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1 Introduction
In this note we consider the following non-isentropic Euler-Maxwell system in $\mathbb{R}^{3}$ :

$[Matrix]$ (1.1)

$divE=b(x)-n$ , (1.2)

$divB=0$ , (1.3)

with the initial data

$(n, u, \theta, E, B)(O, x)=(n_{0}, u_{0}, \theta_{0}, E_{0}, B_{0})(x)$ . (1.4)

Here the mass density $n>0$ , the velocity $u\in \mathbb{R}^{3}$ , the absolute temperature $\theta>0$ , the
electric field $E\in \mathbb{R}^{3}$ , and the magnetic induction $B\in \mathbb{R}^{3}$ are unknown functions of
$t>0$ and $x\in \mathbb{R}^{3},$ $b>0$ is a given function of $x\in \mathbb{R}^{3}$ , and $\theta_{\infty}$ is a positive constant.
Relaxation parameters $\tau_{1}$ and $\tau_{2}$ are positive constants. Due to the Boyle-Charles
law, the pressure $p$ is explicitly given as a function of the density and the absolute
temperature:

$p=p(n, \theta):=Kn\theta,$
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where $K>0$ is the gas constant. On the other hand, $c_{V}$ is a positive constant which
means the specific heat at constant volume. Due to Mayler’s relation for the ideal
gas, the specific heat $c_{V}$ is expressed in terms of the gas constant $K$ and the adiabatic
constant $\gamma>1$ as

$c_{V}= \frac{K}{\gamma-1}.$

For example, when $K=1$ and $\gamma=5/3$ , the specific heat becomes $c_{V}=3/2.$

The non-isentropic Eu] $er$-Maxwell system (1.1), (1.2), (1.3) describes the dynamics
of non-isentropic compressible electrons in plasma physics under the interaction of the
magnetic and electric fields via the Lorentz force (see [1]).

In the authors’ papers [4, 5, 6], the barotropic type Euler-Maxwell system was
analyzed about its basic properties. More precisely, we showed that the Euler-Maxwell
system is a symmetrizable hyperbolic system and has the weaker dissipative structure
than the standard one characterized in [2, 3, 7]. Moreover, we observed that this
dissipative structure is of the regularity-loss type in the sense that the regularity-loss
occurs in the dissipation part of the energy estimates. This weaker dissipation causes
some additional difficulties in establishing a global existence result and especially in
obtaining the time asymptotic decay of solutions.

Based on the above known results and analysis, our purpose in this note is to show
the asymptotic stability of stationary solutions for the the non-isentropic Euler-Maxwell
system (1.1), (1.2), (1.3) in the whole space $\mathbb{R}^{3}$ . We will prove the global existence of
smooth solutions and its asymptotic convergence toward the stationary solution, that is,
$(n, u, \theta, E, B)(t, x)arrow(\tilde{n}(x), 0, \theta_{\infty},\tilde{E}(x), B_{\infty})$ ae $tarrow\infty$ , where $(\tilde{n}(x), 0, \theta_{\infty},\tilde{E}(x), B_{\infty})$

is the stationary solution for the system (1.1), (1.2), (1.3). The key to the proof
of our main result is to show the uniform a priori estimates by applying the energy
method which makes use of the strict convexity of the physical energy together with
the dissipative structure of the system (1.1), (1.2), (1.3).

2 Stationary problem
In this section, we consider the existence of the stationary solution for (1.1), (1.2), (1.3).
We look for stationary solutions in the form $(\tilde{n}(x), 0, \theta_{\infty},\tilde{E}(x), B_{\infty})$ , where $\tilde{n}(x)>0,$

$\tilde{E}(x)\in \mathbb{R}^{3},$ $\theta_{\infty}>0$ is the constant in (1.1) and $B_{\infty}\in \mathbb{R}^{3}$ is a given constant. Then $\tilde{n}$

and $\tilde{E}$ satisfies the following stationary problem:

$\{\begin{array}{l}\nabla p(\tilde{n}, \theta_{\infty})=-\tilde{n}\tilde{E},div\tilde{E}=b(x)-\tilde{n},rot \tilde{E}=0.\end{array}$ (2.1)

In order to solve this problem, it is convenient to introduce the electric potential $\psi\in \mathbb{R}$

such that
$-\nabla\psi=\tilde{E}$ . (2.2)
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Then the stationary problem (2.1) is rewritten as

$\{\begin{array}{l}\nabla(K\theta_{\infty}\log\tilde{n}-\psi)=0,-\triangle\psi=b(x)-\tilde{n}.\end{array}$ (2.3)

Now we consider the case where $b(x)=n_{\infty}+\overline{b}(x)$ . Here $n_{\infty}$ is an arbitrary positive
constant and $\overline{b}(x)arrow 0$ as $|x|arrow\infty$ . In this case, we look for solutions in the form
$\tilde{n}(x)=n_{\infty}+\overline{n}(x)$ . Then the problem (2.3) is reduced to

$\{\begin{array}{l}\nabla(K\theta_{\infty}\log(1+\overline{n}/n_{\infty})-\psi)=0,-\triangle\psi=\overline{b}(x)-\overline{n}.\end{array}$ (2.4)

It follows from the first equation that $K\theta_{\infty}\log(1+\overline{n}/n_{\infty})-\psi=0$ , so that we have

$\overline{n}(x)=n_{\infty}\{e^{\psi(x)/(K\theta_{\infty})}-1\}$ . (2.5)

Here we have assumed that $(\overline{n}, \psi)(x)arrow 0$ as $|x|arrow\infty$ . Substituting (2.5) into the
second equation of (2.4), we obtain

$- \triangle\psi+\frac{n_{\infty}}{K\theta_{\infty}}\psi=\overline{b}(x)-P(\psi)$ , (2.6)

where we define that

$P( \psi):=n_{\infty}\{e^{\psi/(K\theta_{\infty})}-1-\frac{1}{K\theta_{\infty}}\psi\}.$

We note that $P(\psi)=O(\psi^{2})$ for $|\psi|\ll 1$ . Then, by applying the usual fixed point
theorem, we can show the following existence results of a unique solution $\psi$ for the
reduced stationary problem (2.6).

Theorem 2.1. Let $s\geq 0$ and $n_{\infty}>0$ . Suppose that $b-n_{\infty}\in H^{S}$ . Then there exists
a positive constant $\epsilon$ such that if $\Vert b-n_{\infty}\Vert_{H^{s}}\leq\epsilon$, then the reduced stationary problem
(2.6) has a unique solution $\psi\in H^{s+2}$ satisfying

$\Vert\psi\Vert_{H^{s+2}}\leq C\Vert b-n_{\infty}\Vert_{H^{s}}$ , (2.7)

where $C$ is a positive constant.

Corollary 2.2. Under the same assumptions as in Theorem 2.1, the stationary problem
(2.1) has a unique solution $(\tilde{n},\tilde{E})$ such that $\tilde{n}-n_{\infty}\in H^{s+2},\tilde{E}\in H^{s+1}$ and

$\Vert\tilde{n}-n_{\infty}\Vert_{H^{s+2}}+\Vert\tilde{E}\Vert_{H^{s+1}}\leq C\Vert b-n_{\infty}\Vert_{H^{S}},$

where $C$ is a positive constant. Also, $(\tilde{n}, 0, \theta_{\infty},\tilde{E}, B_{\infty})$ becomes a stationary solution to
our original system (1.1), (1.2), (1.3).

15



By using Theorem 2.1 with the equations (2.2) and (2.5), we can derive Corollary
2.2 immediately. So we omit the proof of Corollary 2.2.

