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1 Introduction

European-style options, which can only be exercised at its maturity, have closed-form formulas
for their values in the standard model pioneered by Black and Scholes [9] and Merton [33].
Although a vast majority of traded options are of American-style optimally exercised before
maturity, there are no closed-form formulas for their values even in the standard model called
vanilla. The original statements of the American options problem are dating back to the work
of Samuelson [37] and McKean [32]; see Barone-Adesi [3] for a concise review of the American
options problem. The principal difficulty in analyzing American options may be the absence of
an explicit expression for the early exercise boundary (EEB), which is an optimal level of critical
asset value where early exercise occurs.

Kim [24] provided an integral representation for the American put value as a function of the
EEB; see Jacka [20] and Carr et al. [13] for related studies. The integral representation suggests
the idea of computing the option value via numerical integration. To implement this idea in
practice, we need to obtain an accurate EEB approximation possibly in closed form. Various
but non-closed form approximations have been developed for the EEBs: An early work toward
approximating EEBs was Geske and Johnson [16], in which the option values are represented
by a series of compound options with multivariate normal terms, and the EEB is evaluated only
at a very limited number of points of time. The approximation developed by MacMillan [30]
and Barone-Adesi and Whaley [5] is usually referred to as the quadratic approximation, and
that is known to be consistent with the exact result for the perpetual case. The quadratic
approximation for the EEB is given by a solution of a nonlinear equation, and hence we need
some root-finding algorithm such as the Newton-Raphson algorithm. The Barone-Adesi and
Whaley original quadratic approximation scheme by MacMillan [30] and [5] generates large
pricing errors in some cases, and hence some refined approximations have been proposed, e.g., by
Barone-Adesi and Elliot [4], Ju and Zhong [22] and Andrikopoulos [1]. Bunch and Johnson [10]
derived a nonlinear equation for the EEB, based on the tangent approximation for the first
passage probability of time to early exercise. This nonlinear equation also needs to be solved
iteratively; see Zhu and He [41] for a refinement. We should mention that Zhu [39, 40] has been
trying to develop closed-form approximations for the EEBs, but there still remain complicated
expressions in his formulas, e.g., they are given in an infinite-series form and$/or$ in an integral
form.

*This is an early draft of my paper “An asymptotic approximation for the early exercise boundary of American
options” in preparation.
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No doubt, the simplest approximation is a flat boundary. Barone-Adesi and Whaley [5]
proposed a flat approximation as an initial guess of their iterative procedure to find the opti-

mal EEB. Bjerksund and Stensland [7] have slightly modified this approximation to value the
American option as a barrier option with knockout feature. Bjerksund and Stensland [8] further
proposed an extended model by dividing the trading period into two parts according to the
golden rule, each with a flat boundary. $A$ strategy following from a flat EEB is feasible, but
not optimal, which means that the option value with this strategy represents a lower bound to
the true option value. Toward the optimal strategy, Huang et al. [18] assumed the EEB as a
piecewise-constant function of time to maturity, and provided a recursive algorithm for obtaining
a suboptimal exercise levels; see also Ingersoll [19] for the constant case and Sbuelz [38] for the
two-step case. Instead of the step-function approximations, Omberg [36] and Ju [21] assumed
an exponential function and a piecewise-exponential function for the EEB, respectively. In both
approximations, however, there are no closed-form solutions for the bases and the exponents
of those exponential functions, which must be computed numerically in their approaches; see
Ingersoll [19] and Nunes [35] for numerical comparison of their pricing errors.

The multipiece EEB approximations in Huang et al. [18] and Ju [21] naturally have discon-
tinuous points in the boundary, but the EEB should be smooth intrinsically [34]. Clearly, the
discontinuity in the multipiece EEB approximations become an serious obstacle for accurate
decision making of the option holders. If we regard the EEB approximation as a tool for quick
decision-making in optimal-stopping situations as well as a tool for pricing, it should be a con-
tinuous and explicit function of time. $A$ class of exponential functions would be an appropriate
choice for the EEB approximation. Our goal in this paper is to develop approximations for the
EEB in the form of a constant plus a single exponential function with an explicit exponent,
satisfying two obvious consistency conditions at time to close to expiry and at infinite time to
expiry; see Kim [25] for a regression approach to this class of approximations for EEBs.

2 Black-Scholes-Merton Formulation

Assume that the capital market is well-defined and follows the efficient market hypothesis. Let
$(S_{t})_{t\geq 0}$ be the asset price governed by the risk-neutralized diffusion process

$\frac{dS_{t}}{S_{t}}=(r-\delta)dt+\sigma dW_{t}, t\geq 0$ , (2.1)

where $r>0$ is the risk-free interest rate, $\delta\geq 0$ is a continuous dividend rate, $\sigma>0$ is a volatility
of the asset returns. In (2.1), $(W_{t})_{t\geq 0}$ is a standard Wiener process on a filtered probability space
$(\Omega, (\mathcal{F}_{t})_{t\geq 0}, \mathcal{F}, \mathbb{P})$, where $(\mathcal{F}_{t})_{t\geq 0}$ is the natural filtration corresponding to $W$ and the probability
measure $\mathbb{P}$ is chosen risk-neutrally so that the asset has mean rate of return $r$ . We consider an
American put option written on the asset price process $(S_{t})_{t\geq 0}$ , which has maturity $T>0$ and
strike price $K>0$ . Let

$P\equiv P(t, S_{t})=P(t, S_{t};K, r, \delta) , 0\leq t\leq T,$
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denote the value of the American put option at time $t$ . Similarly, let $C\equiv C(t, S_{t})=C(t, S_{t};K, r, \delta)$

