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Introduction.
Let $\Omega\subset \mathbb{R}^{d}(d\geq 2)$ be a bounded domain with a smooth boundary $\partial\Omega$ . We consider the
stationary Stokes equations with the homogeneous boundary condition, which describes
the motion of the incompressible viscous fluid moving infinitesimally in $\Omega.$

(0.1) $[Matrix]$
where $v=v(x)=(v^{1}(x), \cdots, v^{d}(x))$ and $q=q(x)$ denote the unknown velocity and the
pressure at $x=(x^{1}, \cdots, x^{d})\in\Omega$ respectively, while $f=f(x)=(f^{1}(x), \cdots, f^{d}(x))$ is the
given external force.

Our motivation is to lay the foundation of the analysis of the Hadamard variational
formula for the Green functions of the Stokes equations, which may lead us to the gen-
eralization to the higher variation $\delta^{n}G$ and $\delta^{n}R$ . Here $G$ is the Green matrix for the
velocity and $R$ is the Green function for the pressure. More precisely, let $\{\Omega_{\epsilon}\}_{c\geq 0}$ be a
family of the domain with a smooth boundary. For a small parameter $\epsilon\geq 0$ , we regard
$\Omega_{\epsilon}$ as a perturbed domain $\Omega$ with a volume preserving diffeomorphism $\Phi_{\epsilon}$ : $\overline{\Omega}arrow\overline{\Omega}_{\epsilon}$ . We
consider the Green function associated with (0.1) in $\Omega_{\epsilon}$

(0.2)
$\triangle_{x}G_{\epsilon,n}(x, y)-\nabla_{x}R_{\epsilon,n}(x, y)=e_{n}\delta(x-y) , (x, y)\in\Omega_{\epsilon}\cross\Omega_{\epsilon},$

$divG_{\epsilon,n}(x, y)=0, (x, y)\in\Omega_{\epsilon}\cross\Omega_{\epsilon},$

$G_{\epsilon,n}(x, y)=0, x\in\partial\Omega_{\epsilon}, y\in\Omega_{\epsilon},$

for $n=1,$ $\cdots,$
$d$ , where $G_{\epsilon,n}(x, y)=\{G_{\epsilon,n}^{i}(x, y)\}_{i,n=1,\cdots,d}$ is the Green matrix for the veloc-

ity, $R_{\epsilon,n}(x, y)=\{R_{\epsilon,n}(x, y)\}_{n=1,\cdots,d}$ is the Green function for the pressure and $\{e_{n}\}_{n=1,\cdots,d}$

denotes a canonical basis in $\mathbb{R}^{d}$ . In this paper, we construct a new and systematic
method and establish the formula for the first variation $\{\delta G, \delta R\}$ defined by $\delta G(x, y)$ $:=$
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$\lim_{\epsilonarrow 0}\epsilon^{-1}(G_{\epsilon}(x, y)-G(x, y))$ and $\delta R(x, y)$ $:= \lim_{\epsilonarrow 0}\epsilon^{-1}(R_{\epsilon}(x, y)-R(x, y))$ , respectively.
Moreover, we inductively derive the second variation $\{\delta^{2}G, \delta^{2}R\}$ defined by

$\delta^{2}G(x, y):=\lim_{\epsilonarrow 0}\frac{G_{\epsilon}(x,y)-G(x,y)-\epsilon\delta G(x,y)}{\epsilon^{2}}$

and
$\delta^{2}R(x, y):=\lim_{\epsilonarrow 0}\frac{R_{\epsilon}(x,y)-R(x,y)-\epsilon\delta R(x,y)}{\epsilon^{2}}.$

For the smooth function $\rho$ defined on $\partial\Omega$ , we denote $\Omega_{\epsilon}$ by the interior domain with the
boundary $\partial\Omega_{\epsilon}$ $:=\{x+\epsilon\rho(x)\nu_{x} ; x\in\partial\Omega\}$ , where $v_{x}$ denotes the unit outer normal to $\partial\Omega.$

The variational formula for the usual Laplace operator was first introduced by Hadamard
[7] when $\rho$ is a non-negative or a non-positive function on $\partial\Omega$ . Later on, Garabedian [5],
Garabedian-Schiffer [6] and Aomoto [1] refined the proof of [7], and they gave the formula
as

