\beta$ we say
that the 2-cycles $(\underline{c}_{\alpha}\overline{c}_{\alpha})$ and $(\underline{c}_{\beta}\overline{c}_{\beta})$ are intersecting if the corresponding
open intervals in $\mathbb{R}$ have a nonempty intersection

$(\underline{c}_{\alpha}, \overline{c}_{\alpha})\cap(\underline{c}_{\beta}, \overline{c}_{\beta})\neq\emptyset$ ; (33)

Intersecting 2-cycles $(_{-}c_{\omega}\overline{c}_{\alpha})$ and $(\underline{c}_{\beta}\overline{c}_{\beta})$ are called nested if one of these
intervals contains the other, i.e. if

$(\underline{c}_{\beta}-\underline{c}_{\alpha})(\overline{c}_{\alpha}-\overline{c}_{\beta})>0$ ; (34)

Nested $2-\mathcal{C}$ycles ($\underline{c}_{a}\overline{c}_{\alpha})$ and $(\underline{c}_{\beta}\overline{c}_{\beta})$ are called centered if the mid-points of
these intervals coincide, i.e. if

$\underline{c}_{\beta}-\underline{c}_{\alpha}=\overline{c}_{\alpha}-\overline{c}_{\beta}$ (35)

We also say that two nested 2-cycles $(\underline{c}_{\alpha}\overline{c}_{\alpha})$ and $(\underline{c}_{\beta}\overline{c}_{\beta})$ are core-equivalent
if they share the same $\sigma$-stable core, $C_{\alpha}=C_{\beta}.$

Finally, we reach the central definition for the permutation characteriza-
tion of Sturm attractors $\mathcal{A}_{f}$ of Hamiltonian type. An involution permutation
$\sigma\in \mathcal{S}(n)$ is called integrable if:

( $I$ .1) intersecting 2-cycles are nested;
($I$ .2) core-equivalent 2-cycles are centered;
( $I$ .3) non-nested $2-c\acute{y}$cles are separated by $\sigma$-stable points.
Then, we have the following characterization of Sturm permutations in

the Hamiltonian class of $f\in$ Sturm$(u)$ .

Theorem 2 ([14], Theorem 1). A Sturm permutation $\sigma\in S(n)$ is in
the Hamiltonian class of $f\in$ Sturm$(u)$ if and only if $\sigma$ is an integrable
involution.
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The necessity of the involutive condition is asserted by (29). Then the
topological restrictions imposed by the phase plane nesting of the $2\pi$-periodic
orbits show the necessity of the integrability condition. On the other hand,
the sufficiency of both conditions for a realization of $\sigma$ in the Hamiltonian
class is much more difficult to establish. This essentially follows from the
characterization presented in [30] of the period maps for planar Hamiltonian
systems of the form (26).

Theorem 2 precisely identifies the Sturm permutations which correspond
to Sturm attractors of Hamiltonian type. Using this theorem we can, in fact,
ensure that all the Sturm involutions listed in Table 1 can be realized in the
Hamiltonian class of $f\in$ Sturm$(u)$ . This excluded only the non-involutive
Sturm permutation $\sigma_{7,3}.$

In the case of the Sturm permutations $\sigma_{n,k}\in S(n)$ with $n=9$ , all listed in
Table 2 up to trivial equivalences, the integrable involutions are also easily
identified. From the 18 Sturm permutations with $n=9$ equilibria we exclude

$\sigma_{9,4}, \sigma_{9,8}, \sigma_{9,9}, \sigma_{9,10}, \sigma_{9,12}, \sigma_{9,16}$ (36)

which clearly are not involutions. Moreover, we also exclude

$\sigma_{9,11}, \sigma_{9,14}$ (37)

which are not integrable. In fact, the 2-cycles of $\sigma_{9,11}$ are intersecting but
not nested, and the 2-cycles of $\sigma_{9,14}$ are core-equivalent but not centered.
The remaining 10 Sturm permutations then correspond to Sturm attractors
of Hamiltonian type.

