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1. INTRODUCTION

In this note, we introduce on equivariant homeomorphisms of boundaries of
CAT(0) groups (and Coxeter groups) and (boundary-)rigidity in [17].

A geometric action on a CAT(0) space is an action by isometries which is proper
and cocompact. We note that every CAT(0) space $X$ on which some group $G$

acts geometrically is a proper space and we can consider its ideal boundary $\partial X$

(cf. [4], [11]). $A$ group $G$ is called a CAT(0) group, if $G$ acts geometrically on
some CAT(0) space $X.$

It is well-known that if a Gromov hyperbolic group $G$ acts geometrically on two
negatively curved spaces $X$ and $Y$ , then the natural quasi-isometry $\phi$ : $Gx_{0}arrow$

$Gy_{0}(gx_{0}\mapsto gy_{0})$ extends continuously to a $G$-equivariant homeomorphism $\overline{\phi}$ :
$\partial Xarrow\partial Y$ of the boundaries of $X$ and $Y$ (cf. [4], [5], [11], [12], [13]).

M. Gromov [13] asked whether the boundaries of two CAT(0) spaces $X$ and
$Y$ are $G$-equivariant homeomorphic whenever a CAT(0) group $G$ acts geometri-
cally on the two CAT(0) spaces $X$ and $Y$ . P. L. Bowers and K. Ruane [3] have
constructed an example that the natural quasi-isometry $Gx_{0}arrow Gy_{0}(gx_{0}\mapsto gy_{0})$

does not extend continuously to any map between the boundaries $\partial X$ and $\partial Y$ of
$X$ and $Y$ . Also, C. Croke and B. Kleiner [6] have constructed a CAT(0) group $G$

which acts geometrically on two CAT(0) spaces $X$ and $Y$ whose boundaries are
not homeomorphic, and J. Wilson [26] has proved that this CAT(0) group has
uncountably many boundaries.

In this note, we suppose that a CAT(0) group $G$ acts geometrically on two
CAT(0) spaces $X$ and $Y$ . Let $x_{0}\in X$ and $y_{0}\in Y.$

Then we consider the following question.
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Question. When does the quasi-isometry $\phi$ : $Gx_{0}arrow Gy_{0}(gx_{0}\mapsto gy_{0})$ continu-
ously extend to a $G$-equivariant homeomorphism $\overline{\phi}:\partial Xarrow\partial Y$ of the boundaries?

$\dot{} X \supset Gx_{0} rightarrow \partial X$

$G$ $\phi\downarrow$ $\downarrow\overline{\phi}$ ?

$\backslash Y \supset Gy_{0} rightarrow \partial Y$

2. MAIN THEOREMS

The following condition $(*)$ comes from observating the Bowers-Ruane’s exam-
ple.

$(*)$ There exist constants $N>0$ and $M>0$ such that $GB(x_{0}, N)=X,$

$GB(y_{0}, M)=Y$ and for any $g,$ $a\in G$ , if $[x_{0}, gx_{0}]\cap B(ax_{0}, N)\neq\emptyset$ in $X$

then $[y_{0}, gy_{0}]\cap B(ay_{0}, M)\neq\emptyset$ in $Y.$

$\llcorner\cross \llcorner Y$

$\Rightarrow$

$x_{0} y_{0}$

Then we obtain the following theorem.

Theorem 1 ([17]). If the condition $(*)$ holds, then the quasi-isometry $\phi$ : $Gx_{0}arrow$

$Gy_{0}(gx_{0}\mapsto gy_{0})$ continuously extends to a $G$ -equivariant homeomorphism $\overline{\phi}$ :
$\partial Xarrow\partial Y$ of the boundaries.

We also consider the following condition $(**)$ .
$(**)$ For any sequence $\{g_{i}|i\in \mathbb{N}\}\subset G$ , the sequence $\{g_{i}x_{0}|i\in \mathbb{N}\}$ is a Cauchy

sequence in $X\cup\partial X$ if and only if the sequence $\{g_{i}y_{0}|i\in \mathbb{N}\}$ is a Cauchy
sequence in $Y\cup\partial Y.$

Then we also obtain the following theorem.

Theorem 2 ([17]). The condition $(**)$ holds if and only if the quasi-isometry $\phi$ :
$Gx_{0}arrow Gy_{0}(gx_{0}\mapsto gy_{0})$ continuously extends to a $G$-equivariant homeomorphism
$\overline{\phi}:\partial Xarrow\partial Y$ of the boundaries.
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3. RIGIDITY OF BOUNDARIES

In this note, a CAT(0) group $G$ is said to be (boundary-)rigid, if $G$ determines
its ideal boundary up to homeomorphisms, i.e., all boundaries of CAT(0) spaces
on which $G$ acts geometrically are homeomorphic.

Also a CAT(0) group $G$ is said to be equivariant (boundary) rigid, if $G$ deter-
mines its ideal boundary by the equivariant homeomorphisms as above (i.e., if
for any two CAT(0) spaces $X$ and $Y$ on which $G$ acts geometrically the quasi-
isometry $\phi$ : $Gx_{0}arrow Gy_{0}(gx_{0}\mapsto gy_{0})$ continuously extends to a $G$-equivariant
homeomorphism $\overline{\phi}:\partial Xarrow\partial Y$ of the $bo$undaries).

