point-countable base をもつ空間における extent の sup=max 問題

神奈川大学 工学部 平田 康史 (Yasushi Hirata) Faculty of Engineering, Kanagawa University

概要

 G_{δ} -diagonal をもつ空間の Lindelöf degree と, point-countable base をもつ空間の extent に関する $\sup=\max$ 問題について論じる.

空間はすべて T_1 空間とする.

1 sup=max 問題

空間 X の $\operatorname{spread} s(X)$, $\operatorname{extent} e(X)$, および, $\operatorname{Lindel\"{o}f}$ degree L(X) は次のように定義される. [6]

 $s(X) = \sup\{|D| : D$ はXの疎な部分集合 $\} + \omega$,

 $e(X) = \sup\{|D| : D$ は X の疎な閉部分集合 $\} + \omega$,

 $L(X) = \min\{\kappa : X$ の任意の開被覆は濃度 κ 以下の部分被覆をもつ $\} + \omega$.

一般に, $e(X) \leq L(X), s(X) \leq |X|$ となる.また,空間 X の部分集合族 U の Lindelöf degree L(U) は次のように定義される.

$$L(\mathcal{U}) = \min\{|\mathcal{V}| : \mathcal{V} \subset \mathcal{U}, \ \bigcup \mathcal{V} = \bigcup \mathcal{U}\} + \omega.$$

そうすると, $L(X) = \sup\{L(\mathcal{U}): \mathcal{U} \ \text{は} \ X \ \text{の開被覆} \}$ が成り立つ. s(X), e(X), L(X)に関する以下の問いは $\sup=\max$ 問題とよばれる.

- (1) $\kappa = s(X)$ について, X は濃度 κ の疎な部分集合をもつか?
- (2) $\kappa = e(X)$ について、X は濃度 κ の疎な閉部分集合をもつか?
- (3) $\kappa = L(X)$ について、X は $L(U) = \kappa$ となるような開被覆 U をもつか?

κが successor cardinal の場合は, sup=max 条件は常に成り立つ.

s(X) の $\sup=\max$ 問題については、次のことが知られている.

定理 1 ([3, 4]). X は空間で $\kappa = s(X)$ は特異基数とする.

- (1) X が Hausdorff 空間で κ が強極限基数ならば, X は濃度 κ の疎な部分集合をもつ.
- (2) X が正則空間で $cf(\kappa) = \omega$ ならば, X は濃度 κ の疎な部分集合をもつ.

定理 2 ([9]). $\aleph_{\omega_1} \leq 2^{\omega}$, かつ, 第一可算な Luzin 空間が存在すると仮定する. そのとき, 0 次元の完全正則空間 X で, $s(X) = |X| = \aleph_{\omega_1}$ だが, 濃度 \aleph_{ω_1} の疎な部分集合をもたないようなものが存在する.

距離付け可能空間 M の e(M) や L(M) に関する $\sup=\max$ 問題については, \inf nality が非可算か可算かで次のようになる.

命題 1 (folklore). M は距離付け可能空間とする.

- (1) e(M) = L(M) = s(M) = w(M) が成り立つ.
- (2) $\kappa = e(M)$ で $cf(\kappa) > \omega$ ならば, M は濃度 κ の疎な閉部分集合をもつ.

例 1 (folklore, [5]). κ は極限基数とする. $\kappa+1$ の部分空間として,

$$X_\kappa = \{\alpha+1: \alpha \in \kappa\} \cup \{\kappa\}$$

とせよ. X_{κ} は遺伝的にパラコンパクトで,

- $e(X_{\kappa}) = L(X_{\kappa}) = w(X_{\kappa}) = s(X_{\kappa}) = |X_{\kappa}| = \kappa$
- X_{κ} は濃度 κ の疎な閉部分集合をもたない,
- $cf(\kappa) = \omega$ の場合は, X_{κ} は距離付け可能である.

generalized metric space X の $\kappa = e(X)$ か $\kappa = L(X)$ について, $\operatorname{cf}(\kappa) > \omega$ であるとき, $\sup=\max$ 問題はどうなるかを調べたい. (generalized metric space については [2] を参照されたい.) 尚, そのような状況下で, ある弱い covering property を仮定すれば, e(X) と L(X) の間で $\sup=\max$ 問題に差異はない.

事実 1 ([1, 5]). X は $submetal indel \"{o}f$ な空間とする.