$\sigma_{9,1}=\{1,2,3,4,5,6,7,8,9\}=id$ ;
$\sigma_{9,2}=\{1,2,3,4,5,8,7,6,9\}=(68)$ ;
$\sigma_{9,3}=\{1,2,3,6,5,4,7,8,9\}=(46)$ ;
$\sigma_{9,4}=\{1,2,3,6,7,8,5,4,9\}=(468)(57)$ ; $*$

$\sigma_{9,5}=\{1,2,3,8,5,6,7,4,9\}=(48)$ ;
$\sigma_{9,6}=\{1,2,3,8,7,6,5,4,9\}=(48)(57)$ ;
$\sigma_{9,7}=\{1,4,3,2,5,8,7,6,9\}=(24)(68)$ ;
$\sigma_{9,8}=\{1,4,5,6,7,8,3,2,9\}=(2468)(357)$ ; $*$

$\sigma g,g=\{1,4,5,8,7,6,3,2,9\}=(248)(357)$ ; $*$

$\sigma_{9,10}=\{1,6,7,8,3,4,5,2,9\}=(2648)(375)$ ; $*$

$\sigma_{9,11}=\{1,6,7,8,5,2,3,4,9\}=(26)(37)(48)$ ; $*$

$\sigma_{9,12}=\{1,6,7,8,5,4,3,2,9\}=$ (2648)(37); $*$

$\sigma_{9,13}=\{1,8,3,4,5,6,7,2,9\}=(28)$ ;
$\sigma_{9,14}=\{1,8,3,4,7,6,5,2,9\}=(28)(57)$ ; $*$

$\sigma_{9;15}=\{1,8,3,6,5,4,7,2,9\}=(28)(46)$ ;
$\sigma_{9,16}=\{1,8,5,6,7,4,3,2,9\}=(28)(357)(46)$ ; $*$

$\sigma_{9,17}=\{1,8,7,4,5,6,3,2,9\}=(28)(37)$ ;
$\sigma_{9,18}=\{1,8,7,6,5,4,3,2,9\}=(28)(37)(46)$ ;

TABLE 2. List of all Sturm permutations $\sigma_{n,k}\in S(n)$ with $n=9.$
Permutations marked $with*$ are not integrable involutions.
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It is shown in [14] that the characterization of Sturm permutations in the
Hamiltonian class of $f\in$ Sturm$(u)$ contained in Theorem 2 also holds in
the larger Sturm class of reversible $f\in$ Sturm$(u, u_{x})$ . This is the class of
nonlinearities $f\in$ Sturm$(u, u_{x})$ which satisfy

$f(v, -p)=f(v,p)$ (38)

For $f$ in this class–which contains Sturm$(u)$ –the $ODE$ corresponding to
the stationary problem (9) has the form

$v”+f(v, v’)=0$ . (39)

By (38), this equation is reversible with respect to the change of variables
$xarrow-x$ , like in the case of (26). Moreover, (39) is also integrable and there
exists a period map $T=T_{f}$ : $Darrow \mathbb{R}$ , which extends to (39) the period map
introduced for (26). For more information see [13, 29].

Then, using this period map and arguing as in the case of $f\in$ Sturm$(u)$ ,
we obtain the following extension of Theorem 2; see [14] for details.

Theorem 2’. A Sturm permutation $\sigma\in S(n)$ is in the class of reversible
$f\in$ Sturm$(u, u_{x})$ if and only if $\sigma$ is an integrable involution.

5. PERIODIC BOUNDARY CONDITIONS

We finally address the case of periodic boundary conditions. Consider
then solutions $u(t, x)$ of equation (1) defined on the interval $x\in I=[0,2\pi]$

and satisfying
$u(t, O)=u(t, 2\pi), u_{x}(t, 0)=u_{x}(t, 2\pi)$ , (40)

or, equivalently, defined on the circle $x\in S^{1}=\mathbb{R}/2\pi \mathbb{Z}$. In this case, under
the dissipative conditions (2), equation (1) generates a dissipative semiflow
$S_{f}(t)$ : $Xarrow X,$ $t\geq 0$ , in the phase space $X=H^{2}(S^{1})$ . However, in general,
$S_{f}(t)$ is no longer gradient-like. In fact, in this case the global attractor $\mathcal{A}_{f}^{p}$

may contain periodic orbits, or homoclinic orbits between equilibria. For
examples of such behavior see [5, 10] and [31].

On the other hand the Poincar\’e-Bendixson property holds in this case:
the $\omega$-limit set of any solution $u(t)=u(t, \cdot)$ of (1), (40), either contains an
equilibrium point, or is a periodic orbit; see [10] for details.