As an application of Theorem 1, we can obtain examples of equivariant rigid
CAT(0) groups.

Example ([17]). Any group of the form
$\mathbb{Z}^{n_{1}}*\cdots*\mathbb{Z}^{n_{k}}*A_{1}*\cdots*A_{\iota}$

where $n_{i}\in \mathbb{N}$ and each $A_{j}$ is a finite group is an equivariant rigid CAT(0) group.

As an application of Theorem 2, we can also obtain examples of non equivariant
rigid CAT(0) groups.

Example ([17]). Let $G=F_{2}\cross \mathbb{Z}$ , where $F_{2}$ is the rank 2 free group generated by
$\{a, b\}$ . Let $T$ and $T’$ be the Cayley graphs of $F_{2}$ with respect to the generating
set $\{a, b\}$ such that

(1) in $T$ , all edges $[g, ga]$ and $[g, gb](g\in F_{2})$ have the unit length, and
(2) in $T’$ , the length of $[g, ga]$ is 2 and the length of $[g, gb]$ is 1 for any $g\in F_{2}.$

$T$ $T’$

Here we note that $F_{2}$ acts naturally and geometrically on $T$ and $T’.$
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Let $X=T\cross \mathbb{R}$ and $Y=T’\cross \mathbb{R}.$

We consider the natural actions of the group $G=F_{2}\cross \mathbb{Z}$ on the CAT(0) spaces
$X$ and $Y$ . Then the group $G$ acts geometrically on the two CAT(0) spaces $X$ and

$X=T\cross \mathbb{R} Y=T’\cross \mathbb{R}$

$Y$ , and the quaei-isometry $gx_{0}\mapsto gy_{0}$ $($where $x_{0}=(1,0)\in X$ and $y_{0}=(1,0)\in Y)$

does not extend continuously to any map from $\partial X$ to $\partial Y.$

Indeed, we can consider the sequence $\{g_{n}|n\in \mathbb{N}\}\subset F_{2}$ such that $g_{1}=ab$ and

$g_{n}=\{\begin{array}{ll}g_{n-1}a^{2^{n-1}} if n is eveng_{n-1}b^{2^{n-1}} if n is odd\end{array}$

for $n\geq 2$ . Here we note that the length of the words of $g_{n}$ in $F_{2}$ is $2^{n}.$

Let $\overline{g}_{n}=(g_{n}, 2^{n})\in F_{2}\cross \mathbb{Z}$ for $n\in \mathbb{N}$ . Then $\{\overline{g}_{n}x_{0}\}$ is a Cauchy sequence in
$X\cup\partial X$ . On the other hand, $\{\overline{g}_{n}y_{0}\}$ is not a Cauchy sequence in $Y\cup\partial Y$ (see
Figure 1).

Hence, the quasi-isometry $\phi$ : $Gx_{0}arrow Gy_{0}(gx_{0}\mapsto gy_{0})$ does not continuously
extend to any map $\overline{\phi}:\partial Xarrow\partial Y$ of the boundaries.

Remark ([17]).
$\bullet$ $G=F_{2}\cross \mathbb{Z}$ is a non equivariant rigid CAT(0) group.
$\bullet$ $G=F_{2}\cross \mathbb{Z}$ is a rigid CAT(0) group whose boundary is the suspension of

the Cantor set.
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FIGURE 1

$\bullet$ By the same idea, every CAT(0) group of the form $G=F\cross H$ where $F$

is a free group of rank $n\geq 2$ and $H$ is an infinite CAT(0) group, is non
equivariant rigid.

4. COXETER GROUPS ACTING CAT(0) SPACES AS REFLECTION GROUPS

A Coxeter group $W$ is said to be equivariant rigid $a\mathcal{S}$ a reflection group, if for
any two CAT(0) spaces $X$ and $Y$ on which $W$ acts geometrically as reflection
groups, the quasi-isometry $\phi$ : $Wx_{0}arrow Wy_{0}(wx_{0}\mapsto wy_{0})$ where $x_{0}\in X$ and
$y_{0}\in Y$ continuously extends to a $W$-equivariant homeomorphism $\overline{\phi}:\partial Xarrow\partial Y$

of the $bo$undaries.

Theorem 3 ([17]). The following statements hold.
(i) If Coxeter groups $W_{1}$ and $W_{2}$ are equivariant rigid as reflection groups,

then so is $W_{1}*W_{2}.$

(ii) For a Coxeter group $W=W_{A}*W_{A\cap B}W_{B}$ where $W_{A\cap B}$ is finite, if $W$

determines its Coxeter system up to isomorphism, and if $W_{A}$ and $W_{B}$

are equivariant rigid as reflection groups then so is $W$ , where $W_{T}$ is the
parabolic subgroup of $W$ generated by $T.$

Corollary 4 ([17]). Any group of the form
$W=W_{1}*\cdots*W_{n}$

where each $W_{i}$ is a Gromov hyperbolic Coxeter group, an affine Coxeter group or
a finite Coxeter group, is an equivariant rigid as a reflection group.

