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1 Introduction
This article is a survey of the paper [20]. We consider the following damped
compressible Euler equations

$[Matrix]$ (1.1)

for $(t, x)\in[0, +\infty)\cross \mathbb{R}^{d}$ with $d\geq 1$ . Here $\rho=\rho(t, x)$ is the fluid density
function; $v=(v^{1}, v^{2}, \cdots, v^{d})^{T}$ ( $T$ represents the transpose) denotes the fluid
velocity. The pressure $p(\rho)$ satisfies the classical assumption

$p’(\rho)>0$ , for any $\rho>0.$

A usual simplicity $p(\rho)$ $:=\rho^{\gamma}(\gamma\geq 1)$ , where the adiabatic exponent $\gamma>1$

corresponds to the isentropic flow and $\gamma=1$ corresponds to the isothermal
flow. The nondimensional number $0<\tau\leq 1$ is $a$ (small) relaxation time.
The notation $\nabla,$ $\otimes$ are the gradient operator (in x) and the symbol for the
tensor products of two vectors, respectively.

System (1.1) is complemented by the initial conditions

$(\rho, v)(0, x)=(\rho_{0}, v_{0})$ . (1.2)

The main objective in this paper is to justify the singular limit as $\tauarrow 0$

in (1.1) rigorously. To do this, we define the new variables by considering an
$\mathcal{O}(1/\tau)$

” time scale as in [15]:

$( \rho^{\tau}, v^{\tau})(s, x)=(\rho, v)(\frac{s}{\tau}, x)$ . (1.3)
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Then
$\{\begin{array}{l}\partial_{S}\rho^{\tau}+\nabla\cdot(\frac{\rho^{\tau}v^{\tau}}{\tau})=0,\tau^{2}\partial_{s}(^{L^{\tau_{v^{\mathcal{T}}}}}\tau^{-})+\tau^{2}\nabla\cdot(\mapsto^{\tau_{v^{\mathcal{T}}\bigotimes_{\tau^{2}}v^{\mathcal{T}}}}L^{v^{\tau}}\tau\end{array}$ (1.4)

with the initial data
$(\rho^{\tau}, v^{\tau})(x, 0)=(\rho_{0}, v_{0})$ . (1.5)

At the formal level, at least, if we assume that $L^{\tau_{V^{\mathcal{T}}}}\tau^{-}$ is uniformly bounded, it
will be shown that the limit $\mathcal{N}$ of $\rho^{\tau}$ as $\tauarrow 0$ satisfies the classical porous
medium equation

$\{\begin{array}{l}\partial_{s}\mathcal{N}-\triangle_{P}(\mathcal{N})=0,\mathcal{N}(x, 0)=\rho_{0},\end{array}$ (1.6)

which is a parabolic equation since $p(\mathcal{N})$ is strictly increasing.
This singular limit problem has served as a paradigm for the theory of

diffusive relaxation [13]. For entropy weak solutions, the paper of Marcati
and Milani [12] concerned the pourous media flow as the limit of the Euler
equation in 1-D, later generalized by Marcati and Rubino [35] to the multi-$D$

case. Their main analysis tools are the techniques of compensated compact-
ness. Very recently, Lattanzio and Tzavaras [9] gave the convergence to the
porous media equation away from vacuum, which is based on a Lyapunov
type of functional provided by a calculation of the relative entropy. Junca
and Rascle [7] proved the convergence for arbitrarily large $BV(\mathbb{R})$ solution
away from vacuum.