Let $p(t)=p(t, \cdot)$ denote a periodic orbit of $S_{f}(t)$ with period $\tau>0$

and initial value $p(O)=p_{0}\in X$ . The characteristic multipliers of $p(t)$

are the eigenvalues of the evolution operator $P_{\tau}$ : $Xarrow X$ defined by the
linearization of (1), (40), around the periodic orbit $p(t)$ , at time $t=\tau$ ;

$P_{\tau}=DS_{f}(\tau)p0$ . (41)
To require nondegeneracy of a periodic orbit we assume hyperbolicity as in
the case of equilibria. In this case the periodic orbit $p(t)$ is hyperbolic if
$\mu=1$ is a simple eigenvalue of $P_{\tau}$ and is the unique characteristic multiplier
of $p(t)$ on the complex unit circle. For more details see, e.g., [19, 9].

To distinguish from the previous case we introduce the Sturm class
Stur$m^{}$ $(x, u, u_{x})$ (42)

to denote the set of nonlinearities $f=f(x, u, u_{x})$ satisfying (2), for which
all equilibria and periodic orbits of (1), (40), are hyperbolic.
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The characterization of Sturm attractors $\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(x, u, u_{x})$ is
essentially an open problem. $A$ most remarkable general result available in
this case is the following transversality property of the stable and unstable
manifolds of hyperbolic periodic orbits:

Theorem 3 ([9], Theorem 8.2). The stable and unstable manifolds of two
hyperbolic periodic orbits $p^{\pm}$ of (1), (40), always intersect transversely,

$W^{u}(p^{-})\cap iW^{S}(p^{+})$ (43)

For details and further results on the geometric properties of $\mathcal{A}_{f}^{p}$ in the
Sturm class of $f\in Sturm^{p}(x, u, u_{x})$ see [9, 21, 22] and their references.

In contrast with the general case, the geometry of Sturm attractors $\mathcal{A}_{f}^{p}$

in the restricted Sturm class of

$f\in Sturm^{p}(u, u_{x})$ (44)

is much better understood. Therefore we turn to the problem

$u_{t}=u_{xx}+f(u, u_{x}), x\in S^{1}$ (45)

for nonlinearities $f$ satisfying (2). In this case, due to the $S^{1}$-equivariance
of (45) with respect to $x$-shifts any periodic solution has the form $u(t, x)=$

$v(x-ct)$ , that is, a rotating wave which rotates around the circle $x\in S^{1}$

with constant speed $c\neq 0$ . Moreover, as $tarrow+\infty$ any solution of (45) either
approaches $a$ (hyperbolic) equilibrium solution or $a$ (hyperbolic) rotating
wave. These results again follow from the Sturm property (8), as shown in
[5, 25, 26]. In addition, homoclinic behavior to equilibria or periodic orbits
is excluded; see [26]. Therefore, denoting by $CR$ $=\mathfrak{R}_{f}$ the set of rotating
wave solutions of (45), the Sturm attractor $\mathcal{A}^{p}=\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(u, u_{x})$

decomposes as
$\mathcal{A}^{p}=\mathcal{E}\cup \mathfrak{R}\cup \mathcal{H}$ . (46)

Below we will see that hyperbolicity, in addition to implying finiteness
of the set $\mathcal{E}_{f}$ of equilibria, also implies finiteness of the set $\mathfrak{R}_{f}$ of rotating
waves.

We sidetrack to remark that in the general case of $f\in Sturm^{p}(x, u, u_{x})$

homoclinic behavior to periodic orbits is also excluded, as shown in [27, 9],
in blatant contrast with homoclinic behavior to equilibria which may occur;
see [31].

Another important observation regarding the geometric properties of $\mathcal{A}_{f}^{p}$

in the $S^{1}$-equivariant case of $f\in Sturm^{p}(u, u_{x})$ is the following:

Theorem 4 ([13], Proposition 3.2). The stable and unstable manifolds of
two hyperbolic elements $v^{\pm}\in \mathcal{E}\cup \mathfrak{R}$ of (45), always intersect transversely,

$W^{u}(v^{-})\pi W^{s}(v^{+})$ (47)

This extends the transversality result of Theorem 3 to all the hyper-
bolic elements of $\mathcal{E}\cup \mathfrak{R}$ and shows that the Sturm attractor $\mathcal{A}_{f}^{p}$ for $f\in$

