On a function space with the hypograph topology

Katsuhisa Koshino

Graduate School of Pure and Applied Sciences, University of Tsukuba

1 Introduction

The study of topologies on function spaces plays a significant role in geometric functional analysis. Since function spaces are frequently infinite-dimensional, the theory of infinite-dimensional topology has made meaningful contributions to it. Indeed, several function spaces have been shown to be homeomorphic to typical infinite-dimensional spaces. From the end of 1980s to the beginning of 1990s, many researchers investigated topological types of function spaces of real-valued continuous functions on countable spaces endowed with the pointwise convergence topology, see [8]. In this article, we define a hypograph of a map from a compact metrizable space to a dendrite and discuss the topology of the hypograph space. We can consider that hypograph spaces give certain geometric aspect to function spaces with the pointwise convergence topology. This article is a résumé of the joint work with K. Sakai and H. Yang [6].

Throughout the article, all maps are continuous, but functions are not necessarily continuous. Let X be a compact metrizable space and Y be a dendrite with an end point **0**. Recall that a *dendrite* is a Peano continuum, namely a connected, locally connected, compact metrizable space, containing no simple closed curves. An *end point* of a space has an arbitrarily small open neighborhood whose boundary is a singleton. It is well-known that each pair of distinct points of a dendrite is connected by the unique arc [12, Chapter V, (1.2)]. We denote the unique arc of two points x, y in the dendrite Y by [x, y], where it is the constant path if x = y.

For each function $f: X \to Y$, we define the hypograph $\downarrow f$ of f as follows:

$$\downarrow f = \bigcup_{x \in X} \{x\} \times [\mathbf{0}, f(x)] \subset X \times Y.$$

When f is continuous, the hypograph $\downarrow f$ is closed in $X \times Y$. We denote the set of maps from X to Y by C(X, Y) and the hyperspace of non-empty closed sets in $X \times Y$ endowed with the Vietoris topology by $Cld(X \times Y)$. Then we have

$$\downarrow \mathrm{C}(X,Y) = \{\downarrow f \mid f \in \mathrm{C}(X,Y)\} \subset \mathrm{Cld}(X imes Y)$$

Let $\overline{\downarrow C(X,Y)}$ be the closure of $\downarrow C(X,Y)$ in $Cld(X \times Y)$. In the case that Y is the closed unit interval $\mathbf{I} = [0,1]$ and $\mathbf{0} = 0$, we can regard

$$\downarrow \text{USC}(X, \mathbf{I}) = \{ \downarrow f \mid f : X \to \mathbf{I} \text{ is upper semi-continuous} \}$$

as the subspace in $\operatorname{Cld}(X \times \mathbf{I})$. Let $\mathbf{Q} = \mathbf{I}^{\mathbb{N}}$ be the Hilbert cube and $\mathbf{c}_0 = \{(x_i)_{i \in \mathbb{N}} \in \mathbf{Q} \mid \lim_{i \to \infty} x_i = 0\}$. Z. Yang and X. Zhou [10, 11] showed the following theorem:

THEOREM 1.1. Suppose that the set of isolated points of X is not dense. Then $\downarrow \text{USC}(X, \mathbf{I}) = \overline{\downarrow C(X, \mathbf{I})}$ and the pair $(\downarrow \text{USC}(X, \mathbf{I}), \downarrow C(X, \mathbf{I}))$ is homeomorphic to $(\mathbf{Q}, \mathbf{c}_0)$.

For spaces W_1 and W_2 , the symbol (W_1, W_2) means that $W_2 \subset W_1$. A pair (W_1, W_2) of spaces is homeomorphic to (Z_1, Z_2) if there exists a homeomorphism $f: W_1 \to Z_1$ such that $f(W_2) = Z_2$. We generalize their result as follows:

MAIN THEOREM. If X is infinite and locally connected, then the pair $(\overline{\downarrow C(X,Y)}, \downarrow C(X,Y))$ is homeomorphic to $(\mathbf{Q}, \mathbf{c}_0)$.

