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1 Introduction

The study of topologies on function spaces plays a significant role in geometric functional analysis.
Since function spaces are frequently infinite-dimensional, the theory of infinite-dimensional topology
has made meaningful contributions to it. Indeed, several function spaces have been shown to be
homeomorphic to typical infinite-dimensional spaces. From the end of 1980s to the beginning of
1990s, many researchers investigated topological types of function spaces of real-valued continuous
functions on countable spaces endowed with the pointwise convergence topology, see [8]. In this
article, we define a hypograph of a map from a compact metrizable space to a dendrite and discuss
the topology of the hypograph space. We can consider that hypograph spaces give certain geometric
aspect to function spaces with the pointwise convergence topology. This article is a résumé of the
joint work with K. Sakai and H. Yang [6].

Throughout the article, all maps are continuous, but functions are not necessarily continuous.
Let X be a compact metrizable space and Y be a dendrite with an end point 0. Recall that a dendrite
is a Peano continuum, namely a connected, locally connected, compact metrizable space, containing
no simple closed curves. An end point of a space has an arbitrarily small open neighborhood whose
boundary is a singleton. It is well-known that each pair of distinct points of a dendrite is connected
by the unique arc [12, Chapter V, (1.2)]. We denote the unique arc of two points z, y in the dendrite
Y by [z,y], where it is the constant path if z = y.

For each function f: X — Y, we define the hypograph |f of f as follows:

=<0, f@)cxxY.
X

When f is continuous, the hypograph | f is closed in X x Y. We denote the set of maps from X
to Y by C(X,Y) and the hyperspace of non-empty closed sets in X x Y endowed with the Vietoris
topology by Cld(X x Y). Then we have

10X, Y) = {lf | f € C(X,Y)} C Cld(X x Y).

Let JC(X,Y) be the closure of JC(X,Y) in Cld(X x Y). In the case that ¥ is the closed unit
interval I = [0,1] and 0 = 0, we can regard

JUSC(X,I) = {{f | f : X — I is upper semi-continuous}

as the subspace in Cld(X xI). Let Q = IN be the Hilbert cube and cg = {(z;)ien € Q | lim;_s00 z; =
0}. Z. Yang and X. Zhou [10, 11] showed the following theorem:



THEOREM 1.1. Suppose that the set of isolated points of X is not dense. Then |USC(X,I) =

IC(X, 1) and the pair (JUSC(X,I),|C(X,I)) is homeomorphic to (Q,cop).

For spaces W; and Ws, the symbol (W;, Ws) means that We C Wi. A pair (W1, W3) of spaces
is homeomorphic to (Z;, Zs) if there exists a homeomorphism f : W7 — Z; such that f(Ws) = Z.
We generalize their result as follows:

MAIN THEOREM. If X is infinite and locally connected, then the pair (JC(X,Y),} C(X,Y)) is
homeomorphic to (Q, cp).

2 Preliminaries

The topological characterizations for pairs of infinite-dimensional spaces goes back to the uniqueness
of cap sets and f-d cap sets due to R.D. Anderson [1], and now, has reached the one of absorbing
pairs for each Borel class, refer to [2, 3]. In this section, we shall introduce the notion of strong
universality and absorbing pair for the proof of the main theorem. For each open cover U of a space
Z,amap f: W — ZisU-close to g : W — Z provided that for any w € W, both of f(w) and g(w)
are contained in some U € Y. When Z = (Z,d) is a metric space, for each € > 0,amap f: W — Z
is said to be e-close to g : W — Z if d(f(w), g(w)) < € for all w € W. Let (W, W2) be a pair of
spaces, and C1 and C; be classes of spaces. We say that (Wy, Wa) is strongly (C1,Cz)-universal if
the following condition holds:

(su) Let Z3 € C1, Z3 € Ca, K a closed subset of Z;, and f : Z; — Wi a map such that the
restriction f|x of K is a Z-embedding. Then for every open cover U of Wi, there exists a
Z-embedding g : Z; — W such that g is U-close to f, g|x = f|x and g7} (Wo) \ K = Z» \ K.