(0.3) $\delta G(y, z)=\int_{\partial\Omega}\frac{\partial G}{\partial\nu_{x}}(x, y)\frac{\partial G}{\partial v_{x}}(x, z)\rho(x)d\sigma_{x}$

for all $y,$ $z\in\Omega$ . Furthermore, Garabedian-Schiffer [6] also gave rigorous proof of the
second variation formula under the monotone perturbation. The formula was extended to
some normal elliptic boundary value problem by Peetre [15] and Fujiwara-Ozawa [4]. In
this paper, we consider the generalization of their results to the elliptic system of equa-
tions, and establish the formula for the higher variation. Recently, the author and Kozono
[9] established the formula for the Green function of the Stokes equations corresponding
to the velocity, and later on, its formula for the pressure was also proved by [17]. More
precisely, they transformed (0.2) to the system in $\Omega$ by making use of the volume preserv-
ing diffeomorphism $\Phi_{\epsilon}$ : $\Omegaarrow\Omega_{\epsilon}$ as in Inoue-Wakimoto [8], and gave the representation
formula of $\delta G(y, z)$ and $\delta R(y, z)$ as

(0.4) $\delta G_{m}^{n}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial\nu_{x}}(x, y)\frac{\partial G_{m}^{i}}{\partial v_{x}}(x, z)\rho(x)d\sigma_{x},$

(0.5) $\delta R_{m}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial R_{i}(y,x)\partial G_{m}^{i}}{\partial\nu_{x}\partial\nu_{x}}(x, z)\rho(x)d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ and for all $y,$ $z\in\Omega$ , respectively.

The analysis of the $\epsilon$-dependence of the Green function $G_{\epsilon}$ is one of the most essen-
tial problem to derive the Hadamard variational formula. The author [17] investigated
that by making use of the method developed by Fujiwara-Ozawa [4] and Ozawa [12].
Indeed, she applied the Schauder estimate of the Stokes equations due to Solonnikov
[16], and proved that there exist $\delta G_{n}’(x, y)$ $:= \frac{d}{d\epsilon}(\Phi_{\epsilon}^{-1})_{*}G_{\epsilon,n}(x, y)|_{\epsilon=0}$ and $\delta R_{n}’(x, y)$ $:=$

$\frac{d}{d\epsilon}(\Phi_{\epsilon}^{-1})_{*}R_{\epsilon,n}(x, y)|_{\epsilon=0}$ . Then, she derived that $\{\delta G’, \delta R’\}$ is a solution of the inhomo-
geneous Stokes equations in $\Omega$ with the homogeneous Dirichlet boundary condition on
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$\partial\Omega$ . Since $\{\delta G’, \delta R’\}$ is slightly different from the usual variation $\{\delta G, \delta R\}$ , we construct
the variational formula for $\{\delta G, \delta R\}$ by integration by parts of the volume integral for
$\{\delta G’, \delta R’\}$ . In such a procedure, we need to restrict ourselves to choose a special diffeo-
morphism $\Phi_{\epsilon}(x)$ for each fixed $y\in\Omega$ in such a way that $\Phi_{\epsilon}$ vanishes identically in the
neighborhood of $y$ . Indeed, since the order of the singularity of $R(x, y)$ at $x=y$ is by
one degree higher than that of $G(x, y)$ , it is necessary to control behavior of $R(x, y)$ near
$x=y$ in transforming the volume integral in $\Omega$ that of the surface integral on $\partial\Omega.$

In the present paper, we handled the general $vo$lume preserving perturbation as in [9].
By making use of the error estimates between $\delta G-\delta G’$ and $\delta R-\delta R’$ , we directly prove
that $\{\delta G, \delta R\}$ satisfies the homogeneous Stokes equations in $\Omega$ with some inhomogeneous
boundary condition on $\partial\Omega$ . As a result, by the usual integral representation formula we
succeed to obtain a satisfactory Hadamard variational formula for both $\delta G$ and $\delta R$ like
(0.4) and (0.5) without any restriction on choice of the diffeomorphism $\Phi_{\epsilon}$ . Furthermore,
we can inductively investigate the second variation of the Green function $\{\delta^{2}G, \delta^{2}R\}.$

Namely, we establish a certain algorithm to get the second variation of the Hadamard
variational formula for the velocity and the pressure,

1 Results.
To state our result, we first introduce an assumption on the perturbation $\{\Omega_{\epsilon}\}_{\epsilon\geq 0}$ of
domains from $\Omega.$

Assumption. For every $\epsilon\geq 0$ , there is a diffeomorphism $\Phi_{\epsilon}$ : $\overline{\Omega}arrow\overline{\Omega}_{\epsilon}$ satisfying the
following condition.