$Sturm^{p}(u, u_{x})$ has the Morse-Smale property; see for example [17].
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This property, after a slight extension to include normal hyperbolicity, is
used in [13] to determine the heteroclinic orbit connections between any pair
of hyperbolic equilibria or rotating waves. For a hyperbolicity preserving ho-
motopy $f_{s},$ $s\in[0,1]$ , we obtain a continuous family of global attractors $\mathcal{A}_{s}^{p}$

which, due to the Morse-Smale property, is $s$-invariant up to orbit equiva-
lence by a homeomorphism. Therefore, the heteroclinic connections in the
Sturm attractor $\mathcal{A}_{0}^{p}$ are determined using a homotopy $f_{s}$ taking $\mathcal{A}_{0}^{p}$ to a
simpler Sturm attractor $\mathcal{A}_{1}^{p}$ for which the heteroclinic orbits are known. For
the details on the homotopy construction and the heteroclinic connections
see [13].

We proceed with the characterization of Sturm attractors $A_{f}^{p}$ for $f\in$

$Sturm^{p}(u, u_{x})$ . As in the Neumann case of Hamiltonian type, $f\in$ Sturm$(u)$ ,
the characterization of $\mathcal{A}_{f}^{p}$ is pursued in terms of a permutation obtained
from a period map. In fact, all the required information on the PDE dynam-
ics is encoded in $ODE$ boundary value problems associated to the solutions
$v\in \mathcal{E}_{f}\cup \mathfrak{R}_{f}$ , that is, the stationary equilibria and the rotating wave solu-
tions. It turns out that the period map approach is quite appropriate to
solve these boundary value problems.

Taking a unified approach, a solution $v=v(t, x)$ of (45) is an equilibrium
or rotating wave, $v\in \mathcal{E}_{f}\cup \mathfrak{N}_{f}$ , if and only if there exists $c\in \mathbb{R}$ such that $v$

satisfies the periodic boundary value problem

$v”+cv’+f(v, v’)=0, x\in S^{1}$ (48)

Then rotating waves $v\in \mathfrak{R}_{f}$ correspond to solutions $u(t, x)=v(x-ct)$ with
a rotation speed $c\neq 0$ , and equilibria $v\in \mathcal{E}_{f}$ correspond to solutions with
$c=0.$

The set of equilibria $v\in \mathcal{E}_{f}$ is, in general, composed of two types of
solutions: the spatially homogeneous solutions, $v\equiv e$ , corresponding to the
zeros of $f(\cdot, 0)$ ,

$f(e, 0)=0$ ; (49)
and the spatially nonhomogeneous solutions, $v=v(x)$ with $v’\not\equiv 0.$

We remark that spatially nonhomogeneous equilibrium solutions are al-
ways nonhyperbolic. Indeed, in this case $v_{x}$ is an eigenfunction for the trivial
eigenvalue $\lambda=0$ of the linearization (11) with periodic boundary conditions.
Due to $S^{1}$-equivariance these solutions always occur in families of $x$-shifted
copies around $x\in S^{1}$ . Therefore, this type of solutions is absent when
$f\in Sturm^{p}(u, u_{x})$ . When such solutions are present they can be considered
as frozen or standing waves “rotating” around the circle $x\in S^{1}$ with zero
speed, $c=0$. This case can also be treated by requiring these solutions to be
normally hyperbolic, i.e. with a simple trivial eigenvalue; see [13] for details.

Then to define the appropriate period map we consider the planar system
corresponding to the rotating wave equation (48)

$v’=p, p’=-f(v,p)-cp$ . (50)

For the set $\mathcal{C}\subset \mathbb{R}^{2}$ of initial conditions $(v,p)$ for which there is $c\in \mathbb{R}$ such
that $(v,p)$ is a periodic point of (50), we define:

(i) the unique wave speed $c=c(v,p)$ such that $(v,p)$ is a periodic point;
(ii) the minimal period $T_{f}=T_{f}(v,p)$ of the periodic orbit through $(v,p)$ .
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Then $T_{f}=T_{f}(v,p)$ is our period map for the permutation characterization
of the Sturm attractor $\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(u, u_{x})$ .