For smooth solutions, Coulombel et al. [3, 10] fell back on the energy
approach and constructed the (uniform) small smooth solutions to (1.1) per-
taining to data in the usual Sobolev spaces $H^{s}(\mathbb{R}^{d})(s>1+d/2)$ , furthermore,
the diffusive limit was justified by the standard weak convergence method
together with the Aubin-Lions compactness lemma in [16]. Inspired by the
Maxwell iteration, the first author [18] obtained the definite convergence or-
der for the diffusive relaxation limit. Lattanzio and Yong [8] studied the
diffusion phenomenon when initial layers appear and gave a rigorous char-
acterization, by using the matched expansion approach. These works for
smooth solutions fell in the framework of the classical existence theory of
Kato and Majda [5, 11]. Recently, the first author and Wang [21] investigat-
ed the limit case of regularity index $(s=1+d/2)$ where the basic theory fails
and it was justified that the (scaled) density converges to the strong solution
of the porous medium equation in the critical Besov space $B_{2,1}^{1+d/2}(\mathbb{R}^{d})$ .

Note that the works of Coulombel et al., it is a meaningful problem to seek
for more general functional spaces such that the Cauchy problem $(1.1)-(1.2)$ is
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well posed near constant equilibrium and to build a bridge for those relaxation
results in both Sobolev spaces with higher regularity and the critical Besov
space. Therefore, the Besov space $B_{2,r}^{\alpha}(\mathbb{R}^{d})$ seems to be an optimal candidate
for the motivation, whose indices satisfy the following condition:

$\alpha>1+d/2,1\leq r\leq 2$ $or$ $\alpha=1+d/2,$ $r=1$ . (1.7)

Let us sketch the technical obstructions briefly and the strategy to over-
come them. Due to the partial damping of $(1.1)-(1.2)$ , the dissipation rate
for the density produced by the “Shizuta-Kawashima” algebraic condition
(see [17]) is absent, which leads to the difficulty in closing the uniform a
priori estimates with respect to $\tau$ . To overcome this, a recent elementary
fact (see Lemma 2.2) will be used, which indicates the connection between
homogeneous and inhomogeneous Chemin-Lerner spaces.

On the other hand, to take care of the regularity for the extension, we
develop a more general version of commutator estimates (see Proposition 2.2)
in comparison with those in [4], which relaxes the restriction on the couple
$(s, r)$ and enables us to construct the desired a priori estimate in general
Besov spaces.

Denote the functional spaces

$\tilde{C}_{T}(B_{p,r}^{S}) :=\tilde{L}_{T}^{\infty}(B_{p,r}^{s})\cap C([0, T], B_{p,r}^{s})$

and
$C_{T}^{\tilde{1}}(B_{p,r}^{s}) :=\{f\in C^{1}([0, T], B_{p,r}^{s})|\partial_{t}f\in\tilde{L}_{T}^{\infty}(B_{p,r}^{s})\},$

where the index $T$ will be omitted when $T=+\infty.$

Now, we state main results as follows.

Theorem 1.1. Let the couple $(\alpha, r)$ satisfy the condition (1.7) and let $\overline{\rho}>0$

be a constant density. There exists a positive constant $\delta_{0}$ independent of $\tau$

$\mathcal{S}uch$ that if
$\Vert(\rho_{0}-\overline{\rho}, m_{0})\Vert_{B_{2,r}^{\alpha}(\mathbb{R}^{d})}\leq\delta_{0}$

with $m_{0}$ $:=\rho_{0}v_{0}$ , then the Cauchy problem $(1.1)-(1.2)$ has a unique global
classical solution $(\rho, m)\in C^{1}(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ satisfying $(\rho-\overline{\rho}, m)\in\tilde{C}(B_{2,r}^{\alpha}(\mathbb{R}^{d}))\cap$

$C^{\tilde{1}}(B_{2,r}^{\alpha-1}(\mathbb{R}^{d}))$ . Furthermore, the global solutions satisfy the following energy
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inequality

$\Vert(\rho-\overline{\rho}, m)\Vert_{\tilde{L}(B_{2,r}^{\alpha}(\mathbb{R}^{d}))}\infty$

$+ \mu_{0}(\Vert\frac{m}{\sqrt{\tau}}\Vert_{\tilde{L}^{2}(B_{2,r}^{\alpha}(\mathbb{R}^{d}))}+\Vert\sqrt{\tau}(\nabla\rho, \nabla m)\Vert_{\tilde{L}^{2}(B_{2,r}^{\alpha-1}(\mathbb{R}^{d}))})$

