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On equivariant homeomorphisms of boundaries of
CAT(0) groups and Coxeter groups
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1. INTRODUCTION

In this note, we introduce on equivariant homeomorphisms of boundaries of
CAT(0) groups (and Coxeter groups) and (boundary-)rigidity in [17].

A geometric action on a CAT(0) space is an action by isometries which is proper
and cocompact. We note that every CAT(0) space X on which some group G
acts geometrically is a proper space and we can consider its ideal boundary X
(cf. [4], [11]). A group G is called a CAT(0) group, if G acts geometrically on
some CAT(0) space X.

It is well-known that if a Gromov hyperbolic group G acts geometrically on two
negatively curved spaces X and Y, then the natural quasi-isometry ¢ : Gzy —
Gyo (920 — gyo) extends continuously to a G-equivariant homeomorphism ¢ :
0X — 9Y of the boundaries of X and Y (cf. [4], [5], [11], [12], [13]).

M. Gromov [13] asked whether the boundaries of two CAT(0) spaces X and

Y are G-equivariant homeomorphic whenever a CAT(0) group G acts geometri-

cally on the two CAT(0) spaces X and Y. P. L. Bowers and K. Ruane [3] have

constructed an example that the natural quasi-isometry Gzo — Gyo (920 — g¥0o)

does not extend continuoxisly to any map between the boundaries 0X and 9Y of

X and Y. Also, C. Croke and B. Kleiner [6] have constructed a CAT(0) group G

which acts geometrically on two CAT(0) spaces X and Y whose boundaries are

- not homeomorphic, and J. Wilson [26] has proved that this CAT(0) group has
uncountably many boundaries.

In this note, we suppose that a CAT(0) group G acts geometrically on two
CAT(0) spaces X and Y. Let zp € X and yp € Y.

Then we consider the following question.
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Question. When does the quasi-isometry ¢ : Gzo — Gyo (920 — gyo) continu-
ously extend to a G-equivariant homeomorphism ¢ : X — Y of the boundaries?

i~ X D Gz «— 0X

G ¢4 167
f\.YDGy()(——-) oY

2. MAIN THEOREMS

The following condition (*) comes from observating the Bowers-Ruane’s exam-
ple.

(*) There exist constants N > 0 and M > 0 such that GB(zo, N) = X,
GB(y, M) =Y and for any g,a € G, if [zg, gzo] N B(azo, N) # @ in X
hen (w0, g30] O Blayo, M) £ 0in ¥
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Then we obtain the following theorem.

Theorem 1 ([17]). If the condition () holds, then the quasi-isometry ¢ : Gzy —
Gyo (9zo — gyo) continuously extends to a G-equivariant homeomorphism ¢ :
0X — 0Y of the boundaries.

We also consider the following condition (*x).

(x+) For any sequence {g; |7 € N} C G, the sequence {g;xo |i € N} is a Cauchy
sequence in X U 0X if and only if the sequence {g;yo |7 € N} is a Cauchy
sequence in Y U dY.

Then we also obtain the following theorem.

Theorem 2 ([17]). The condition (xx) holds if and only if the quasi-isometry ¢ :
Gzo = Gyo (9o — gyo) continuously extends to a G-equivariant homeomorphism
é: 0X — dY of the boundaries.



3. RIGIDITY OF BOUNDARIES

In this note, a CAT(0) group G is said to be (boundary-)rigid, if G determines
its ideal boundary up to homeomorphisms, i.e., all boundaries of CAT(0) spaces
on which G acts geometrically are homeomorphic.

Also a CAT(0) group G is said to be equivariant (boundary) rigid, if G deter-
mines its ideal boundary by the equivariant homeomorphisms as above (i.e., if
for any two CAT(0) spaces X and Y on which G acts geometrically the quasi-
isometry ¢ : Gxg — Gyo (970 — gyo) continuously extends to a G-equivariant
homeomorphism ¢ : X — Y of the boundaries).

As an application of Theorem 1, we can obtain examples of equivariant rigid
CAT(0) groups.

Example ([17]). Any group of the form
Z™ % - x L™ x Ay - - x A;
where n; € N and each A; is a finite group is an equivariant rigid CAT(0) group.

As an application df Theorem 2, we can also obtain examples of non equivariant
rigid CAT(0) groups.

Example ([17]). Let G = F; x Z, where F} is the rank 2 free group generated by
{a,b}. Let T and T" be the Cayley graphs of F, with respect to the generating
set {a, b} such that

(1) in T, all edges [g, ga] and [g, gb] (g € F3) have the unit length, and

(2) in T”, the length of [g, ga] is 2 and the length of [g, gb] is 1 for any g € F.

Here we note that F;, acts naturally and geometrically on T and T".
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Let X=TxRandY =T xR.
We consider the natural actions of the group G = F, X Z on the CAT(0) spaces
X and Y. Then the group G acts geometrically on the two CAT(0) spaces X and

AT,

N

X=TxR Y=T"xR

Y, and the quasi-isometry gzo — gyo (Where zo = (1,0) € X and yp = (1, O)ye Y)
- does not extend continuously to any map from dX to Y.
Indeed, we can consider the sequence {g, |n € N} C F; such that g, = ab and

_ gn10®""" if nis even
In gn1b""" if nis odd

for n > 2. Here we note that the length of the words of g, in F} is 2".

a_b‘aabbbb raaaaaaabbbbbbbbbbbbbbbbacaaaaa - - - - - -
)

o |

7))

gs

Let g, = (9n,2") € F» X Z for n € N. Then {g,zo} is a Cauchy sequence in
X UdX. On the other hand, {g.yo} is not a Cauchy sequence in Y U dY (see
Figure 1). ‘

Hence, the quasi-isometry ¢ : Gzo — Gyo (920 — gyo) does not continuously
extend to any map ¢ : X — Y of the boundaries.