It is said that a closed subset A of W is a Z-set in W if for each open cover U of W, there exists a

map f: W — W such that f is U-close to the identity map idw and f(W) N A = 0. A countable

union of Z-sets is called a Z,-set. In addition, a Z-embedding is an embedding whose image is a

Z-set. A pair (W, Ws) is (C1,Ca)-absorbing provided that the following conditions are satisfied:

(1) W1 €y and W € Cy;

(2) Wy is contained in a Z,-set in Wy;

(3) (W7, Wa) is strongly (Cy,Co)-universal.
Denote the class of compact metrizable spaces by Mo, and the one of separable metrizable absolute
F,s-spaces by Fg5. According to Theorem 1.7.6 of [3], the following can be established.

THEOREM 2.1. Let Wy and Z be topological copies of the Hilbert cube Q. If pairs (W1, Wa) and
(Z1, Z2) are (Mg, Fus)-absorbing, then they are homeomorphic.

The following fact is well known.
Facr 1. The pair (Q, co) is (My, F,s)-absorbing.

Combining Theorem 2.1 with Fact 1, we need to show the following conditions:

(1) JC(X,Y) is homeomorphic to Q and JC(X,Y) is an F,s-set in |C(X,Y);
(2) IC(X,Y) is contained in a Z,-set in |C(X,Y);

(3) (IC(X,Y),lC(X,Y)) is strongly (Mo, Fys)-universal.
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3 The space |C(X,Y) is homeomorphic to the Hilbert cube

This section is devoted to proving the following theorem:

THEOREM 3.1. If X has no isolated points, then [C(X,Y) is homeomorphic to Q.

First, we have the following proposition:

PROPOSITION 3.2. If X has mo isolated points, then |C(X,Y) is an AR.

Sketch of proof. Observe that JC(X,Y) is a Peano continuum. According to the the Wojdystawski

Theorem [13], see Theorem 5.3.14 of [7], the hyperspace Cld({C(X,Y)) is an AR. Then we have the
retraction
|J:Cd(Cld(X xY)) 3> A | JAeCld(X xY)

and [J(CIA({C(X,Y))) = {C(X,Y). It follows that JC(X,Y) is a retract of Cld({C(X,Y’)), which

implies that |C(X,Y) is an AR. O

We say that a subset Z is homotopy dense in a space W if there exists a homotopy h : WxI - W
such that h(w,0) = w and h(w,t) € Z for every w € W and t > 0. Using the same technique as [5,
Theorem 4.1], we have the following:

PRrROPOSITION 3.3. If X has no isolated points, then \C(X,Y) is homotopy dense in |C(X,Y).

Let dx and dy be admissible metrics on X and Y, respectively. We use an admissible metric p
on X XY as follows:

o((z,y), (z',y)) = max{dx(z,z),dy(y,y')} for each 2,2’ € X and y,y’ € Y.

Since X and Y are compact, the hyperspace Cld(X x Y) admits the Hausdorff metric py induced
by p. For each A € Cld(X x Y), we define a set-valued function 4 : X — Cld(Y) U {0} as follows:

Alz)={yeY | (z,y) € A} € Cld(Y) U {0}.
The following is the key lemma of this article.

LeMMA 3.4 (The Digging Lemma). Let ¢ : Z —|C(X,Y) be a map of a paracompact Hausdorff
space Z. If X has a non-isolated point T, then for each map € : Z — (0,1), there exist maps
Y:Z —-C(X,Y) and 6 : Z — (0,1) such that for each z € Z,

(a') pH(QS(Z)’ ¢(z)) < e(z),
(b) ¥(2)(z) = {0} for all z € X with dx(z,zx) < §(2).

A space Z has the disjoint cells property provided that for any maps f,g : Q — Z of the Hilbert
cube and any open cover U of Z, there exist maps f’,g' : Q — Z such that f’ and g’ are U-close to
f and g, respectively, and f'(Q) N g¢’(Q) = 0.