$\leq C_{0}\Vert(\rho_{0}-\overline{\rho}, m_{0})\Vert_{B_{2,r}^{\alpha}(\mathbb{R}^{d})}$ , (1.8)

where $m:=\rho v,$ $\mu_{0}$ and $C_{0}$ are some uniform positive $con\mathcal{S}tant_{\mathcal{S}}$ independent
of $\tau(0<\tau\leq 1)$ .

As a direct consequence, we obtain the diffusive relaxation limit towards
to the porous media equation.

Theorem 1.2. Let $(\rho, m)$ be the global solution of Theorem 1.1. Then it
yields

$\rho^{\tau}-\overline{\rho}$ is uniformly bounded in $C(\mathbb{R}^{+}, B_{2,r}^{\alpha}(\mathbb{R}^{d}))$ ;

$\frac{\rho^{\tau_{V^{\mathcal{T}}}}}{\tau}$ is uniformly bounded in $L^{2}(\mathbb{R}^{+}, B_{2,r}^{\alpha}(\mathbb{R}^{d}))$ .

Furthermore, there exists some function $\mathcal{N}\in C(\mathbb{R}^{+},\overline{n}+B_{2,r}^{\alpha}(\mathbb{R}^{d}))$ which is
a unique solution of (1.6). For any $0<T,$ $R<\infty,$ $\{\rho^{\tau}(s, x)\}$ strongly
converges to $\mathcal{N}(s, x)$ in $C([O, T], (B_{2,r}^{\alpha-\delta}(B_{R}))$ as $\tauarrow 0$ , where $\delta\in(0,1)$ and
$B_{R}$ denotes the ball of radius $R$ in $\mathbb{R}^{d}$ . In addition, it holds that

$\Vert(\mathcal{N}(s, \cdot)-\overline{\rho}\Vert_{B_{2,r}^{\alpha}(\mathbb{R}^{d})}\leq C_{0}\Vert(\rho_{0}-\overline{\rho}, m_{0})\Vert_{B_{2,r}^{\alpha}(\mathbb{R}^{d})}, s\geq 0$, (1.9)

where $C_{0}>0$ is a uniform constant independent of $\tau.$

2 Preliminary

Throughout the paper, $C>0$ is a generic constant. Denote by $C([O, T], X)$

$(resp., C^{1}([0, T], X))$ the space of continuous (resp., continuously differen-
tiable) functions on $[0, T]$ with values in a Banach space $X$ . Also, $\Vert(f, g)\Vert_{X}$

means $\Vert f\Vert_{X}+\Vert g\Vert_{X}$ , where $f,$ $g\in X.$ $\langle f,$ $g\rangle$ denotes the inner product of two
functions $f,$ $g$ in $L^{2}(\mathbb{R}^{d})$ .

The global a priori estimate requires a dyadic decomposition of Fouri-
er variables, however, we omit the Littlewood-Paley decomposition and the
theory of Besov spaces and Chemin-Lerner spaces. The interesting reader is
referred to [1] or [19]. In what follows, we list partial facts used only.
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Lemma 2.1. Let $\mathcal{S}\in \mathbb{R}$ and $1\leq p,$ $r\leq\infty$ , then

(1) If $s>0$ , then $B_{p,r}^{s}=L^{p}\cap\dot{B}_{p,r}^{s}$ ;

(2) If $\tilde{\mathcal{S}}\leq s$ , then $B_{p,r}^{s}\hookrightarrow B_{p,\overline{r}}^{\tilde{s}}$ ;

(3) $\dot{B}_{p,1}^{N/p}\hookrightarrow C_{0},$ $B_{p,1}^{N/p}\hookrightarrow C_{0}(1\leq p<\infty)$ ;

where $C_{0}$ is the space of continuous bounded functions which decay at infinity.