Corollary 5 ([17]). Any Coxeter group of the form
$W=(\cdots(W_{A_{1}^{*}W_{B_{1}}}W_{A_{2}})*W_{B_{2}}W_{A_{3}})*\cdots)*W_{B_{n-1}}W_{A_{n}}$
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where each $W_{A_{i}}$ is a Gromov hyperbolic Coxeter group, an affine Coxeter group or
a finite Coxeter group, each $W_{B_{i}}$ is finite and $W$ determines its Coxeter system
up to isomorphism, is an equivariant rigid as a reflection group.

Example. The Coxeter groups defined by the following diagrams are equivariant
rigid as reflection groups.

5. CONJECTURE

Now we introduce a conjecture.

Conjecture ([17]). The group $G=(F_{2}\cross \mathbb{Z})*\mathbb{Z}_{2}$ will be a non-rigid CAT(0)
group with uncountably many boundaries.

For $p\geq q\geq 1$ , let $T_{p,q}$ be the Cayley graph of the free group $F_{2}$ with the
generating set $\{a, b\}$ such that

$\bullet$ the length of $[g, ga]$ is $p$ and the length of $[g, gb]$ is $q$ for any $g\in F.$

$T_{p,q}$
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$\Sigma_{p,q}$

Then $F_{2}\cross \mathbb{Z}$ acts naturally on $T_{p,q}\cross \mathbb{R}$ . We can construct a cuboidal cell complex
$\Sigma_{p,q}$ on which $G=(F_{2}\cross \mathbb{Z})*\mathbb{Z}_{2}$ acts geometrically, where the 1-skeleton of $\Sigma_{p,q}$

is the Cayley graph of $G$ and $T_{p,q}\subset\Sigma_{p,q}^{(1)}.$

Then, the author thinks that if $2q \neq\frac{p’}{q}$ then the boundaries $\partial\Sigma_{p,q}$ and $\partial\Sigma_{p’,q’}$

will be not homeomorphic.

6. ON RIGIDITY

Finally, we introduce problems of rigidity in group actions.
Let $G$ and $H$ be groups acting geometrically (i.e. properly and cocompactly by

isometries) on metric spaces $(X, d_{X})$ and $(Y, d_{Y})$ respectively. We consider orbits
$Gx_{0}\subset X$ and $Hy_{0}\subset Y$ where $x_{0}\in X$ and $y_{0}\in Y.$

Let $\phi$ : $Garrow H$ be a map and let $\phi’$ : $Gx_{0}arrow Hy_{0}(gx_{0}\mapsto\phi(g)y_{0})$ .
Here if $X$ and $Y$ are Gromov hyperbolic spaces, CAT(0) spaces or Busemann

spaces, then we can define the boundaries $\partial X$ and $\partial Y.$

Then it is well-known that if $\phi$ : $Garrow H$ is an isomorphism then $\phi’$ : $Gx_{0}arrow Hy_{0}$

is a quasi-isometry and moreover if $G$ is Gromov hyperbolic then $\phi’$ induces an
equivariant homeomorphism $\overline{\phi}:\partial Xarrow\partial Y.$

Theorem 2 implies that if $\phi$ : $Garrow H$ is an isomorphism and the map
$\phi’$ : $Gx_{0}arrow Hy_{0}$ satisfies the condition $(**)$ then $\phi’$ induces an equivariant home-
omorphism $\overline{\phi}$ : $\partial Xarrow\partial Y.$
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$G arrow X \supset Gx_{0} rightarrow \partial X$

$\downarrow\phi \downarrow\phi’ \downarrow\overline{\phi}$

$H arrow Y \supset Hy_{0} rightarrow \partial Y$

Then there are problems of rigidity.

(I) If $\phi$ : $Garrow H$ is an isomorphism then when does there exist an homeo-
morphism $\overline{\phi}:\partial Xarrow\partial Y$ ?

(II) If $\phi$ : $Garrow H$ is an isomorphism then when does $\phi’$ induce an equivariant
homeomorphism $\overline{\phi}:\partial Xarrow\partial Y$?

(III) If $X=Y$ and $Gx_{0}=Hx_{0}$ then when are groups $G$ and $H$ virtually
isomorphic (i.e. there exist finite-index subgroups $G’$ and $H’$ of $G$ and $H$

respectively such that $G’$ and $H’$ are isomorphic)?
(IV) If $X=Y$ and $Gx_{0}=Hx_{0}$ then when do there exist finite-index subgroups

$G’$ and $H’$ of $G$ and $H$ respectively such that $G’$ and $H’$ are conjugate in
the isometry group Isom(X) of $X$ ?

(V) If there is an isomorphism $\phi$ : $Garrow H$ then when does there exist a
homeomorphism (or homotopy equivalence) $\psi$ : $X/Garrow Y/H$?

Here it seems that (III)-(V) are relate to [1], [8], [9], [14], [18], [19], [20], [22]
and [23].
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