PROPOSITION 3.5. If X has no isolated points, then [C(X,Y’) has the disjoint cells property.
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Sketch of proof. Let f,g : Q — JC(X,Y) be maps and € > 0. Since {C(X,Y’) is homotopy dense
in JC(X,Y) by Proposition 3.3, we can obtain maps f' : Q =/ C(X,Y) that is e-close to f, and
g : Q =]C(X,Y) that is €¢/3-close to g. Taking a non-isolated point zo, € X and applying the
Digging Lemma, 3.4, we can find a map ¢” : Q =} C(X,Y) such that g” is €/3-close to ¢’ and

g"(2)(z0) = {0} for all z € Q. Define a map g” : Q = |C(X,Y)\ IC(X,Y) as follows:
9"(2) = g"(z) U{zo} x {y €Y | dv(y,0) <¢/3}.
Then f’ and g’ are e-close to f and g, respectively, and f'(Q) N g”(Q) =0. O

Combining Propositions 3.2 and 3.5 with Toruriczyk’s characterization of the Hilbert cube [9],
we can obtain Theorem 3.1.

4 The space |[C(X,Y) is an F,s-set in |C(X,Y)

In this section, we show the following proposition:

PROPOSITION 4.1. The space JC(X,Y) is an Fys-set in JC(X,Y).

Sketch of proof. For each §,¢ > 0, define A(d,¢) C JC(X,Y") as follows:

e A€ A(8,€) provided that for each x1,z2 € X with dx(z1,22) < §, if y; € A(z;) and y; € [0, 2]
for any 2; € A(x;) \ {yi}, i = 1,2, then dy(y1,52) <e.

Then it is closed in |C(X,Y’) and we have
cexyy) = U Aa/m,1/n).

neEN meN

Hence |C(X,Y) is an Fy4-set in [C(X,Y). O

5 The space |C(X,Y) is contained in a Z,-set in |[C(X,Y)

We use the following lemma for detecting Z-sets in JC(X,Y).

LEMMA 5.1. Suppose that F = EUZ is a closed set in {C(X,Y) such that Z is a Z-set in JC(X,Y),

and for each A € E, there exists a point a € X with A(a) = {0}. Then F is a Z-set in |C(X,Y).

PROPOSITION 5.2. If X has no isolated points, then | C(X,Y) is contained in some Zs-set in

ICX.Y).
Sketch of proof. Take a countable dense set D = {dy, | n € N} in X. For each n,m € N,
Fom = {If €lC(X,Y) | dy(f(dn),0) = 1/m}

is a Z-set in JC(X,Y’) due to the Digging Lemma 3.4. Then the closure Fy, , is a Z-set in JC(X,Y)
because JC(X,Y) is homotopy dense in {C(X,Y) by Proposition 3.3. Moreover, we have
F=[) UCEXY)\ Fam) = {X x {0}}.

neENmeN

It follows from Lemma 5.1 that the closure F is a Z-set in JC(X,Y). O
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6 The pair (JC(X,Y),]C(X,Y)) is strongly (M,, F,s)-universal

We needs the following lemma to verify the strong (Mo, F,s)-universality of ({C(X,Y),|C(X,Y)).

LEMMA 6.1. Let Zm,Zoo € X, m € N, such that {rm = dx(Tm,Zoo) }men 18 a strictly decreasing
sequence conversing to 0, and let yo € Y \ {0} such that dy(0,yo) < 1. Suppose that g: Z — Q is
an injection from a space Z into the Hilbert cube Q and § : Z — (0,1) is a map. Then there exists
amap ®:Z — |C(X,[0,y0]) satisfying the following conditions:

(1) ® is injective;

(2) pu(®(2), X x {0}) < &(2) for all z € Z;

(3) ®(2)(z) = {0} for all x € X with dx(z,%0) > Tox and z € Z with 27 < §(2) < 27441,
keN;

(4) z€ g7 (co) i and only if (2) €JC(X, [0,10]);

(5) ®(2)(z0) = {y € [0,0] | dy(y,0) < 8(2)} forallz € Z.
PROPOSITION 6.2. If X has no isolated points, then (JC(X,Y),{C(X,Y)) is strongly (Mo, Fps)-

universal.