Proposition 2.1. Let $1\leq p,$ $r\leq\infty,$ $s\in \mathbb{R}$ and $\epsilon>0$ . For all $\phi\in C_{c}^{\infty}$ , the
map $f\mapsto\phi f$ is compact from $B_{p,r}^{s+\epsilon}$ to $B_{p,r}^{s}.$

The Chemin-Lerner spaces $\tilde{L}_{T}^{\theta}(B_{p,r}^{S})$ may be linked with the usual spaces
$L_{T}^{\theta}(B_{p,r}^{S})$ via the Minkowski’s inequality.

Remark 2.1. It holds that

$\Vert f\Vert_{\tilde{L}_{T}^{\theta}(B_{p,r}^{S})}\leq\Vert f\Vert_{L_{T}^{\theta}(B_{p,r}^{s})}$ if $r\geq\theta$ ; $\Vert f\Vert_{\tilde{L}_{T}^{\theta}(B_{p,r}^{s})}\geq\Vert f\Vert_{L_{T}^{\theta}(B_{p,r}^{s})}$ if $r\leq\theta.$

First, we give an elementary fact that indicates the connection between
the homogeneous and inhomogeneous Chemin-Lerner spaces, which have
been recently shown in [19]. Precisely, it reads as follows:

Lemma 2.2. Let $s>0,1\leq\theta,$ $p,$ $r\leq+\infty$ . When $\theta\geq r$ , it holds that

$L_{T}^{\theta}(L^{p})\cap\tilde{L}_{T}^{\theta}(\dot{B}_{p,r}^{s})=\tilde{L}_{T}^{\theta}(B_{p,r}^{s})$

for any $T>0.$

In [20], we develop general commutator estimates, which the derivative
information can be excluded from the commutators.

Proposition 2.2. For $s>-1,1\leq p\leq\infty$ and $1\leq r\leq\infty$ , there is a
constant $C>0$ such that

$\Vert[f, \Delta_{q}]g\Vert_{Lp}\leq Cc_{q}2^{-q(s+1)}(\Vert\nabla f\Vert_{L\infty}\Vert g\Vert_{\dot{B}_{p,r}^{s}}+\Vert g\Vert_{L^{p_{1}}}\Vert f\Vert_{\dot{B}_{p_{2},r}^{s+1}})$

and

$\Vert[f, \Delta_{q}]g\Vert_{L_{T}^{\theta}(L^{p})}$

$\leq Cc_{q}2^{-q(s+1)}(\Vert\nabla f\Vert_{L_{T}^{\theta_{1}}(L^{\infty})}\Vertg\Vert_{\tilde{L}_{T}^{\theta_{2}}(\dot{B}_{p,r}^{s})}+\Vert g\Vert_{L_{T}^{\theta_{3}}(L^{p_{1}})}\Vert f\Vert_{\tilde{L}_{T}^{\theta_{4}}(\dot{B}_{p_{2},r}^{s+1})})$,

where $1/p=1/p_{1}+1/p_{2},1/\theta=1/\theta_{1}+1/\theta_{2}=1/\theta_{3}+1/\theta_{4}$ and $c_{q}$ denotes a
sequence such that $\Vert(c_{q})\Vert_{\ell^{r}}\leq 1.$

5



Finally, we present the proposition which describes the smoothing effect
of the solution for the heat equation.