( $A$ . 1) $\Phi_{\epsilon}=(\phi_{\epsilon}^{1}, \phi_{\epsilon}^{2}, \cdots, \phi_{\epsilon}^{d})\in C^{\infty}(\overline{\Omega})^{d}$ ;

( $A$ .2) $\Phi_{0}(x)=x$ for all $x\in\overline{\Omega}$ ;

( $A$ .3) There exists $S=(S^{1}, S^{2}, \cdots, S^{d})\in C^{\infty}(\overline{\Omega})^{d}$ such that $K(x;\epsilon)$ $:=\Phi_{\epsilon}(x)-x-S(x)\epsilon$

satisfies

$su_{\frac{p}{\Omega}}|K_{j}(x;\epsilon)|+su_{\frac{p}{\Omega}}|\nabla K_{j}(x;\epsilon)|=O(\epsilon^{3})x\in x\in$
, as $\epsilonarrow 0,$ $j=1,$ $\cdots,$

$d$ ;

( $A$ .4) It holds that

$\det(\frac{\partial\phi_{\epsilon}^{i}}{\partial x^{j}}(x))_{i,j=1,\cdots,d}=1$ for all $x\in\overline{\Omega}$ and all $\epsilon\geq 0.$

It should be noticed that by ( $A$ .4), $\Phi_{\epsilon}$ defines a volume preserving diffeomorphism from
St onto $\overline{\Omega}_{\epsilon}$ i.e., $vol(\Omega_{\epsilon})=vol(\Omega)$ for all $\epsilon\geq 0$ . Moreover, the vector function $S\in C^{\infty}(\overline{\Omega})^{d}$

defined by ($A$ .3) satisfies the divergence free property. Namely, it holds that

(1.1) $divS(x)=0$

51



for all $x\in\overline{\Omega}$ . For the proof, see $Inoue-Wakimoto$ [$8$ , Proposition 2.3].

Now we can state our result.
Let $\{G_{\epsilon,m}, R_{\epsilon,m}\}_{m=1,\cdots,d}$ be the Green function of the Dirichlet boundary value problem

for the Stokes equations, i.e.,

(1.2) $\{\begin{array}{ll}\triangle_{\tilde{x}}G_{\epsilon,m}(\tilde{x},\tilde{z})-\nabla_{\tilde{x}}R_{\epsilon,m}(\tilde{x},\tilde{z})=\delta(\tilde{x}-\tilde{z})e_{m} (\tilde{x},\tilde{z})\in\Omega_{\epsilon}\cross\Omega_{\epsilon},div_{\overline{x}}G_{\epsilon,m}(\tilde{x},\tilde{z})=0 (\tilde{x},\tilde{z})\in\Omega_{\epsilon}\cross\Omega_{\epsilon},G_{\epsilon,m}(\tilde{x},\tilde{z})=0 \tilde{x}\in\partial\Omega_{\epsilon},\tilde{z}\in\Omega_{\epsilon}\end{array}$

for $m=1,$ $\cdots,$
$d$ , where $\{e_{m}\}_{m=1,\cdots,d}$ denotes a canonical basis in $\mathbb{R}^{d}$ . Clearly, the Green

function $\{G_{0,m}, R_{0,m}\}_{m=1,\cdots,d}=\{G_{m}, R_{m}\}_{m=1,\cdots,d}$ , respectively. Furthermore, we intro-
duce the fundamental solution $\{p_{m}\}_{m=1,\cdots,d}$ for the pressure of (1.2) as follows;

(1.3) $p_{m}(x, z):=- \frac{1}{\omega_{d}}\frac{(x^{m}-z^{m})}{|x-z|^{d}}, m=1, \cdots, d,$

where $\omega_{d}$ denotes the volume of unit sphere in $\mathbb{R}^{d}$ , i.e., $\omega_{d}:=\frac{2\pi^{d/2}}{\Gamma(d/2)}.$

Theorem 1.1. Let $\{G_{\epsilon,m}, R_{\epsilon,m}\}_{m=1,\cdots,d}$ be the Green matrix of the Dirichlet $boundar1/$

value problem for (1.2) with $\int_{\Omega_{\epsilon}}(R_{\epsilon,m}(\tilde{x},\tilde{z})-p_{m}(\tilde{x},\tilde{z}))d\tilde{x}=0$ for all $\tilde{z}\in\Omega_{\epsilon}$ . Then there
exist

(1.4) $\delta G_{m}^{n}(y, z)=\lim_{\epsilonarrow 0}\frac{G_{\epsilon,m}^{n}(y,z)-G_{m}^{n}(y,z)}{\epsilon},$ $\delta R_{m}(y, z):=\lim_{\epsilonarrow 0}\frac{R_{\epsilon,m}(y,z)-R_{m}(y,z)}{\epsilon}$

for all $y,$ $z\in\Omega$ with $y\neq z$ , which have the explicit representation as