2 Preliminaries

The topological characterizations for pairs of infinite-dimensional spaces goes back to the uniqueness of cap sets and f-d cap sets due to R.D. Anderson [1], and now, has reached the one of absorbing pairs for each Borel class, refer to [2, 3]. In this section, we shall introduce the notion of strong universality and absorbing pair for the proof of the main theorem. For each open cover \mathcal{U} of a space Z, a map $f: W \to Z$ is \mathcal{U} -close to $g: W \to Z$ provided that for any $w \in W$, both of f(w) and g(w)are contained in some $U \in \mathcal{U}$. When Z = (Z, d) is a metric space, for each $\epsilon > 0$, a map $f: W \to Z$ is said to be ϵ -close to $g: W \to Z$ if $d(f(w), g(w)) < \epsilon$ for all $w \in W$. Let (W_1, W_2) be a pair of spaces, and \mathcal{C}_1 and \mathcal{C}_2 be classes of spaces. We say that (W_1, W_2) is strongly $(\mathcal{C}_1, \mathcal{C}_2)$ -universal if the following condition holds:

(su) Let $Z_1 \in C_1, Z_2 \in C_2$, K a closed subset of Z_1 , and $f : Z_1 \to W_1$ a map such that the restriction $f|_K$ of K is a Z-embedding. Then for every open cover \mathcal{U} of W_1 , there exists a Z-embedding $g: Z_1 \to W_1$ such that g is \mathcal{U} -close to $f, g|_K = f|_K$ and $g^{-1}(W_2) \setminus K = Z_2 \setminus K$.

It is said that a closed subset A of W is a Z-set in W if for each open cover \mathcal{U} of W, there exists a map $f: W \to W$ such that f is \mathcal{U} -close to the identity map id_W and $f(W) \cap A = \emptyset$. A countable union of Z-sets is called a Z_{σ} -set. In addition, a Z-embedding is an embedding whose image is a Z-set. A pair (W_1, W_2) is $(\mathcal{C}_1, \mathcal{C}_2)$ -absorbing provided that the following conditions are satisfied:

- (1) $W_1 \in \mathcal{C}_1$ and $W_2 \in \mathcal{C}_2$;
- (2) W_2 is contained in a Z_{σ} -set in W_1 ;
- (3) (W_1, W_2) is strongly $(\mathcal{C}_1, \mathcal{C}_2)$ -universal.

Denote the class of compact metrizable spaces by \mathcal{M}_0 , and the one of separable metrizable absolute $F_{\sigma\delta}$ -spaces by $\mathcal{F}_{\sigma\delta}$. According to Theorem 1.7.6 of [3], the following can be established.

THEOREM 2.1. Let W_1 and Z_1 be topological copies of the Hilbert cube \mathbf{Q} . If pairs (W_1, W_2) and (Z_1, Z_2) are $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -absorbing, then they are homeomorphic.

The following fact is well known.

FACT 1. The pair $(\mathbf{Q}, \mathbf{c}_0)$ is $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -absorbing.

Combining Theorem 2.1 with Fact 1, we need to show the following conditions:

- (1) $\overline{\downarrow C(X,Y)}$ is homeomorphic to **Q** and $\downarrow C(X,Y)$ is an $F_{\sigma\delta}$ -set in $\overline{\downarrow C(X,Y)}$;
- (2) $\downarrow C(X, Y)$ is contained in a Z_{σ} -set in $\overline{\downarrow C(X, Y)}$;
- (3) $(\downarrow C(X,Y), \downarrow C(X,Y))$ is strongly $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -universal.

3 The space $\downarrow C(X, Y)$ is homeomorphic to the Hilbert cube

This section is devoted to proving the following theorem:

THEOREM 3.1. If X has no isolated points, then $\overline{\downarrow C(X,Y)}$ is homeomorphic to **Q**.

First, we have the following proposition:

PROPOSITION 3.2. If X has no isolated points, then $\overline{\downarrow C(X,Y)}$ is an AR.