Proposition 2.3. Let $s\in \mathbb{R}$ and $1\leq\alpha,p,$ $r\leq\infty$ . Let $T>0,$ $u_{0}\in B_{p,r}^{S}$ and
$f\in\tilde{L}_{T}^{\alpha}(B_{p,r}^{s-2+\frac{2}{\alpha}})$ . Then the problem of heat equation

$\partial_{t}u-\mu\triangle u=f, u|_{t=0}=u_{0}$

has a unique solution $u\in\tilde{L}_{T}^{\alpha}(B_{p,r}^{s+\frac{2}{\alpha}})\cap\tilde{L}_{T}^{\infty}(B_{p,r}^{s})$ and there exists a constant
$C$ depending only on $N$ and such that for all $\alpha_{1}\in[\alpha, +\infty]$ , we have

$\mu^{\frac{1}{\alpha_{1}}}\Vert u\Vert_{\tilde{L}_{T}^{\alpha_{1}}(B_{p,r}^{s+\frac{2}{\alpha}})}\leq C\{(1+T^{\frac{1}{\alpha_{1}}})\Vert u_{0}\Vert_{B_{p,r}^{s}}+(1+T^{1+\frac{1}{\alpha_{1}}-\frac{1}{\alpha}})\mu^{\frac{1}{\alpha}-1}\Vert f\Vert_{\tilde{L}_{T}^{\alpha}(B_{p,r}^{s-2+\frac{2}{\alpha}})}\}.$

In addition, if $r$ is finite then $u$ belongs to $C([O, T];B_{p,r}^{s})$ .

3 Global well-posedness

3.1 Reformulation and local well-posedness

Let us introduce the energy function which is just an entropy in the sense of
Definition 2.1 of [6]:

$\eta(\rho, m):=\frac{|m|^{2}}{2\rho}+h(\rho)$ with $m=\rho v$ and $h’( \rho)=\int_{1}^{\rho}\frac{p’(s)}{s}ds.$

For the rigorous verification, see [19]. Furthermore, the associated entropy
flux is

$q( \rho, m)=(\frac{|m|^{2}}{2\rho^{2}}+\rho h’(\rho))\frac{m}{\rho}.$

Define

$W= (\begin{array}{l}W_{l}W_{2}\end{array}):=\nabla\eta(\rho, m)=(-\frac{|m|^{2}}{2\rho^{2}}+h’(\rho)m/\rho)$

Clearly, the mapping $Uarrow W$ is a diffeomorphism from $\mathcal{O}_{(\rho,m)}$
$:=\mathbb{R}^{+}\cross \mathbb{R}^{d}$

onto its range $\mathcal{O}_{W}$ , and for classical solutions $(\rho, v)$ away from vacuum, (1.1)
is equivalent to the symmetric system

$A^{0}(W)W_{t}+ \sum_{j=1}^{d}A^{j}(W)W_{x_{j}}=H(W)$ (3.1)
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with
$A^{0}(W)=(\begin{array}{ll}1 W_{2}^{T}W_{2} W_{2}\otimes W_{2}+p^{/}(\rho)I_{d}\end{array}),$

$A^{j}(W)$

$=$ $(W_{2}W_{2j}+p’(\rho)e_{j}W_{2j}$ $W_{2j}(W_{2}\otimes W_{2}+p’(\rho)I_{d})+p’(\rho)(W_{2}\otimes e_{j}+e_{j}\otimes W_{2})W_{2}^{T}W_{2j}+p’(\rho)e_{j}^{T})$ ,

$H(W)=G(U(W))=p’(\rho)(\begin{array}{l}0--W_{4}\tau\end{array}),$

where $I_{d}$ stands for the $d\cross d$ unit matrix, and $e_{j}$ is $d$-dimensional vector where
the jth component is one, others are zero. It follows from the definition of
entropy variable $W$ that $h’(\rho)=W_{1}+|W_{2}|^{2}/2$ , so $p’(\rho)$ can be viewed as a
function of $W$ , since $\rho$ is the function of $W_{1}+|W_{2}|^{2}/2$ , i.e. of $W.$

The corresponding initial data become int$0$

$W(0, x) :=W_{0}=(- \frac{|v_{0}|^{2}}{2}+h’(\rho_{0}), v_{0})$ . (3.2)