Proof of Theorem 2.1. For the reduced stationary problem (2.6), we apply the fixed
point theorem and then show the existence of solution $\psi$ . We define the mapping $\Psi$ by

$\Psi(\psi) :=(-\triangle+\frac{n_{\infty}}{K\theta_{\infty}})^{-1}(\overline{b}(x)-P(\psi))$ . (2.8)

Then our solution $\psi$ to the equation (2.6) can be obtained as a fixed point of the
mapping $\Psi$ , that is, $\psi=\Psi(\psi)$ .

Now we consider the above mapping $\Psi$ in the space $H^{2}$ and prove Theorem 2.1 for
$s=0$ ; the proof for $s\geq 1$ is similar and is omitted here. We take a closed convex
subset $S_{\sigma}$ of $H^{2}$ as $S_{\sigma}$ $:=\{\psi\in H^{2};\Vert\psi\Vert_{H^{2}}\leq\sigma\}$ , where $\sigma\in(0,1]$ is a number which
will be determined later. Here we note that $\Vert\psi\Vert_{L\infty}\leq C_{0}\sigma$ for $\psi\in S_{\sigma}$ , where $C_{0}$ is the
constant appearing in the the following Gagliardo-Nirenberg inequality in $\mathbb{R}^{3}$ :

$\Vert v\Vert_{L\infty}\leq C_{0}\Vert v\Vert_{L^{2}}^{1/4}\Vert\partial_{x}^{2}v\Vert_{L^{2}}^{3/4}.$

First we show that $\Psi$ is a mapping of $S_{\sigma}$ into itself if $\sigma\in(0,1]$ is chosen suitably
small. To this end, we let $\psi\in S_{\sigma}$ and put $\zeta=\Psi(\psi)$ . Then we have from (2.8) that

$- \triangle\zeta+\frac{n_{\infty}}{K\theta_{\infty}}\zeta=\overline{b}(x)-P(\psi)$ . (2.9)

Here we observe that $P(\psi)=O(\psi^{2})$ for $|\psi|arrow 0$ and that $\Vert\psi\Vert_{L}\infty\leq C_{0}\sigma$. This yields
$\Vert P(\psi)\Vert_{L^{2}}\leq C\Vert\psi\Vert_{L^{2}}^{2}\leq C\sigma^{2}$ for $\sigma\in(0,1]$ . Therefore, applying the standard elliptic
estimate to (2.9), we obtain

$\Vert\zeta\Vert_{H^{2}}\leq C\Vert\overline{b}-P(\psi)\Vert_{L^{2}}\leq C_{1}(\Vert\overline{b}\Vert_{L^{2}}+\sigma^{2})$ (2.10)

for $\sigma\in(0,1]$ , where $C_{1}\geq 1$ is a constant independent of $\sigma$ . We choose $\sigma$ such that

$\sigma=2C_{1}\Vert\overline{b}\Vert_{L^{2}}$ (2.11)

and assume that $\Vert\overline{b}\Vert_{L^{2}}$ is so small that $|\overline{b}\Vert_{L^{2}}\leq 1/(4C_{1}^{2})$ ; note that we have $\sigma\in(0,1]$

in this case. For this choice of $\sigma$ and $1\overline{b}\Vert_{L^{2}}$ , the estimate (2.10) gives $\Vert\zeta\Vert_{H^{2}}\leq\sigma$ . This
shows that $\Psi$ is a mapping of $S_{\sigma}$ into itself.

Next we show the contraction property for the mapping $\Psi$ . To this end, we let
$\psi_{j}\in S_{\sigma}$ and put $\zeta_{j}=\Psi(\psi_{j})$ , where $j=1,2$ . Then the difference $\zeta_{1}-\zeta_{2}$ satisfies the
equation

$- \triangle(\zeta_{1}-\zeta_{2})+\frac{n_{\infty}}{K\theta_{\infty}}(\zeta_{1}-\zeta_{2})=-(P(\psi_{1})-P(\psi_{2}))$ . (2.12)

Since $P(\psi_{1})-P(\psi_{2})=O(|\psi_{1}|+|\psi_{2}|)(\psi_{1}-\psi_{2})$ for $|\psi_{1}|+|\psi_{2}|arrow 0$ , we see that