Remark ([17]).
e G = F, x Z is a non equivariant rigid CAT(0) group.
e G = F, xZis arigid CAT(0) group whose boundary is the suspension of
the Cantor set.



FIGURE 1

e By the same idea, every CAT(0) group of the form G = F x H where F
is a free group of rank n > 2 and H is an infinite CAT(0) group, is non
equivariant rigid.

4. COXETER GROUPS ACTING CAT(0) SPACES AS REFLECTION GROUPS

A Coxeter group W is said to be equivariant rigid as a reflection group, if for
any two CAT(0) spaces X and Y on which W acts geometrically as reflection
groups, the quasi-isometry ¢ : Wzo — Wy (wzo — wyy) where 2o € X and
Yo € Y continuously extends to a W-equivariant homeomorphism ¢ : 8X — 8Y
of the boundaries. ‘

Theorem 3 ([17]). The following statements hold.

(i) If Cozeter groups W, and W, are equivariant rigid as reflection groups,
 then so is Wi x Wi
(ii) For a Cozeter group W = Wy sy, . Wp where Wanp is finite, if W
 determines its Cozeter system up to isomorphism, and if W4 and Wg
are equwariant rigid as reflection groups then so is W, where Wy is the
parabolic subgroup of W generated by T.

Corollary 4 ([17]). Any group of the form
W=W,x W,

where each W; is a Gromov hyperbolic Cozeter group, an affine Cozeter group or
a finite Cozeter group, is an equivariant rigid as a reflection group.

Corollary 5 ([17]). Any Cozeter group of the form
W= (- (Wa, *ws, Wa,) *wp, Wag) %) ¥wy _ Wa,
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where each Wy, is a Gromov hyperbolic Cozeter group, an affine Cozeter group or
a finite Cozeter group, each Wp, is finite and W determines its Cozeter system
up to isomorphism, is an equivariant rigid as a reflection group.

Example. The Coxeter groups defined by the following diagrams are equivariant
rigid as reflection groups.

5. CONJECTURE
Now we introduce a conjecture.

Conjecture ([17]). The group G = (F> X Z) * Z, will be a non-rigid CAT(0)
group with uncountably many boundaries.

For p > ¢ > 1, let T, , be the Cayley graph of the free group F, with the
generating set {a, b} such that

e the length of [g, ga] is p and the length of [g, gb] is ¢ for any g € F.

|
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Then Fy X Z acts naturally on T}, , x R. We can construct a cuboidal cell complex
Lpq on which G = (F, x Z) * Zy acts geometrically, where the 1-skeleton of qu
is the Cayley graph of G and T,,, C 215,,3

Then, the author thinks that if fl—’ # 5’7 then the boundaries 0%, , and 0%, 4
will be not homeomorphic.

6. ON RIGIDITY

Finally, we introduce problems of rigidity in group actions.

Let G and H be groups acting geometrically (i.e. properly and cocompactly by
isometries) on metric spaces (X, dx) and (Y, dy) respectively. We con31der orbits
Gzp C X and Hyy CY where o € X and yp € Y.

Let ¢ : G — H be a map and let ¢’ : Gzg — Hyo (9zo — ¢(9)yo)-

Here if X and Y are Gromov hyperbolic spaces, CAT(0) spaces or Busemann
spaces, then we can define the boundaries 9X and 9Y.

Then it is well-known that if ¢ : G — H is an isomorphism then ¢’ : Gzy — Hyg
is a quasi-isometry and moreover if G is Gromov hyperbolic then ¢’ induces an
equivariant homeomorphism ¢ : 9X — 9Y.

Theorem 2 implies that if ¢ : G — H is an isomorphism and the map
¢’ : Gxo — Hyp satisfies the condition (*x) then ¢’ induces an equivariant home-
omorphism ¢ : X — 8Y.

67



68

G ~ X D Gry +— 0X

1¢ 1¢ 19
H A Y > Hy ¢+ Y

Then there are problems of rigidity.

(I) If ¢ : G —» H is an isomorphism then when does there exist an homeo-
morphism ¢ : 0X — 0Y?
(II) If ¢ : G — H is an isomorphism then when does ¢’ induce an equivariant
homeomorphism ¢ : X — 8Y?

(III) If X = Y and Gzo = Hzo then when are groups G and H virtually
isomorphic (i.e. there exist finite-index subgroups G’ and H’ of G and H
respectively such that G’ and H' are isomorphic)?

(IV) If X =Y and Gzo = Hx, then when do there exist finite-index subgroups
G’ and H' of G and H respectively such that G’ and H' are conjugate in
the isometry group Isom(X) of X?

(V) If there is an isomorphism ¢ : G — H then when does there exist a
homeomorphism (or homotopy equivalence) ¢ : X/G — Y/H?

Here it seems that (III)-(V) are relate to [1], [8], [9], [14], [18], [19], [20], [22]
and [23].
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