Remark 3.1. From the symmetric system (3.1), it is easy to see that the
matrices of coefficients $A^{j}(j=0,1,2\cdots, d)$ truly depend on the total vari-
able $W$ rather than $W_{2}$ only. In $[2J$, Beauchard and Zuazua investigated the
general partially dissipative hyperbolic $\mathcal{S}$ystem with the dependence of the ma-
trices $A^{j}$ with respect to $W_{2}$ , and achieved the uniform global well-posedness
with respect to the parameter $\tau$ . They proposed $a$ open question (see Remark
15, $[2J)$ whether the corresponding result with $A^{j}=A^{j}(W)\mathcal{S}till$ hold or not,
since the partial dependence is crucial in their analysis. Our results can be
regarded as the partial effort to the open question. However, to the best of
our knowledge, it is still unknown for generally hyperbolic systems.

Based on the recent work [19], we can obtain the following local existence
for the concrete problem $(3.1)-(3.2)$ .

Proposition 3.1. For any fixed relaxation time $\tau>0$ , assume that the
initial data $W_{0}$ satisfy $W_{0}-\overline{W}\in B_{2,r}^{\alpha}(\overline{W} :=(h’(\overline{\rho}), 0))$ and take values in a
compact subset of $\mathcal{O}_{W}$ , then, there exists a time $T_{0}>0$ such that:

(i) Existence: the Cauchy problem $(3.1)-(3.2)ha\mathcal{S}$ a unique classical solu-
tion $W\in C^{1}([0, T_{0}]\cross \mathbb{R}^{d})$ satisfying

$W-\overline{W}\in\tilde{C}_{T_{0}}(B_{2,r}^{\alpha})\cap C_{T_{0}}^{\tilde{1}}(B_{2,r}^{\alpha-1})$ ;
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(ii) Blow-up criterion: there exists a constant $C_{0}>0$ such that the maximal
time $\tau*$ of existence of $\mathcal{S}uch$ a solution can be bounded from below by
$\tau*\geq\frac{Co}{\Vert W_{0}-W\Vert_{B_{2,r}^{\alpha}}}$ . Moreover, if $\tau*$ is finite, then

$\lim_{tarrow}\sup_{\tau*}\Vert W-\overline{W}\Vert_{B_{2,r}^{\alpha=\infty}}$

if and only if
$\int_{0}^{T^{*}}\Vert\nabla W\Vert_{L^{\infty}}dt=\infty.$

3.2 Global a priori estimate

This section is devoted to the global existence in Theorem 1.1. To show
that the solutions of $(3.1)-(3.2)$ , are globally defined, we need further a priori
estimate.

To do this, for any time $T>0$ and for any solution $W-\overline{W}\in\tilde{C}_{T}(B_{2,r}^{\alpha})\cap$

$\tilde{C}_{T}^{1}(B_{2r}^{\alpha-1})$ , we define by $E(T)$ the energy functional and by $D_{\tau}(T)$ the corre-
sponding dissipation functional:

$E(T):=\Vert W-\overline{W}\Vert_{\tilde{L}_{T}^{\infty}(B_{2,r}^{\alpha})},$

$D_{\tau}(T):= \frac{1}{\sqrt{\tau}}\Vert W_{2}\Vert_{\tilde{L}_{T}^{2}(B_{2,r}^{\alpha})}+\sqrt{\tau}\Vert\nabla W\Vert_{\tilde{L}_{T}^{2}(B_{2,r}^{\alpha-1})},$

and $E(O):=\Vert W_{0}-\overline{W}\Vert_{B_{2,r}^{\alpha}}$ . We also define

$S(T):=\Vert W\Vert_{L^{\infty}([0,T]\cross \mathbb{R}^{d})}+\Vert\nabla W\Vert_{L^{\infty}([0,T]\cross \mathbb{R}^{d})}.$

Note that the embedding in Lemma 2.1 and Remark 2.1, we have $S(T)\leq$

$CE(T)$ for some generic constant $C>0.$

The next central task is to construct the desired a priori estimate, which
is included in the following proposition.