$\Vert P(\psi_{1})-P(\psi_{2})\Vert_{L^{2}}\leq C(\Vert\psi_{1}\Vert_{L^{2}}+\Vert\psi_{2}\Vert_{L^{2}})\Vert\psi_{1}-\psi_{2}\Vert_{L^{2}}\leq C\sigma\Vert\psi_{1}-\psi_{2}\Vert_{L^{2}}.$

Therefore, applying the standard elliptic estimate to (2.12), we find that

$\Vert\zeta_{1}-\zeta_{2}\Vert_{H^{2}}\leq C\Vert P(\psi_{1})-P(\psi_{2})\Vert_{L^{2}}\leq C_{2}\sigma\Vert\psi_{1}-\psi_{2}\Vert_{L^{2}}$ , (2.13)
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where $C_{2}$ is a positive constant independent of $\sigma$ . For our choice of $\sigma$ in (2.11), we
additionally assume that $1\overline{b}\Vert_{L^{2}}\leq 1/(4C_{1}C_{2})$ . Then we have from (2.13) that $\Vert\zeta_{1}-$

$\zeta_{2}\Vert_{H^{2}}\leq\Vert\psi_{1}-\psi_{2}\Vert_{L^{2}}/2$, which shows that $\Psi$ is a contraction mapping from $S_{\sigma}$ into
itself. Consequently, $\Psi$ has a fixed point $\psi$ in $S_{\sigma}$ with $\sigma$ in (2.11). This fixed point $\psi$

satisfies the equation (2.6) and verifies the estimate (2.7) for $s=0$ . Therefore this $\psi$

is our desired solution to (2.6) for $s=0$ . Thus the proof of Theorem 2.1 for $s=0$ is
complete. ロ

3 Global existence
In this section, we give a statement of our main result. Before stating our result, we
review some basic property of the system (1.1), (1.2), (1.3). We see that the equations
(1.2) and (1.3) hold for any $t>0$ if they hold initially. In fact, any solution to the
initial value problem (1.1), (1.4) with the initial data verifying

$divE_{0}=b(x)-n_{0}, divB_{0}=0$ (3.1)

satisfies (1.2) and (1.3) for $t>0.$

To state our theorem, we introduce

$w=(n, u, \theta, E, B)^{T}, \tilde{w}=(\tilde{n}, 0, \theta_{\infty},\tilde{E},B_{\infty})^{T}, w_{0}=(n_{0}, u_{0}, \theta_{0}, E_{0}, B_{0})^{T}$

which are regarded as column vectors in $\mathbb{R}^{13}$ , where the superscript $T$” denotes the
transposed. By using these preliminaries, our main result is stated as follows.

Theorem 3.1. Let $s\geq 3$ and let $\tilde{w}(x)$ be the stationary solution to the system (1.1),
(1.2), (1.3), which is constructed in Corollary 2.2. Suppose that the initial data satisfy
$w_{0}-\tilde{w}\in H^{8}$ and (3.1). Then there exists some positive constant $\epsilon_{0}$ such that if
$\Vert w_{0}-\tilde{w}\Vert_{H^{s}}+\Vert\partial_{x}\tilde{n}\Vert_{H^{\partial}}\leq\epsilon_{0}$ , then the initial value problem (1.1), (1.4) has a unique
global solution $w(t, x)$ satisfying $w-\tilde{w}\in C([O, \infty);H^{s})\cap C^{1}([0, \infty);H^{s-1})$ and

$\Vert(w-\tilde{w})(t)\Vert_{H^{s}}^{2}+\int_{0}^{t}(\Vert(n-\tilde{n}, u, \theta-\theta_{\infty})(\tau)\Vert_{H^{s}}^{2}$