- (1) e(X) = L(X) が成り立つ.
- (2) $e(X) = L(X) = \kappa$ で $cf(\kappa) > \omega$ ならば, X が濃度 κ の疎な閉部分集合をもつことと, X が $L(U) = \kappa$ となる開被覆 U をもつこととは同値である.

空間 X が metalindelöf であるとは、任意の開被覆が point-countable な開細分をもつことである. X が submetalindelöf であるとは、任意の開被覆に対して、その開細分の列 $\{V_n: n \in \omega\}$ があって、各 $x \in X$ について、その点において V_{n_x} が点有限になるような $n_x \in \omega$ が存在することである.

paracompact \rightarrow metacompact \rightarrow metalindelöf \rightarrow submetalindelöf

generalized metric space X の e(X), L(X) の $\sup=\max$ 問題については, すでに次のことがわかっている.

定理 3 ([5]). κ は基数で $cf(\kappa) > \omega$ とする.

- (1) X が p-空間で $L(X) = \kappa$ ならば, X は $L(U) = \kappa$ となる開被覆 U をもつ.
- (2) X が Σ -空間で $e(X) = \kappa$ ならば, X は濃度 κ の疎な閉部分集合をもつ.
- (3) X が semi-stratifiable な空間で $e(X) = \kappa$, かつ, 次のどれかしらの条件を満たせば, X は濃度 κ の疎な閉部分集合をもつ.
 - (3-1) X lt metalindelöf.
 - (3-2) X は collectionwise Hausdorff.
 - (3-3) X は正規で $\{2^{\tau}: \tau$ は基数で $\tau < \kappa\}$ が最大元をもたない.

2 G_{δ} -diagonal をもつ空間の Lindelöf degree

空間 X が G_{δ} -diagonal をもつとは、対角線集合 $\Delta = \{\langle x, x \rangle : x \in X\}$ が X^2 に おいて G_{δ} -集合になってることであり、これは、X の開被覆の列 $\{G_n : n \in \omega\}$ で、各 $x \in X$ について $\bigcap_{n \in \omega} \operatorname{St}(x, G_n) = \{x\}$ となるものが存在することと同値である.ここで、 $\operatorname{St}(x, G_n) = \bigcup \{G \in G_n : x \in G\}$ である.

metrizable \rightarrow semi-stratifiable $\rightarrow G_{\delta}$ -diagonal をもつ

 G_{δ} -diagonal をもつ空間の L(X) の $\sup=\max$ 問題について, 次の結果を得た.

定理 4. κ は極限基数で $cf(\kappa) > \omega$ とする.

- (1) 任意の基数 $\tau < \kappa$ に対して $\tau^{\omega} < \kappa$ である場合: 空間 X が G_{δ} -diagonal をも τ も τ ならば, τ は τ は τ となる開被覆 τ
- (2) ある基数 $\tau < \mathrm{cf}(\kappa)$ について $\kappa \leq \tau^{\omega}$ である場合: G_{δ} -diagonalをもつ Hausdorff 空間 X で, $L(X) = \kappa$ だが, $L(U) = \kappa$ となる開被覆U をもたないものが存在する.

(3) ある基数 $\tau < \mathrm{cf}(\kappa)$ について $\kappa \leq \tau^{\omega}$ であり、また、 $\mathrm{cf}(\kappa)$ -Suslin line が存在する場合: G_{δ} -diagonal をもつ 0 次元完全正則空間 X で、 $L(X) = \kappa$ だが、 $L(U) = \kappa$ となる開被覆U をもたないものが存在する.

(κ が強極限基数の場合の (1) は Yajima の指摘によるものである [10]).

GCH の下では、 G_{δ} -diagonal をもつ空間 X の $e(X) = \kappa$ の $\sup=\max$ 条件は、 $cf(\kappa) > \omega$ ならば常に成り立つことが (1) よりわかる. GCH が成り立たないモデルにおける特異基数 κ についてどうなるだろうか?

問題 1. κ は極限順序数で, $cf(\kappa) > \omega$ とする. また,

- 任意の基数 $\tau < cf(\kappa)$ に対して $\tau^{\omega} < \kappa$ であるが,
- $cf(\kappa) \le \tau_0 < \kappa$ の範囲には $\kappa \le \tau_0^{\omega}$ となる基数 τ_0 が存在するものとする.

このとき, G_{δ} -diagonal をもつ空間 X で, $L(X) = \kappa$ だが, $L(\mathcal{U}) = \kappa$ となる開被覆 \mathcal{U} をもたないようなものは存在するか?