Sketch of proof. Observe that $\overline{\downarrow C(X,Y)}$ is a Peano continuum. According to the Wojdysławski Theorem [13], see Theorem 5.3.14 of [7], the hyperspace $\text{Cld}(\overline{\downarrow C(X,Y)})$ is an AR. Then we have the retraction

 $\bigcup:\operatorname{Cld}(\operatorname{Cld}(X\times Y))\ni \mathcal{A}\mapsto \bigcup \mathcal{A}\in\operatorname{Cld}(X\times Y)$

and $\bigcup(\operatorname{Cld}(\overline{\downarrow C(X,Y)})) = \overline{\downarrow C(X,Y)}$. It follows that $\overline{\downarrow C(X,Y)}$ is a retract of $\operatorname{Cld}(\overline{\downarrow C(X,Y)})$, which implies that $\overline{\downarrow C(X,Y)}$ is an AR. \Box

We say that a subset Z is homotopy dense in a space W if there exists a homotopy $h: W \times \mathbf{I} \to W$ such that h(w,0) = w and $h(w,t) \in Z$ for every $w \in W$ and t > 0. Using the same technique as [5, Theorem 4.1], we have the following:

PROPOSITION 3.3. If X has no isolated points, then $\downarrow C(X,Y)$ is homotopy dense in $\downarrow C(X,Y)$.

Let d_X and d_Y be admissible metrics on X and Y, respectively. We use an admissible metric ρ on $X \times Y$ as follows:

$$\rho((x,y),(x',y')) = \max\{d_X(x,x'), d_Y(y,y')\}$$
 for each $x, x' \in X$ and $y, y' \in Y$.

Since X and Y are compact, the hyperspace $\operatorname{Cld}(X \times Y)$ admits the Hausdorff metric ρ_H induced by ρ . For each $A \in \operatorname{Cld}(X \times Y)$, we define a set-valued function $A: X \to \operatorname{Cld}(Y) \cup \{\emptyset\}$ as follows:

$$A(x) = \{y \in Y \mid (x, y) \in A\} \in \operatorname{Cld}(Y) \cup \{\emptyset\}.$$

The following is the key lemma of this article.

LEMMA 3.4 (The Digging Lemma). Let $\phi: Z \to \downarrow C(X, Y)$ be a map of a paracompact Hausdorff space Z. If X has a non-isolated point x_{∞} , then for each map $\epsilon: Z \to (0,1)$, there exist maps $\psi: Z \to \downarrow C(X, Y)$ and $\delta: Z \to (0,1)$ such that for each $z \in Z$,

- (a) $\rho_H(\phi(z),\psi(z)) < \epsilon(z),$
- (b) $\psi(z)(x) = \{\mathbf{0}\}$ for all $x \in X$ with $d_X(x, x_\infty) < \delta(z)$.

A space Z has the disjoint cells property provided that for any maps $f, g: \mathbf{Q} \to Z$ of the Hilbert cube and any open cover \mathcal{U} of Z, there exist maps $f', g': \mathbf{Q} \to Z$ such that f' and g' are \mathcal{U} -close to f and g, respectively, and $f'(\mathbf{Q}) \cap g'(\mathbf{Q}) = \emptyset$.

PROPOSITION 3.5. If X has no isolated points, then $\overline{\downarrow C(X,Y)}$ has the disjoint cells property.

Sketch of proof. Let $f, g: \mathbf{Q} \to \overline{\downarrow C(X, Y)}$ be maps and $\epsilon > 0$. Since $\downarrow C(X, Y)$ is homotopy dense in $\overline{\downarrow C(X, Y)}$ by Proposition 3.3, we can obtain maps $f': \mathbf{Q} \to \downarrow C(X, Y)$ that is ϵ -close to f, and $g': \mathbf{Q} \to \downarrow C(X, Y)$ that is $\epsilon/3$ -close to g. Taking a non-isolated point $x_{\infty} \in X$ and applying the Digging Lemma 3.4, we can find a map $g'': \mathbf{Q} \to \downarrow C(X, Y)$ such that g'' is $\epsilon/3$ -close to g' and $g''(z)(x_{\infty}) = \{\mathbf{0}\}$ for all $z \in \mathbf{Q}$. Define a map $g''': \mathbf{Q} \to \overline{\downarrow C(X, Y)} \setminus \downarrow C(X, Y)$ as follows:

$$g'''(z) = g''(z) \cup \{x_0\} \times \{y \in Y \mid d_Y(y, \mathbf{0}) \le \epsilon/3\}.$$

Then f' and g''' are ϵ -close to f and g, respectively, and $f'(\mathbf{Q}) \cap g'''(\mathbf{Q}) = \emptyset$. \Box

Combining Propositions 3.2 and 3.5 with Toruńczyk's characterization of the Hilbert cube [9], we can obtain Theorem 3.1.