First, all spatially nonhomogeneous equilibria $v\in \mathcal{E}_{f}$ are directly obtained
from (49). Then, all rotating waves $v\in \mathfrak{R}_{f}$ are obtained from $T_{f}.$ $A$ periodic
point $(v,p)$ of (50) is the initial value of a $2\pi$-periodic orbit if and only if

$T_{f}(v,p)=2\pi/k, k\in \mathbb{N}$ . (51)

Subsequently $c=c(v,p)$ determines if the orbit solution $(v(x), v’(x))$ corre-
sponds to a rotating or a frozen wave of (45). If $c\neq 0$ then $v=v(x-ct)$
is a rotating wave, $v\in \mathfrak{R}_{f}$ . In addition, hyperbolicity of $v\in \mathfrak{R}_{f}$ is equiva-
lent to noncriticality of the corresponding value $2\pi/k$ for $T_{f}$ . This result is
entirely analogous to the one established for the usual period map defined
by (28); see again [13, 33]. Since minimal periods are uniformly bounded
from below [1], we conclude that hyperbolicity of all rotating waves $v\in \mathfrak{R}_{f}$

implies finiteness of the set $\mathfrak{R}_{f}.$

By restricting the period map $T_{f}=T_{f}(v,p)$ to the set $D_{N}$ of initial
Neumann conditions,

$D_{N}:=\mathcal{C}\cap\{(a, 0):a\in \mathbb{R}\}$ , (52)

we obtain a map $T_{f}$ : $D_{1f}arrow \mathbb{R}$ , like in the case of Neumann boundary
conditions. $iFrom$ this map we then determine a Sturm permutation $\sigma_{f}$

which characterizes the Sturm attractor $\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(u, u_{x})$ .
To obtain this characterization of $\mathcal{A}_{f}^{p}$ we use two homotopies $f_{s},$ $s\in[0,1],$

constructed in [13], which leave the period map $T_{f}$ invariant.
The first is a freezing homotopy which preserves all rotating waves of (45)

reducing their wave speeds to $c\equiv 0$ while preserving the period map $T_{f}.$

$i\mathbb{R}om$ this homotopy we obtain a nonlinearity $h=h(u, u_{x})$ for which all
the rotating waves of (45) become spatially nonhomogeneous equilibria, i.e.
frozen waves. Hence $h$ is not in Stur$m^{}$ $(u, u_{x})$ , but all the equilibria are
normally hyperbolic and $\mathfrak{R}_{h}$ is empty, $\mathcal{A}_{h}^{p}=\mathcal{E}_{h}\cup \mathcal{H}_{h}.$

The second is a symmetrizing homotopy which, while preserving the pe-
riod map $T_{f}$ , symmetrizes the phase portrait of the planar system for the
frozen $h=h(u, u_{x})$ . $i$From this homotopy we obtain a nonlinearity $g=$
$g(u, u_{x})$ which is even in $u_{x}$ , that is

$g(v, -p)=g(v,p)$ , (53)

and since the period map is preserved we obtain
$T_{g}(a, 0)=T_{f}(a, 0)$ (54)

Due to (53) the resulting problem

$u_{t}=u_{xx}+g(u, u_{x}), x\in S^{1}$ (55)
is then equivariant also with respect to the reflection symmetry $x\mapsto-x.$

Hence any equilibrium solution is reflection symmetric with respect to any
of its local maxima or minima. In the case of frozen waves, choosing the
appropriate representatives of each family of $x$-shifted copies we obtain two
equilibrium solutions with a maximum and a minimum at $x=0$ , respec-
tively. These solutions satisfy Neumann boundary conditions at $x=0$ and
$x=\pi$ due to reflection symmetry.
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The flow $S_{g}(t)$ generated by (55) has an embedded flow which satisfies
Neumann boundary conditions on the half-interval $I=[0, \pi]$ . In fact, we
have just identified the set of its spatially nonhomogeneous equilibria. These
normally hyperbolic solutions, together with the homogeneous equilibria, are
hyperbolic for the Neumann flow, and we conclude that $g\in$ Sturm$(u, u_{x})$

on $I=[O, \pi]$ . The Sturm attractor for this Neumann flow is then our source
of information on the Sturm attractor $\mathcal{A}_{f}^{p}$ for the initial problem (45) with
$f\in Sturm^{p}(u, u_{x})$ .

We invoke the reversibility (53) to obtain the period map $T=T_{g}$ which
is defined in the class of reversible $g\in$ Sturm$(u, u_{x})$ . From this period map
we obtain the Sturm permutation $\sigma=\sigma_{g}$ used in the characterization of the
Sturm attractor for the Neumann problem. We recall that by Theorem 2’
the Sturm permutation $\sigma_{g}$ is necessarily an integrable involution.

For $f\in Sturm^{p}(u, u_{x})$ we define the Sturm permutation $\sigma=\sigma_{f}$ obtained
from $T_{f}=T_{f}(a, 0)$ and notice that we have $\sigma_{f}=\sigma_{g}$ as shown by (54).