Proposition 3.2. Let $W$ be the solution of $(3.1)-(3.2)$ satisfying $W-\overline{W}\in$

$\tilde{C}_{T}(B_{2,r}^{\alpha})\cap C_{T}^{\tilde{1}}(B_{2,r}^{\alpha-1})$ . If $W(t, x)$ takes $value\mathcal{S}$ in a neighborhood of $\overline{W}$ , then
there exists a non-decreasing continuous function $C$ : $\mathbb{R}^{+}arrow \mathbb{R}^{+}$ which is
independent of $\tau$ , such that the following nonlinear inequality holds:

$E(T)+D_{\tau}(T)\leq C(S(T))(E(0)+E(T)^{1/2}D_{\tau}(T)+E(T)D_{\tau}(T))$ . (3.3)
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Furthermore, there exist some positive constants $\delta_{1},$
$\mu_{1}$ and $C_{1}$ independent

of $\tau$ , if $E(T)\leq\delta_{1}$ , then

$E(T)+\mu_{1}D_{\tau}(T)\leq C_{1}E(O)$ . (3.4)

The proof of Proposition 3.2, in fact, is to capture the dissipation rates
from contributions of $W=(W_{1}, W_{2})$ in turn, where the Lemma 2.2 and
Proposition 2.2 play a key role in the subsequent analysis. Here we omit it,
see [20] for details.

Thanks to the standard boot-strap argument $(see [[14],$ Theorem $7.1])$ ,
we extend the local-in-time solutions in Proposition 3.1 to the global-in-time
classical solutions of $(3.1)-(3.2)$ . Furthermore, we arrive at Theorem 1.1.

4 Diffusive relaxation limit

Proof of Theorem 1.2. From (1.8) and Remark 2.1, we deduce that quantities
$\sup_{s\geq 0}\Vert\rho^{\tau}-\overline{\rho}\Vert_{B_{2,r}^{\alpha}}$ and

$\frac{1}{\tau}\int_{0}^{\infty}\Vert\rho v(t)\Vert_{B_{2,r}^{\alpha}}^{2}dt=\frac{1}{\tau^{2}}\int_{0}^{\infty}\Vert\rho^{\tau}v^{\tau}(s)\Vert_{B_{2,r}^{\alpha}}^{2}ds$

are bounded uniformly with respect to $\tau$ . Therefore, the left-hand side of
(1.4) reads as $\tau^{2}\cross$ the time derivative of a quantity which is bounded in
$L^{2}(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ , plus $\tau^{2}\cross$ the space derivative of a quantity which is bounded
in $L^{1}(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ . This allows us to pass to the limit $\tauarrow 0$ in the sense of
distributions, and we arrive at

$- \frac{\rho^{\tau_{V^{\mathcal{T}}}}}{\tau}-\nabla P(\rho^{\tau})arrow 0$ in $\mathcal{D}’(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ .

Inserting the weak convergence property into the first equation of (1.4), we
have

$\partial_{s}\rho^{\tau}-\triangle P(\rho^{\tau})arrow 0$ in $\mathcal{D}’(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ , (4.5)

as $\tauarrow 0.$

On the other hand, by (1.4), we see that $\partial_{s}\rho^{\tau}$ is bounded in $L^{2}(\mathbb{R}^{+}, B_{2,r}^{\alpha-1})$ .
For any $T>0$ , there exists a function $\mathcal{N}\in C([O, T],\overline{\rho}+B_{2,1}^{\alpha-1})\cap L^{\infty}(0,$ $T;\overline{\rho}+$

$B_{2,1}^{\alpha})$ such that, up to subsequences, it holds that

$\rho^{\tau}-\overline{\rho}arrow \mathcal{N}-\overline{\rho}$ weakly in $H^{1}(0, T;B_{2,r}^{\alpha-1})$ .
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Of course,
$\rho^{\tau}arrow \mathcal{N}$ in $\mathcal{D}’(\mathbb{R}^{+}\cross \mathbb{R}^{d})$ .