(3.2)
$+\Vert(E-\tilde{E})(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2})d\tau\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}$

for $t\geq 0$ . Moreover, the solution $w(t, x)$ converges to the stationary solution $\tilde{w}(x)$

uniformly in $x\in \mathbb{R}^{3}$ as $tarrow\infty$ . More precisely, we have

$\Vert(n-\tilde{n}, u, \theta-\theta_{\infty}, E-\tilde{E})(t)\Vert_{W^{s-2,\infty}}arrow 0$ as $tarrow\infty,$

$\Vert(B-B_{\infty})(t)\Vert_{W^{s-4,\infty}}arrow 0$ as $tarrow\infty$ , (3.3)

where the asymptotic convergence (3.3) holds true only by assuming the additional reg-
ularity $s\geq 4.$

We note that the uniform energy estimate (3.2) is of the regularity-loss type because
we have 1-regularity loss for $(E, B)$ in the dissipation part of (3.2).

In addition to (3.2), we can obtain a similar uniform estimate for time derivative of
the solution.
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Corollary 3.2. Let $s\geq 3$ and suppose that the same conditions as in Theorem 3.1 hold
true. Let $w(t, x)$ be the solution to (1.1), (1.4) which is constructed in Theorem 3.1.
Then the time derivative of the solution $w(t, x)$ satisfies the following uniform estimate:

$\Vert\partial_{t}w(t)\Vert_{H^{s-1}}^{2}+\int_{0}^{t}(\Vert\partial_{t}(n, u, \theta)(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{t}(E, B)(\tau)\Vert_{H^{s-2}}^{2})d\tau\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{S}}^{2}.$

The key to the proof of our main Theorem 3.1 is to derive the uniform a priori
estimates of the perturbation of solutions to the problem. To state the result on our a
priori estimates, we introduce the energy norm $N(t)$ and the corresponding dissipation
norm $D(t)$ by

$N(t):= \sup_{0\leq\tau\leq t}\Vert(w-\tilde{w})(\tau)\Vert_{H^{s}},$

$D(t)^{2}:= \int_{0}^{t}(\Vert(n-\tilde{n}, u, \theta-\theta_{\infty})(\tau)\Vert_{H^{s}}^{2}+\Vert(E-\tilde{E})(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2})d\tau.$

We also use the following quantities:

$M(t):= \sup_{0\leq\tau\leq t}\Vert(w-\tilde{w})(\tau)\Vert_{W^{1,\infty}},$

$I(t)^{2}:= \int_{0}^{t}(\Vert(n-\tilde{n}, u)(\tau)\Vert_{W^{1,\infty}}^{2}+\Vert(\theta-\theta_{\infty})(\tau)\Vert_{L^{\infty}}^{2})d\tau.$

Proposition 3.3. Let $s\geq 3$ and suppose that the initial data satisfy $w_{0}-\tilde{w}\in H^{s}$

and (3.1). Let $w(t, x)$ be a solution to (1.1), (1.4) satisfying $w-\tilde{w}\in C([O, T];H^{S})\cap$

$C^{1}([0, T];H^{s-1})$ for some $T>0$ . Then there are some positive constants $\epsilon_{1}$ and $C$

independent of $T$ such that if $N(T)+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}}\leq\epsilon_{1}$ , then the following a priori estimate
holds for $t\in[O, T]$ :

$N(t)^{2}+D(t)^{2}\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}.$

In order to derive the above a priori estimate, we obtain the following four energy
inequalities.