4 The space $\downarrow C(X, Y)$ is an $F_{\sigma\delta}$ -set in $\downarrow C(X, Y)$

In this section, we show the following proposition:

PROPOSITION 4.1. The space $\downarrow C(X,Y)$ is an $F_{\sigma\delta}$ -set in $\overline{\downarrow C(X,Y)}$.

Sketch of proof. For each $\delta, \epsilon > 0$, define $\mathcal{A}(\delta, \epsilon) \subset \overline{\downarrow C(X, Y)}$ as follows:

• $A \in \mathcal{A}(\delta, \epsilon)$ provided that for each $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, if $y_i \in A(x_i)$ and $y_i \notin [0, z_i]$ for any $z_i \in A(x_i) \setminus \{y_i\}, i = 1, 2$, then $d_Y(y_1, y_2) \leq \epsilon$.

Then it is closed in $\overline{\downarrow C(X,Y)}$ and we have

$$\downarrow \mathbb{C}(X,Y) = \bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \mathcal{A}(1/m, 1/n)$$

Hence $\downarrow C(X, Y)$ is an $F_{\sigma\delta}$ -set in $\overline{\downarrow C(X, Y)}$. \Box

5 The space $\downarrow C(X,Y)$ is contained in a Z_{σ} -set in $\overline{\downarrow C(X,Y)}$

We use the following lemma for detecting Z-sets in $\overline{\downarrow C(X, Y)}$.

LEMMA 5.1. Suppose that $F = E \cup Z$ is a closed set in $\overline{\downarrow C(X, Y)}$ such that Z is a Z-set in $\overline{\downarrow C(X, Y)}$, and for each $A \in E$, there exists a point $a \in X$ with $A(a) = \{0\}$. Then F is a Z-set in $\overline{\downarrow C(X, Y)}$.

PROPOSITION 5.2. If X has no isolated points, then $\downarrow C(X,Y)$ is contained in some Z_{σ} -set in $\downarrow C(X,Y)$.

Sketch of proof. Take a countable dense set $D = \{d_n \mid n \in \mathbb{N}\}$ in X. For each $n, m \in \mathbb{N}$,

$$F_{n,m} = \{ \downarrow f \in \downarrow \mathcal{C}(X,Y) \mid d_Y(f(d_n),\mathbf{0}) \ge 1/m \}$$

is a Z-set in $\downarrow C(X, Y)$ due to the Digging Lemma 3.4. Then the closure $\overline{F_{n,m}}$ is a Z-set in $\overline{\downarrow C(X, Y)}$ because $\downarrow C(X, Y)$ is homotopy dense in $\overline{\downarrow C(X, Y)}$ by Proposition 3.3. Moreover, we have

$$F = \bigcap_{n \in \mathbb{N}} \bigcap_{m \in \mathbb{N}} (\downarrow \mathcal{C}(X, Y) \setminus F_{n,m}) = \{X \times \{\mathbf{0}\}\}.$$

It follows from Lemma 5.1 that the closure \overline{F} is a Z-set in $\overline{\downarrow C(X,Y)}$.

6 The pair $(\downarrow C(X,Y), \downarrow C(X,Y))$ is strongly $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -universal

We needs the following lemma to verify the strong $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -universality of $(\overline{\downarrow C(X, Y)}, \downarrow C(X, Y))$.