Sketch of proof. Let Z € My, C € Fyu5, K a closed subset of Z,0 < eand & : Z — [C(X,Y) a map
such that ®|g is a Z-embedding. We shall construct a Z-embedding ¥ : Z — |C(X,Y) so that ¥
is e-close to @, ¥|x = ®|k and T}(JC(X,Y))\ K = C\ K.

Since ®(K) is a Z-set in |C(X,Y), we may assume that ®(K) N &(Z \ K) = 0. Define §(z) =

min{e, pg(®(2), ®(K))}/4. Since | C(X,Y) is homotopy dense in |C(X,Y) by Proposition 3.3,
there exists h: Z — JC(X,Y) such that pg(h(z),®(z)) < (2) and h(Z \ K) clC(X,Y).

Take a non-isolated point ., € X. By the Digging Lemma 3.4, we can obtain ¢ : Z \
K —]C(X,Y)and r: Z\ K — (0,1) so that

(a) pr(h(z),%(2)) < 8(2),
(b) ¥(2)(z) = {0} for all z € X with dx(z, ) < r(2).

Let Zr = {z € Z | 27%F < §(z) < 27%*+'} ¢ Z\ K. Since z is a non-isolated point, we
can choose z,, € X \ {zs} so that r, = dx(Zm, Too) < min{l/m,dx(zm-1,%),7(2) | z € Zp}.
Since (Q, ¢o) is strongly (My, Fys)-universal by Fact 1, we can take am embedding g : Z — Q
so that g71(cg) = C. Choose yo € Y \ {0} with dy(0,y) < 1. Using Lemma 6.1, we can obtain
¥ Z\ K = [C(X,]0,yo]) satisfying the following conditions:

(1) ¢ is injective;
2) pr(¥'(2), X x {0}) < 8(2) for all 2 € Z\ K;
(3) ¥/'(2)(z) = {0} for all x € X with dx(z,%x) > T2k and 2 € Zk, k € N;
(4) z € C\ K if and only if 9/(2) €{C(X, [0, yo]);
(5) #/(2)(@eo) = { € [0,0] | dy(3,0) < 8(2)} for all 2 € Z\ K.
Define ¥|\ g by ¥(2) = ¢(2) UY'(2). O



7 Remarks

In this section, we will give some remarks on the main theorem. For more details, refer to 4]
Z. Yang and X. Zhou [11] proved the stronger result as follows:

THEOREM 7.1. The pair (JUSC(X,I), |C(X,I)) is homeomorphic to (Q,co) if and only if the set
of isolated points of X is not dense.

It is unknown whether the same result holds or not in the general case. However, the author [4]
shows the following theorem (Z. Yang [10] proved the case that Y =1I).

THEOREM 7.2. The space [C(X,Y) is a Bare space if and only if the set of isolated points of X is
dense.

Sketch of proof. The “only if” part follows from the same argument as Section 5. In fact, if the set
of isolated points of X is not dense, then (C(X,Y) is a Z,-set in itself, and hence it is not a Bare

space.
Next, we show the “if” part. Let X; be the set of isolated points in X and F be the finite

subsets of Xy. For each F' € F and n € N, we define

Upn={A € {C(X,Y) |dy(y,0) <1/nforallz € X\ F and y € A(z)}.

Then Up,, is open in |C(X,Y) and Up = Jper Up, is dense in [C(X,Y). Observe that the Gs-set
G = NpenUn CIC(X,Y) is a Baire space and dense in JC(X,Y). Consequently, |C(X,Y) is a
Baire space. [
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