Lemma 3.4. Assume the same conditions as in Proposition 3.3. Then we have the
following energy estimates for $t\in[0, T]$ :

$\Vert(w-\tilde{w})(t)\Vert_{L^{2}}^{2}+\int_{0}^{t}\Vert(u, \theta-\theta_{\infty})(\tau)\Vert_{L^{2}}^{2}d\tau\leq C\Vert w_{0}-\tilde{w}\Vert_{L^{2}}^{2}+CM(t)D(t)^{2}$ , (3.4)

$\Vert\partial_{x}(w-\tilde{w})(t)\Vert_{H^{s-1}}^{2}+\int_{0}^{t}\Vert\partial_{x}(u, \theta-\theta_{\infty})(\tau)\Vert_{H^{s-1}}^{2}d\tau$

$\leq C\Vert\partial_{x}(w_{0}-\tilde{w})\Vert_{H^{s-1}}^{2}+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$ (3.5)

$+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L}\infty+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)$,

$\int_{0}^{t}(\Vert(n-\tilde{n})(\tau)\Vert_{H^{s}}^{2}+\Vert(E-\tilde{E})(\tau)\Vert_{H^{s-1}}^{2})d\tau$

$\leq\epsilon\int_{0}^{t}\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2}d\tau+C_{\epsilon}\{\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}+(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$

(3.6)

$+(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L^{\infty}}+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)\},$
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$\int_{0}^{t}\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2}d\tau\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s-1}}^{2}+C\int_{0}^{t}\Vert\partial_{x}(E-\tilde{E})(\tau)\Vert_{H^{s-2}}^{2}d\tau$

(3.7)
$+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L^{\infty}}+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)$

for any $\epsilon>0$ , where $C_{\epsilon}$ is a positive constant depending on $\epsilon.$

These estimates are derived by the energy method for our problem. Once we get
these estimates, we can derive the desired a priori estimate as follows.

Proof of Proposition 3.3. First, we substitute (3.7) into (3.6) and take $\epsilon>0$

suitably small. This yields

$\int_{0}^{t}(\Vert(n-\tilde{n})(\tau)\Vert_{H^{s}}^{2}+\Vert(E-\tilde{E})(\tau)\Vert_{H^{\epsilon-1}}^{2})d\tau$

$\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{S}}^{2}+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$
(3.8)

$+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L}\infty+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)$.

Next, substituting (3.8) into (3.7), we have

$\int_{0}^{t}\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2}d\tau\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$

(3.9)
$+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L}\infty+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)$ .

It then follows from (3.4), (3.5), (3.8) and (3.9) that

$\Vert(w-\tilde{w})(t)\Vert_{H^{s}}^{2}+\int_{0}^{t}(\Vert(n-\tilde{n}, u, \theta-\theta_{\infty})(\tau)\Vert_{H^{s}}^{2}+\Vert(E-\tilde{E})(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{x}B(\tau)\Vert_{H^{s-2}}^{2})d\tau$

$\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$

$+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L\infty}+\Vert\partial_{x}\tilde{n}\Vert_{H^{s}})I(t)D(t)$.

Thus we get the inequality

$N(t)^{2}+D(t)^{2}\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}+C(M(t)+\Vert\partial_{x}\tilde{n}\Vert_{W^{1,\infty}})D(t)^{2}$

(3.10)
$+C(N(t)+\Vert\partial_{x}\tilde{n}\Vert_{L\infty}+\Vert\partial_{x}\tilde{n}\Vert_{H^{S}})I(t)D(t)$ .

Here we observe that $M(t)\leq CN(t)$ and $I(t)\leq CD(t)$ for $s\geq 3$ . Therefore (3.10) is
reduced to

$N(t)^{2}+D(t)^{2}\leq C\Vert w_{0}-\tilde{w}\Vert_{H^{s}}^{2}+C_{0}(N(t)+\Vert\partial_{x}$商 $\Vert_{H^{S}})D(t)^{2}$ (3.11)

for $s\geq 3$ , where $C_{0}$ is a positive constant. Now we choose $\epsilon_{1}>0$ so small that
$\epsilon_{1}\leq 1/2C_{0}$ , and assume that $N(t)+\Vert\partial_{x}\tilde{n}\Vert_{H^{S}}\leq\epsilon_{1}$ . Then we get the desired estimate
$N(t)^{2}+D(t)^{2}\leq C\Vert w-\tilde{w}\Vert_{H^{S}}^{2}$ from (3.11). This completes the proof of Proposition
3.3. 口
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