LEMMA 6.1. Let $x_m, x_\infty \in X$, $m \in \mathbb{N}$, such that $\{r_m = d_X(x_m, x_\infty)\}_{m \in \mathbb{N}}$ is a strictly decreasing sequence conversing to 0, and let $y_0 \in Y \setminus \{\mathbf{0}\}$ such that $d_Y(\mathbf{0}, y_0) \leq 1$. Suppose that $g: Z \to \mathbf{Q}$ is an injection from a space Z into the Hilbert cube \mathbf{Q} and $\delta: Z \to (0, 1)$ is a map. Then there exists a map $\Phi: Z \to \downarrow C(X, [\mathbf{0}, y_0])$ satisfying the following conditions:

- (1) Φ is injective;
- (2) $\rho_H(\Phi(z), X \times \{\mathbf{0}\}) \leq \delta(z)$ for all $z \in Z$;
- (3) $\Phi(z)(x) = \{0\}$ for all $x \in X$ with $d_X(x, x_\infty) \ge r_{2k}$ and $z \in Z$ with $2^{-k} \le \delta(z) \le 2^{-k+1}$, $k \in \mathbb{N}$;
- (4) $z \in g^{-1}(\mathbf{c}_0)$ if and only if $\Phi(z) \in \downarrow \mathbb{C}(X, [\mathbf{0}, y_0]);$
- (5) $\Phi(z)(x_{\infty}) = \{y \in [0, y_0] \mid d_Y(y, 0) \le \delta(z)\} \text{ for all } z \in Z.$

PROPOSITION 6.2. If X has no isolated points, then $(\overline{\downarrow C(X,Y)},\downarrow C(X,Y))$ is strongly $(\mathcal{M}_0,\mathcal{F}_{\sigma\delta})$ -universal.

Sketch of proof. Let $Z \in \mathcal{M}_0$, $C \in \mathcal{F}_{\sigma\delta}$, K a closed subset of Z, $0 < \epsilon$ and $\Phi : Z \to \overline{\downarrow C(X, Y)}$ a map such that $\Phi|_K$ is a Z-embedding. We shall construct a Z-embedding $\Psi : Z \to \overline{\downarrow C(X, Y)}$ so that Ψ is ϵ -close to Φ , $\Psi|_K = \Phi|_K$ and $\Psi^{-1}(\downarrow C(X, Y)) \setminus K = C \setminus K$.

Since $\Phi(K)$ is a Z-set in $\overline{\downarrow C(X,Y)}$, we may assume that $\Phi(K) \cap \Phi(Z \setminus K) = \emptyset$. Define $\delta(z) = \min\{\epsilon, \rho_H(\Phi(z), \Phi(K))\}/4$. Since $\downarrow C(X,Y)$ is homotopy dense in $\overline{\downarrow C(X,Y)}$ by Proposition 3.3, there exists $h: Z \to \overline{\downarrow C(X,Y)}$ such that $\rho_H(h(z), \Phi(z)) \leq \delta(z)$ and $h(Z \setminus K) \subset \downarrow C(X,Y)$.

Take a non-isolated point $x_{\infty} \in X$. By the Digging Lemma 3.4, we can obtain $\psi : Z \setminus K \to \downarrow C(X, Y)$ and $r : Z \setminus K \to (0, 1)$ so that

- (a) $\rho_H(h(z),\psi(z)) \leq \delta(z),$
- (b) $\psi(z)(x) = \{0\}$ for all $x \in X$ with $d_X(x, x_\infty) < r(z)$.

Let $Z_k = \{z \in Z \mid 2^{-k} \leq \delta(z) \leq 2^{-k+1}\} \subset Z \setminus K$. Since x_{∞} is a non-isolated point, we can choose $x_m \in X \setminus \{x_{\infty}\}$ so that $r_m = d_X(x_m, x_{\infty}) < \min\{1/m, d_X(x_{m-1}, x_{\infty}), r(z) \mid z \in Z_m\}$. Since $(\mathbf{Q}, \mathbf{c}_0)$ is strongly $(\mathcal{M}_0, \mathcal{F}_{\sigma\delta})$ -universal by Fact 1, we can take am embedding $g : Z \to \mathbf{Q}$ so that $g^{-1}(\mathbf{c}_0) = C$. Choose $y_0 \in Y \setminus \{\mathbf{0}\}$ with $d_Y(\mathbf{0}, y_0) \leq 1$. Using Lemma 6.1, we can obtain $\psi' : Z \setminus K \to \bigcup(X, [\mathbf{0}, y_0])$ satisfying the following conditions:

- (1) ψ' is injective;
- (2) $\rho_H(\psi'(z), X \times \{0\}) \leq \delta(z)$ for all $z \in Z \setminus K$;
- (3) $\psi'(z)(x) = \{0\}$ for all $x \in X$ with $d_X(x, x_\infty) \ge r_{2k}$ and $z \in Z_k, k \in \mathbb{N};$
- (4) $z \in C \setminus K$ if and only if $\psi'(z) \in \downarrow C(X, [0, y_0]);$
- (5) $\psi'(z)(x_{\infty}) = \{y \in [\mathbf{0}, y_0] \mid d_Y(y, \mathbf{0}) \leq \delta(z)\}$ for all $z \in Z \setminus K$.