$\delta G_{m}^{n}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial v_{x}}(x, y)\frac{\partial G_{m}^{i}}{\partial v_{x}}(x, z)S(x)\cdot v_{x}d\sigma_{x},$

$\delta R_{m}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial R_{\eta}(y,x)\partial G_{m}^{i}}{\partial v_{x}\partial v_{x}}(x, z)S(x)\cdot\nu_{x}d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ , where $v_{x}=(v_{x}^{1}, \cdots, \nu_{x}^{d})$ is the unit outer normal to $\partial\Omega$ at $x\in\partial\Omega$

and $\sigma_{x}$ denotes the surface element of $\partial\Omega.$

We next mention the Hadamard variational formula for the second variation.

Theorem 1.2. Let $\{G_{\epsilon,m}, R_{\epsilon,m}\}_{m=1,\cdots,d}$ be the Green function of the Dirichlet boundary
value problem for (1.2) with $\int_{\Omega_{\epsilon}}(R_{\epsilon,m}(\tilde{x},\tilde{z})-p_{m}(\tilde{x},\tilde{z}))d\tilde{x}=0$ for all $\tilde{z}\in\Omega_{\epsilon}$ . Then there
exist

(1.5) $\delta^{2}G_{m}^{n}(y, z):=\lim_{\epsilonarrow 0}\frac{G_{\epsilon,m}^{n}(y,z)-G_{m}^{n}(y,z)-\epsilon\delta G_{m}^{n}(y,z)}{\epsilon^{2}},$

(1.6) $\delta^{2}R_{m}(y, z) :=\lim_{\epsilonarrow 0}\frac{R_{\epsilon,m}(y,z)-R_{m}(y,z)-\epsilon\delta R_{m}(y,z)}{\epsilon^{2}}$
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for all $y,$ $z\in\Omega$ with $y\neq z$ , which have the explicit representation as

$\delta^{2}G_{m}^{n}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial v_{x}}(x, y)(\nabla_{x}\delta G_{m}^{i}(x, z)\cdot S(x)+2\frac{\partial^{2}G_{m}^{i}}{\partial v_{x}^{2}}(x, z)(S(x)\cdot v_{x})^{2})d\sigma_{x},$

$\delta^{2}R_{m}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial R_{i}(y,x)}{\partial v_{x}}(\nabla_{x}\delta G_{m}^{i}(x, z)\cdot S(x)+2\frac{\partial^{2}G_{m}^{i}}{\partial v_{x}^{2}}(x, z)(S(x)\cdot v_{x})^{2})d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ , where $\nu_{x}=(\nu_{x}^{1}, \cdots, v_{x}^{d})$ is the unit outer normal to $\partial\Omega$ at $x\in\partial\Omega$

and $\sigma_{x}$ denotes the surface element of $\partial\Omega.$

Remark 1.1. (1) Theorem 1.1 are the same formulas given by [17]. However, we es-
tablish a new approach to prove them, which is different from the previous one.
This method enables us to remove a restriction about the diffeomorphism $\Phi_{\epsilon}$ and
to simplify the computation in [17].

(2) We establish the method to construct the second variation of the Green function
$\{G_{\epsilon}, R_{\epsilon}\}$ in Theorem 1.2. This approach seems to be also applicable to the case of
the Laplace equation under the general perturbation of domains.

2 Preliminaries.
Although our main result Theorem 1.1 and 1.2 hold for all $d\geq 2$ , for the sake of simplicity,
we restrict ourselves to the case $d\geq 3$ . Indeed, it is easy to see that our argument in the
subsequent sections works even in the case $d=2.$

Firstly, we introduce the Green matrix of the Stokes equations derived by Odqvist [11].
The Green matrix $\{G_{n}^{i}\}_{n=1,\cdots,d}$. for the velocity and the Green function $\{R_{n}\}_{n=1,\cdots,d}$ for
the pressure can be represented by the fundamental tensor $\{u_{n},p_{n}\}_{n=1,\cdots,d}$ of the Stokes
equations (1.2) with the compensation term $\{q_{n}, q_{n}\}_{n=1,\cdots,d}$ as follows.