The Sturm attractor $\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(u, u_{x})$ is then characterized by
the Sturm permutation $\sigma_{f}\in S(n)$ . Here again we have

$n=m+2q$ , (56)

where now $m$ denotes the number of (hyperbolic, spatially homogeneous)
equilibria, and $q$ denotes the number of (hyperbolic) rotating waves,

$m=\neq \mathcal{E}_{f}, q=\neq \mathfrak{R}_{f}$ (57)

To illustrate this characterization of $\mathcal{A}_{f}^{p}$ for $f\in Sturm^{p}(u, u_{x})$ we mention
that $\sigma_{f}$ determines all the heteroclinic orbit connections in $\mathcal{A}_{f}^{p}$ . As an ex-
ample, consider heteroclinic orbits between rotating waves in $\mathcal{A}_{f}^{p}.$

$A$ pair of
periodic orbits is connected by a heteroclinic orbit if, and only if, in the em-
bedded Neumann flow the corresponding pair of frozen waves is connected
by a heteroclinic orbit. Then we recall that all the heteroclinic connections
in the Sturm attractor $\mathcal{A}_{g}$ for this Neumann flow are determined by the
Sturm permutation $\sigma_{g}=\sigma_{f}.$

Since the period map $T_{g}=T_{g}(a, 0)$ introduced for (55) is then identi-
cal to the period map $T_{g}=T_{g}(a)$ for the Neumann problem, in view of
(54) we obtain from Theorem 2’ the following characterization of the Sturm
permutations for $f\in Sturm^{p}(u, u_{x})$ :

Theorem 5. A Sturm permutation $\sigma=\sigma_{f}\in S(n)$ is in the class of
$f\in Sturm^{p}(u, u_{x})$ if and only if $\sigma$ is an integrable involution.

An instructive example of $f\in Sturm^{p}(u, u_{x})$ is again provided by the
Chafee-Infante problem after a suitable adaptation. Consider the problem

$u_{t}=u_{xx}+\lambda u-u^{3}+cu_{x}, x\in S^{1}$ (58)

In this case the frozen symmetrized nonlinearity $g$ is obviously the cubic
$\lambda u-u^{3}$ , and the Neumann problem is given by (24). Hence the spatially
nonhomogeneous Neumann solutions become rotating waves of (58) with
rotation speed $c$ . Then, for

$f(u, u_{x})=\lambda u-u^{3}+cu_{x}$ (59)
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we obtain $f\in Sturm^{p}(u, u_{x})$ provided
$c\neq 0$ and $\lambda\neq k^{2}$ for $k=0,1,$ $\ldots$ (60)

When $\lambda\leq 0$ the Sturm attractor $\mathcal{A}_{f}^{p}=\mathcal{A}_{\lambda}^{p}$ is trivial, i.e. $\mathcal{A}_{\lambda}^{p}=\{0\}$ , and
when $\lambda>0$ it has exactly three spatially homogeneous equilibrium solu-
tions. Moreover, when $c\neq 0$ , the flow $S_{f}(t)$ generated by (58) undergoes a
sequence of supercritical Hopf bifurcations of the trivial solution $u\equiv 0$ at
the parameter values $\lambda=k^{2},$ $k\in \mathbb{N}$ . The corresponding Sturm attractors

$\mathcal{A}_{\lambda}^{p}$ are then easily described.

FIGURE 8. The Chafee-Infante spindle attractor for $1<\lambda<4.$

Left: Chafee-Infante attractor for the Neumann flow section in the
frozen case, $c=0$; Right: Chafee-Infante spindle attractor for
$c\neq 0.$

As an illustration we consider the Sturm attractor $\mathcal{A}_{\lambda}^{p}$ for $1<\lambda<4$ . In
this case we have $n=5$ , with $m=3$ and $q=1$ . Moreover, by (25) the
Sturm permutation $\sigma=\sigma_{\lambda}\in S(5)$ is

$\sigma_{\lambda}=\sigma_{5,2}=(24)$ , (61)

The corresponding Sturm attractor $\mathcal{A}_{\lambda}^{p}$ is three dimensional and we show
a graphical representation in Figure 8. In [23] an entirely similar global
attractor occurring for a delay differential equation was appropriately called
a spindle attractor since it visualizes as a smooth solid spindle.
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