第一可算な Luzin 空間が存在すれば、Suslin line が存在することが知られている. Roitman の作った定理 2 の空間をもとにして、 $\kappa = \aleph_{\omega_1}$ の場合の定理 4 (3) の例を作ることができる. 他の基数の場合もほぼ同様の方法で作ることができる.

3 point-countable baseをもつ空間のextent

Nagata-Smirnovの定理より、

距離付け可能 = 正則 + σ -局所有限な base をもつ

→ point-countable base をもつ

→ metalindelöf + 第一可算.

前述の例 1 からわかるように、どんな極限基数 κ に対しても、 $e(X_{\kappa}) = \kappa$ となるパラコンパクト Hausdorff 空間 X_{κ} で、 $e(X_{\kappa})$ の $\sup=\max$ 条件が成り立たないものが存在する。また、空間 X が第一可算であることも、e(X) の $\sup=\max$ 条件を導くには不十分である.

例 2. κ は極限基数で $cf(\kappa) > \omega$ とする. κ の部分空間として,

$$X'_{\kappa} = \{\alpha + 1 : \alpha \in \kappa\} \cup \{\theta \in \kappa : \theta$$
は基数, $\operatorname{cf}(\theta) = \omega\}$

とせよ. X'_{κ} は第一可算な空間で $e(X'_{\kappa})=|X'_{\kappa}|=\kappa$ であるが, 濃度 κ の疎な閉部分集合をもたない.

問題 2. κ は極限基数で $\mathrm{cf}(\kappa) > \omega$ とする. $metalindel\"{of}$, かつ, 第一可算な空間 X で, $e(X) = \kappa$ だが, 濃度 κ の疎な閉部分集合をもたないものは存在するか?

尚,順序数の部分空間が metalindelöf, かつ, 第一可算ならば, 距離付け可能なので, 上の問題の例にはなりえない.

空間が point-countble base を持つ空間については、極限順序数 κ であっても、 $e(X) = \kappa$ で sup=max 条件が成り立たないものが常に存在するわけではない. Δ -system Lemma [8] を使って、次の定理が得られる.

定理 5. X は point-countable base をもつ空間で, $\kappa=e(X)$ は次の条件を満たす基数とする.

- (i) 任意の基数 $\tau < \kappa$ について, $\tau^{\omega} < \kappa$.
- (ii) 任意の基数 $\tau < \mathrm{cf}(\kappa)$ について, $\tau^{\omega} < \mathrm{cf}(\kappa)$.

そうすると, X は濃度 κ の疎な閉部分集合をもつ.

この定理の仮定 (ii) に $\tau=2$ を適用すると, $\omega_1 \leq 2^\omega < \mathrm{cf}(\kappa)$ となるので, $e(X)=\aleph_{\omega_1}$ の場合の $\sup=\max$ 問題についての情報はこの定理からは得られない.

問題 3. point-countable base をもつ空間で, $e(X) = \aleph_{\omega_1}$ だが, 濃度 \aleph_{ω_1} の疎な閉部分集合をもたないような空間 X の存在は, ZFC と無矛盾か?

 $cf(\kappa) > \omega$ となる基数 κ に対して, $e(X) = \kappa$ となるような point-countable base をもつ空間 X で, e(X) の $\sup=\max$ 条件が成り立たないような例を筆者は知らない.

問題 $4.\kappa$ は極限基数で, $\mathrm{cf}(\kappa)>\omega$ とする. 定理 5の仮定 (i) と (ii) は除去できるか?

参考文献

- [1] C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105–108.
- [2] G. Gruenhage, *Generalized metric spaces*, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam 423–501 (1984).
- [3] A. Hajnal and I. Juhász, Discrete subspaces of topological spaces II, Indag. Math. 31 (1969), 18–30.
- [4] A. Hajnal and I. Juhász, Some remarks on a property of topological cardinal functions, Acta. Math. Acad. Sci. Hungar., 20 (1969), 25–37.

- [5] Y. Hirata and Y. Yajima, The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. 54, 2, The special issue devoted to Čech. (2013), 245–257.
- [6] R. E. Hodel, *Cardinal functions I*, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam 1–61 (1984).
- [7] K. Kunen, Luzin spaces, Topology Proc., 1 (1976), 191–199.
- [8] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam (1980).
- [9] J. Roitman, *The spread of regular spaces*, General Topology and Appl. 8 (1978), 85–91.
- [10] Y. Yajima, private communication.