(2.1) $\{\begin{array}{l}G_{n}^{i}(x, y)=u_{n}^{i}(x, y)-q_{n}^{i}(x, y) ,R_{n}(x, y)=p_{n}(x, y)-q_{n}(x, y) ,\end{array}$

where

(2.2) $u_{n}^{i}(x, y) :=- \frac{1}{2\omega_{d}(d-2)}[\frac{\delta^{in}}{|x-y|^{d-2}}+(d-2)\frac{(x^{i}-y^{i})(x^{n}-z^{n})}{|x-y|^{d}}],$

$\{p_{n}\}_{n=1,\cdots,d}$ is as in (1.3) for $i,$ $n=1,$ $\cdots$ , d.The compensation term $\{q_{n}, q_{n}\}_{n=1,\cdots,d}$ is
chosen so that (1.2) is satisfied, that is,

(2.3) $\{\begin{array}{ll}\triangle_{x}q_{n}^{i}(x, y)-\nabla_{x^{i}}q_{n}(x, y)=0, x\in\Omega,\sum_{i=1}^{d}\nabla_{x^{i}}q_{n}^{i}(x, y)=0, x\in\Omega,q_{n}^{i}(x, y)=u_{n}^{i}(x.y) , x\in\partial\Omega, i, n=1, \cdots, d,\end{array}$
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where $\nabla_{x^{i}}$ $:= \frac{\partial}{\partial x^{t}}$ for $i=1,$ $\cdots,$
$d$ . For any fixed $y\in\Omega,$ $q_{n}^{i}(\cdot, y)$ and $q_{n}(\cdot, y)$ are analytic

functions in $\Omega$ and continuous in $\overline{\Omega}.$

Finally, we recall the Green integral formula for the Stokes operator $\mathcal{L}$ as in [11], [10],

$\int_{\Omega}\sum_{i=1}^{d}\{\mathcal{L}^{i}(v, \pi)(x)w^{i}(x)-\mathcal{L}^{i}(w, -\tilde{\pi})(x)v^{i}(x)\}dx$

(2.4)
$= \int_{\partial\Omega}\sum_{i,j=1}^{d}\{T^{ij}(v, \pi)(x)w^{i}(x)-T^{ij}(w, -\tilde{\pi})(x)v^{i}(x)\}\nu_{x}^{j}d\sigma_{x},$

where $\{T^{ij}\}_{i,j=1,\cdots,d}$ is the stress tensor for the velocity $v$ and the pressure $\pi$ defined by

(2.5) $T^{ij}(v, \pi)(x):=-\delta^{ij}\pi(x)+(\frac{\partial v^{i}}{\partial x^{j}}(x)+\frac{\partial v^{j}}{\partial x^{i}}(x)) , i,j=1, \cdots, d$

for the vector functions $v,$ $w\in C^{2}(\overline{\Omega})^{d}$ with $divv=divw=0$ in $\Omega$ and scalar functions
$\pi,\tilde{\pi}\in C^{1}(\overline{\Omega}),$ $\nu_{x}=(v_{x}^{1}, \cdots, v_{x}^{d})$ is the unit outer normal to $\partial\Omega$ at $x\in\partial\Omega$ and $\sigma_{x}$ denotes
the surface element of $\partial\Omega.$

Lemma 2.1. Let $\{G_{n}, R_{n}\}_{n=1,\cdots,d}$ be the Green function for the Stokes equations as in
(2.1). Then it holds that

(2.6) $\lim_{\rhoarrow 0}\int_{\partial B_{\rho}(y)}\sum_{i,j=1}^{d}T^{ij}(G_{n}, R_{m})(x, y)v^{i}(x)v_{x}^{J}d\sigma_{x}=-v^{n}(y) , n=1, \cdots, d$

for all $y\in\Omega$ and all smooth vector functions $v=(v^{1}, \cdots, v^{d})$ near $y$ , where $\{T^{ij}\}_{i,j=1,\cdots,d}$

is the stress tensor defined by (2.5), $\partial B_{\rho}(y)$ denotes the surface centered at $y$ with the
radius $\rho,$ $v_{x}lS$ the unit inner normal vector to $\partial B_{\rho}(y)$ at $x$ and $\sigma_{x}$ denotes the surface
element of $\partial B_{\rho}(y)$ .

3 Analysis of the $\epsilon$-dependence of $t$he Green func-
tion.

In this section, we consider the $\epsilon$-dependence of the Green function $\{G_{\epsilon,m}, R_{\epsilon,m}\}_{m=1,\cdots,d}.$

Namely, we investigate the differentiability of the Green function with respect to $\epsilon$ . Indeed,
it holds that;

Lemma 3.1. For any fixed $z$ in $\Omega$ , there exist $\{\delta G_{m}’(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$ and
$\{\delta R_{m}’(\cdot, z)\}_{m=1,\cdots,d}\in C^{1+\theta}(\overline{\Omega}\backslash \{z\})$ with $0<\theta<1$ , defined by