From the same argument in [3], we get $\mathcal{N}(x, 0)=\rho_{0}$ , since $\rho^{\tau}(x, 0)=\rho_{0}.$

Furthermore, it follows from Proposition 2.1 and the Aubin-Lions com-
pactness lemma in [16] that

$\rho^{\tau}arrow \mathcal{N}$ strongly in $C([0, T], (B_{2,r}^{\alpha-\delta})(B_{R}))$ ,

for $\delta\in(0,1)$ and $0<R<\infty$ , as $\tauarrow 0$ , where $B_{R}$ denotes the ball of
radius $R$ in $\mathbb{R}^{d}$ . The strong convergence property enable us to obtain $P(\rho^{\tau})$

converges towards $P(\mathcal{N})$ in the space $C([O, T], (B_{2,1}^{\alpha-\delta})(B_{R}))$ . Together with
(4.5), we deduce that $\mathcal{N}$ is a solution to the system (1.6) satisfying (1.9).

Next, we check the solution $\mathcal{N}$ has the desired regularity. Thanks to
$\mathcal{N}\in L^{\infty}(0, T;\overline{\rho}+B_{2,r}^{\alpha})$ , the series $\sum_{q\geq-1}(2^{q\alpha}\Vert\triangle_{q}(\mathcal{N}(t)-\overline{\rho})\Vert_{L^{2}})^{r}$ converges
uniformly on $[0, T]$ . In addition, the map $t\mapsto\Vert\triangle_{q}(\mathcal{N}(t)-\overline{\rho})\Vert_{L^{2}}$ is continuous
on $[0, T]$ , since $\mathcal{N}\in C([O, T];\overline{\rho}+B_{2,r}^{\alpha-1})$ . Then $\triangle_{q}(\mathcal{N}(t)-\overline{\rho})\in C([0, T];B_{2,r}^{\alpha})$

for all $q\geq-1$ , which yields $\mathcal{N}\in C([O, T];\overline{\rho}+B_{2,r}^{\alpha})$ .
Finally, let us show the uniqueness of solution to (1.6).
Set $\tilde{\mathcal{N}}=\mathcal{N}_{1}-\mathcal{N}_{2}$ , where $\mathcal{N}_{1}$ and $\mathcal{N}_{2}$ are two solutions to the system (1.6)

with the same initial data, respectively. Then the error $\tilde{\mathcal{N}}$ satisfies
$\partial_{s}\tilde{\mathcal{N}}-P’(\overline{\rho})\triangle\tilde{\mathcal{N}}=\triangle[P(\mathcal{N}_{1})-P(\mathcal{N}_{2})-P’(\overline{\rho})\tilde{\mathcal{N}}]$ . (4.6)

Then taking $\alpha_{1}=\infty,$ $\alpha=1,$ $s=\alpha-2,$ $p=2$ and $1\leq r\leq 2$ in Proposition
2.3, and applying the resulting inequality to (4.6), with the aid of Remark
2.1, we arrive at

$\Vert\tilde{\mathcal{N}}\Vert_{L_{T}^{\infty}(B_{2,r}^{\alpha})} \leq C(\Vert\triangle[P(\mathcal{N}_{1})-P(\mathcal{N}_{2})-P’(\overline{\rho})\tilde{\mathcal{N}}]\Vert_{\tilde{L}_{T}^{1}(B_{2,r}^{\alpha-2})})$ ,

$\leq C(\Vert\triangle[P(\mathcal{N}_{1})-P(\mathcal{N}_{2})-P’(\overline{\rho})\tilde{\mathcal{N}}]\Vert_{L_{T}^{1}(B_{2,r}^{\alpha-2})})$

$\leq C\int_{0}^{T}\Vert\tilde{\mathcal{N}}\Vert_{L_{\tau}(B_{2,r}^{\alpha})}\infty d\tau$. (4.7)

Gronwall’s inequality gives $\tilde{\mathcal{N}}\equiv 0$ immediately. a
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