Define $\Psi|_{Z\setminus K}$ by $\Psi(z) = \psi(z) \cup \psi'(z)$. \Box

7 Remarks

In this section, we will give some remarks on the main theorem. For more details, refer to [4]. Z. Yang and X. Zhou [11] proved the stronger result as follows:

THEOREM 7.1. The pair $(\downarrow USC(X, \mathbf{I}), \downarrow C(X, \mathbf{I}))$ is homeomorphic to $(\mathbf{Q}, \mathbf{c}_0)$ if and only if the set of isolated points of X is not dense.

It is unknown whether the same result holds or not in the general case. However, the author [4] shows the following theorem (Z. Yang [10] proved the case that Y = I).

THEOREM 7.2. The space $\downarrow C(X, Y)$ is a Bare space if and only if the set of isolated points of X is dense.

Sketch of proof. The "only if" part follows from the same argument as Section 5. In fact, if the set of isolated points of X is not dense, then $\downarrow C(X, Y)$ is a Z_{σ} -set in itself, and hence it is not a Bare space.

Next, we show the "if" part. Let X_0 be the set of isolated points in X and \mathcal{F} be the finite subsets of X_0 . For each $F \in \mathcal{F}$ and $n \in \mathbb{N}$, we define

 $U_{F,n} = \{ A \in \overline{\downarrow \mathcal{C}(X,Y)} \mid d_Y(y,\mathbf{0}) < 1/n \text{ for all } x \in X \setminus F \text{ and } y \in A(x) \}.$

Then $U_{F,n}$ is open in $\overline{\downarrow C(X,Y)}$ and $U_n = \bigcup_{F \in \mathcal{F}} U_{F,n}$ is dense in $\overline{\downarrow C(X,Y)}$. Observe that the G_{δ} -set $G = \bigcap_{n \in \mathbb{N}} U_n \subset \downarrow C(X,Y)$ is a Baire space and dense in $\downarrow C(X,Y)$. Consequently, $\downarrow C(X,Y)$ is a Baire space. \Box

References

- [1] R.D. Anderson, On sigma-compact subsets of infinite-dimensional spaces, (unpublished).
- [2] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), no. 2, 147–182.
- [3] T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, Math. Stud. Monogr. Ser., 1, VNTL Publishers, Lviv, 1996.
- [4] K. Koshino, Infinite-dimensional manifolds and their pairs, PhD dissertation, University of Tsukuba (2014).
- [5] K. Koshino and K. Sakai, A Hilbert cube compactification of a function space from a Peano space into a one-dimensional locally compact absolute retract, Topology Appl. 161 (2014), 37– 57.
- [6] K. Koshino, K. Sakai and H. Yang, A function space from a compact metrizable space to a dendrite with the hypo-graph topology, Cent. Eur. J. Math., (submitted).
- [7] J. van Mill, Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland Math. Library, 43, Elsevier Sci. Publ., Amsterdam, 1989.
- [8] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001.

- [9] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), 31-40.
- [10] Z. Yang, The hyperspace of the regions below of continuous maps is homeomorphic to c_0 , Topology Appl. 153 (2006), 2908-2921.
- [11] Z. Yang and X. Zhou, A pair of spaces of upper semi-continuous maps and continuous maps, Topology Appl. 154 (2007), 1737-1747.
- [12] G.T. Whyburn, Analytic Topology, AMS Colloq. Publ., 28, Amer. Math. Soc., Providence, R.I., 1963.
- [13] M. Wojdysławski, Retractes absolus et hyperspaces des continus, Fund. Math. 32 (1939), 184– 192.

Doctoral Program in Mathematics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan E-mail: kakoshino@math.tsukuba.ac.jp