(3.1) $\delta G_{m}’(x, z) :=\lim_{\epsilonarrow 0}\frac{g_{\epsilon,m}(x,z)-G_{m}(x,z)}{\epsilon},$

(3.2) $\delta R_{m}’(x, z);=\lim_{\epsilonarrow 0}\frac{r_{\epsilon,m}(x,z)-R_{w}(x,z)}{\epsilon}, m=1, \cdots, d$
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for all $x\in\overline{\Omega}$ with $x\neq z$ , where $\{g_{\epsilon,m}, r_{\epsilon,m}\}_{m=1,\cdots,d}$ is respectively defined by

(3.3) $g_{\epsilon,m}^{i}(x, z) := \sum_{j=1}^{d}\frac{\partial x^{i}}{\partial\tilde{x}^{j}}G_{\epsilon m}^{j}(\tilde{x},\tilde{z})$ ,

(3.4) $r_{\epsilon,m}(x, z):=R_{\epsilon,m}(\tilde{x},\tilde{z}) , i, m=1, \cdots, d.$

Similarly to Lemma 3.1, we can also assure the existence of the second variation
$\{\delta^{2}G_{m}’, \delta^{2}R_{m}’\}_{m=1,\cdots,d}$ defined by

(3.5) $\delta^{2}G_{m}’(x, z):=\lim_{\epsilonarrow 0}\frac{g_{\epsilon,m}(x,z)-G_{m}(x,z)-\epsilon\delta G_{m}’(x,z)}{\epsilon^{2}},$

(3.6) $\delta^{2}R_{m}’(x, z):=\lim_{\epsilonarrow 0}\frac{r_{\epsilon,m}(x,z)-R_{m}(x,z)-\epsilon\delta R_{m}’(x,z)}{\epsilon^{2}}, m=1, \cdots, d,$

where $\{g_{\epsilon,m}, r_{\epsilon,m}\}_{m=1,\cdots,d}$ and $\{\delta G_{m}’, \delta R_{m}’\}_{m=1,\cdots,d}$ are as in (3.3), (3.4), (3.1) and (3.2),
respectively.

Corollary 3.1. For any fixed $z$ in $\Omega$ , there exist $\{\delta^{2}G_{m}’(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$

and $\{\delta^{2}R_{m}’(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$ with $0<\theta<1.$

Remark 3.1. The existence of $\delta G$ defined by (1.4) is assured by the following identity,
which is derived by Lemma 3.1. Indeed, it holds that

(3.7)

$\delta G_{m}^{n}(x, z)=\delta G_{m}^{\prime n}(x, z)-\nabla_{x}G_{m}^{n}(x, z)\cdot S(x)-\nabla_{z}G_{m}^{n}(x, z)\cdot S(z)+\sum_{i=1}^{d}\frac{\partial S^{n}}{\partial x^{i}}(x)G_{m}^{i}(x, z)$

for $m,$ $n=1,$ $\cdots,$
$d$ and for all $x\in\overline{\Omega}\backslash \{z\}$ , where $\{\delta G_{m}’, \delta R_{m}’\}_{m=1,\cdots,d}$ are as in (3.1)

and (3.2), respectively, and $\{S^{i}\}_{i=1,\cdots,d}$ is the vector function introduced by ($A$ .3). Fur-
thermore, we also have by Corollary 3.1 that

(3.8)

$\delta^{2}G_{m}^{n}(x, z)$

$=\delta^{2}G_{m}^{\prime n}(x, z)-\nabla_{x}\delta G_{m}^{n}(x, z)\cdot S(x)-\nabla_{z}\delta G_{m}^{n}(x, z)\cdot S(z)+\delta G_{m}(x, z)\cdot\nabla_{x}S^{n}(x)$

$+ \sum_{i=1}^{d}(\nabla_{z}G_{m}^{i}(x, z)\cdot S(z)\frac{\partial S^{n}}{\partial x^{i}}(x)-G_{m}(x, z)\cdot\nabla_{x}S^{i}(x)\frac{\partial S^{n}}{\partial x^{i}}(x)+\nabla_{x}G_{m}^{i}(x, z)\cdot S(x)\frac{\partial S^{n}}{\partial x^{i}}(x))$

$- \nabla_{x}\nabla_{z}G_{m}^{n}(x, z)S(x)\cdot S(z)-\frac{1}{2}\nabla_{z}^{2}G_{m}^{n}(x, z)S(z)\cdot S(z)$ $- \frac{1}{2}\nabla_{x}^{2}G_{m}^{n}(x, z)S(x)\cdot S(x)$

for $m,$ $n=1,$ $\cdots,$
$d$ and for all $x\in\overline{\Omega}\backslash \{z\}$ , where $\{\delta^{2}G_{m}’, \delta^{2}R_{m}’\}_{m=1,\cdots,d}$ are as in (3.5)

and (3.6), respectively.
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4Construction of the Hadamard variational formula.
In this section, we shall introduce the key lemmas to establish the representation formula
for both of them. The following lemma is essential to construct the Hadamard variational
formula for the first variation $\{\delta G_{m}, \delta R_{m}\}_{m=1,\cdots,d}.$

Lemma 4.1. For any fixed $z\in\Omega$ , there exist $\{\delta G_{m}(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$ and
$\{\delta R_{m}(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$ with $0<\theta<1$ , defined by (1.4) respectively, and they
satisfy the Stokes equations with the inhomogeneous Dirichlet boundary condition, i.e.,

(4.1) $\{\begin{array}{ll}\triangle_{x}\delta G_{m}(x, z)-\nabla_{x}\delta R_{m}(x, z)=0, x\in\Omega,div\delta G_{m}(x, z)=0, x\in\Omega,\delta G_{m}^{n}(x, z)=-\nabla_{x}G_{m}^{n}(x, z)\cdot S(x) , x\in\partial\Omega\end{array}$

for $m,$ $n=1,$ $\cdots,$
$d$, where $\{S^{i}\}_{i=1,\cdots,d}$ is the vector function introduced by ($A$ .3).

We have similarly to Lemma 4.1 that $\{\delta^{2}G_{m}, \delta^{2}R_{m}\}_{m=1,\cdots,d}$ as in (1.5) and (1.6) also
satisfies the homogeneous Stokes equations with the inhomogeneous Dirichlet boundary
condition. Indeed, it holds;

Corollary 4.1. For any fixed $z\in\Omega$ , there exist $\{\delta^{2}G_{m}(\cdot, z)\}_{m=1,\cdots,d}\in C^{2+\theta}(\overline{\Omega}\backslash \{z\})$ and
$\{\delta^{2}R_{m}(\cdot, z)\}_{m=1,\cdots,d}\in C^{1+\theta}(\overline{\Omega}\backslash \{z\})$ defined by (1.5) and (1.6) with $0<\theta<1$ , and they
satisfy the Stokes equations with the inhomogeneous Dirichlet boundary condition, i. e.,

(4.2) $\{\begin{array}{ll}\triangle_{x}\delta^{2}G_{m}(x, z)-\nabla_{x}\delta^{2}R_{m}(x, z)=0, x\in\Omega,div\delta^{2}G_{m}(x, z)=0, x\in\Omega,\delta^{2}G_{m}^{n}(x, z)=-2\nabla_{x}G_{m}^{n}(x, z)\cdot S(x)-\nabla_{x}^{2}G_{m}^{n}(x, z)S(x)\cdot S(x) , x\in\partial\Omega\end{array}$

for $m,$ $n=1,$ $\cdots,$
$d$, where $\{S^{i}\}_{i=1,\cdots,d}$ is the vector function introduced by ($A$ .3).

5 Proof of the main theorems.
In this section, we complete the proofs of Theorem 1.1 and 1.2.

5.1 Proof of Theorem 1.1.
We apply the Green integral formula for the Stokes operator $\mathcal{L}$ introduced by (2.4) in
$\Omega\backslash B_{\rho}(y)$ to the functions

$v=\delta G_{m}(x, z) , \pi=\delta R_{m}(x, z)$ ,
$w=G_{n}(x, y) , \tilde{\pi}=-R_{m}(x, y)$
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for $m,$ $n=1,$ $\cdots,$
$d$ . Then since $\mathcal{L}(G_{n}, R_{n})(x, y)=0$ in $\Omega\backslash B_{\rho}(y)$ , we have by Lemma 4.1

that

(5.1)

$\int_{\partial\{\Omega\backslash B_{\rho}(y)\}}\sum_{i,j=1}^{d}\{T^{ij}(\deltaG_{m}, \delta R_{m})(x, z)G_{n}^{i}(x, y)-T^{ij}(G_{n}, R_{n})(x, y)\delta G_{m}^{i}(x, z)\}d\sigma_{x}=0$

for $m,$ $n=1,$ $\cdots,$
$d$ . We next consider the limit $\rhoarrow 0$ at the point of $y$ . It follows from

Lemma 2.1 that

(5.2)

$\lim_{\rhoarrow 0}\int_{\partial B_{\rho}(y)}\sum_{i,j=1}^{d}(T^{ij}(\delta G_{m}, \delta R_{m})(x, z)G_{n}^{i}(x, y)-T^{ij}(G_{n}, R_{n})(x, y)\delta G_{m}^{i}(x, z))\nu_{x}^{j}d\sigma_{x}$

$=\delta G_{m}^{n}(y, z)$ , $m,$ $n=1,$ $\cdots,$
$d.$

Since $G_{n}(x, y)=0$ for $x\in\partial\Omega$ , and by (3.7) we have that

$\delta G_{m}^{n}(x, z)=-\nabla_{x}G_{m}^{n}(x, z)\cdot S(x) , m, n=1, \cdots, d$

for $x\in\partial\Omega$ , it follows from (5.1) and (5.2) that

(5.3) $\delta G_{m}^{n}(y, z)=\int_{\partial\Omega}\sum_{i,j,k=1}^{d}T^{ij}(G_{n}, R_{n})(x, y)\frac{\partial G_{m}^{i}}{\partial x^{k}}(x, z)S^{k}(x)\nu_{x}^{j}d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ and for $y,$ $z\in\Omega$ . Furthermore, since $G_{m}(x, z)=0$ for $x\in\partial\Omega$ , we

have that

(5.4) $\frac{\partial G_{m}^{\lambda}}{\partial x^{k}}(x, z)=\frac{\partial G_{m}^{i}}{\partial\nu_{x}}(x, z)\nu_{x}^{k}, i, k, m=1, \cdots, d$

for $x\in\partial\Omega$ . Applying (5.4) to the right hand side of (5.3), it holds that

(5.5) $\delta G_{m}^{n}(y, z)$

$= \int_{\partial\Omega}\sum_{i,j=1}^{d}(\frac{\partial G_{n}^{i}}{\partial v_{x}}(x, y)\frac{\partial G_{m}^{i}}{\partial\nu_{x}}(x, z)$

$+divG_{n}(x, y)divG_{m}(x, z)-R_{n}(x, y)divG_{m}(x, z))S(x)\cdot\nu_{x}d\sigma_{x}$

$= \int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial\nu_{x}}(x, y)\frac{\partial G_{m}^{i}}{\partial v_{x}}(x, z)S(x)\cdot v_{x}d\sigma_{x},m, n=1, \cdots, d$
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for $y,$ $z\in\Omega.$

Furthermore, it follows from (4.1) at the point $x=y$ and (5.5) that

(5.6) $\nabla_{y^{n}}\delta R_{m}(y, z)=\triangle_{y}\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial v_{x}}(x, y)\frac{\partial G_{m}^{i}}{\partial\nu_{x}}(x, z)S(x)\cdot\nu_{x}d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ . Since $\partial\Omega$ is sufficiently smooth, we have that for each $x\in\partial\Omega,$

(5.7) $\triangle_{y}G_{m}^{n}(y, x)=\nabla_{y^{n}}R_{m}(y.x) , m, n=1, \cdots, d$

for $y\in\Omega$ . Since $G_{n}^{i}(x, y)=G_{i}^{n}(y, x),$ $i,$ $n=1.$ $\cdots,$
$d$ for $(x, y)\in\overline{\Omega}\cross\Omega$ , we apply (5.7) to

the right hand side of (5.6), which yields Theorem 1.1.

5.2 Proof of Theorem 1.2.
In the same manner as Theorem 1.1, it follows from the Green integral formula (2.4) and
(3.8) that

$\delta^{2}G_{m}^{n}(y, z)$

$=- \int_{\partial\Omega}\sum_{i,j=1}^{d}T^{ij}(G_{n}, R_{m})(x, y)(2\nabla_{x}\delta G_{m}^{i}(x, z)\cdot S(x)+\sum_{k,l=1}^{d}\frac{\partial^{2}G_{m}^{i}}{\partial x^{l}\partial x^{k}}(x, z)S^{k}(x)S^{\iota}(x))\nu_{x}^{j}d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ . Then by (5.4), we thus have that

(5.8)

$\delta^{2}G_{m}^{n}(y, z)=\int_{\partial\Omega}\sum_{i=1}^{d}\frac{\partial G_{n}^{i}}{\partial v_{x}}(x, y)(2\nabla_{x}\delta G_{m}^{i}(x, z)\cdot S(x)+\frac{\partial^{2}G_{m}^{i}}{\partial v_{x}^{2}}(x, z)(S(x)\cdot v_{x})^{2})d\sigma_{x}$

for $m,$ $n=1,$ $\cdots,$
$d$ . Furthermore, similarly to the proof of Lemma 1.2, by (4.2) and (5.8)

we thus complete Theoreml.2. $\square$
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