$(0\leq t\leq T)$ denote the value of the associated American call option with the same parameters

as those in the put option.
From the theory of arbitrage pricing, the fair value of the American put option at time $t$ is

given by solving an optimal stopping problem

$P(t, S_{t})= ess\sup_{T_{t}\in[t,T]}\mathbb{E}[e^{-r(T_{t}-t)}(K-S_{T_{t}})^{+}|\mathcal{F}_{t}], 0\leq t\leq T$ , (2.2)

where $T_{t}$ is a stopping time of the filtration $(\mathcal{F}_{t})_{t\geq 0}$ and the conditional expectation is calculated
under the risk-neutral probability measure $\mathbb{P}$ . The random variable $T_{t}^{*}\in[t, T]$ is called an opti-
mal stopping time if it gives the supremum value of the right-hand side of (2.2). The relationship
between the early exercise feature of American options and optimal stopping problems was first
analyzed by McKean [32] who studied the problem (2.2) under an actual probability measure
rather than $\mathbb{P}$ . Mathematically rigorous treatment of the problem (2.2) was first established by
Bensoussan [6] and Karatzas [23]. Solving the optimal stopping problem (2.2) is equivalent to
find the points $(t, S_{t})$ for which early exercise is optimal. Let $S$ and $C$ denote the stopping region
and continuation region, respectively. The stopping region $S$ is defined by

$S=\{(t, S)\in[0, T]\cross \mathbb{R}+|P(t, S)=(K-S)^{+}\}.$

Of course, the continuation region $C$ is the complement of $S$ in $[0, T]\cross \mathbb{R}+\cdot$ The boundary that
separates $S$ from $C$ is the EEB, which is defined by

$B_{p}(t)= \sup\{S\in \mathbb{R}+|P(t, S)=(K-S)^{+}\}, 0\leq t\leq T.$

McDonald and Schroder [31] proved that a symmetric relation holds between the American
put and call values, i.e.,

$C(t, S_{t};K, r, \delta)=P(t, K;S_{t}, \delta, r)$ . (2.3)

See Carr and Chesney [12] for another symmetric relation in more general settings. If we define
the EEB for the American call option by

$B_{c}(t)= \inf\{S\in \mathbb{R}+|C(t, S)=(S-K)^{+}\}, 0\leq t\leq T,$

then we also have a simple symmetric relation between the two boundaries $B_{p}(t)\equiv B_{p}(t;r, \delta)$

and $B_{c}(t)\equiv B_{c}(t;r, \delta)[12]$ such that

$B_{c}(t;r, \delta)B_{p}(t;\delta, r)=K^{2}, 0\leq t\leq T$ . (2.4)

McKean [32] showed that the American put value and the EEB can be obtained by jointly
solving a free boundary problem, which is specified by the Black-Scholes-Merton partial differ-
ential equation (PDE)

$\frac{\partial P}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}P}{\partial S^{2}}+(r-\delta)S\frac{\partial P}{\partial S}-rP=0, S>B_{p}(t)$ , (2.5)
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together with the boundary conditions

$\lim_{S\uparrow\infty}P(t, S)=0$

$\lim P(t, S)=K-B_{p}(t)$
$S\downarrow B_{p}(t)$ (2.6)

$\lim_{S\downarrow B_{p}(t)}\frac{\partial P}{\partial S}=-1,$

and the terminal condition
$P(T, S)=(K-S)^{+}$ . (2.7)

The second condition in (2.6) is often called the value-matching condition, while the third
condition is called the smooth-pasting or high-contact condition.

It is sometimes convenient to $wo$rk with the equations where the current time $t$ is replaced by
the time to expiry $\tau\equiv T-t$ . For the sake of notational convenience, we write $\tilde{S}_{\tau}\equiv S_{T-\tau}=S_{t}$ and
$\tilde{B}_{p}(\tau)\equiv B_{p}(T-\tau)=B_{p}(t)$ , and we refer to $(\tilde{S}_{\tau})_{\tau\leq T}$ as the backward running process of $(S_{t})_{t\geq 0}.$

From $(2.5)-(2.7)$ , the put price for the backward running process $\tilde{P}(\tau,\tilde{S}_{\tau})\equiv P(T-\tau, S_{T-\tau})=$

$P(t, S_{t})$ satisfies the PDE

$- \frac{\partial\tilde{P}}{\partial\tau}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\tilde{P}}{\partial S^{2}}+(r-\delta)S\frac{\partial\tilde{P}}{\partial S}-r\tilde{P}=0, S>\tilde{B}_{p}(\tau)$ , (2.8)

with the boundary conditions

$\lim_{S\uparrow\infty}\tilde{P}(\tau, S)=0$

$\lim_{S\downarrow\tilde{B}_{p}(\tau)}\tilde{P}(\tau, S)=K-\tilde{B}_{p}(\tau)$

(2.9)

$\lim \underline{\partial\tilde{P}}_{=-1},$

$S\downarrow\tilde{B}_{p}(\tau)\partial S$

and the initial condition
$\tilde{P}(0, S)=(K-S)^{+}$ . (2.10)

3 Valuation in the Laplace Domain

3.1 Laplace-Carson Transforms

In order to value American vanilla options, Carr [11] developed a fast and accurate method,
which is called the randomization approach. The name “randomization” originates in its initial
step of randomizing the maturity date $T$ by an exponentially distributed random variable with
mean $\lambda^{-1}=T$ ; see Chapter II of Feller [15] for a more general framework of randomization.

Mathematically, the randomization approach is closely related to the Laplace-Carson trans-
form (LCT): Let $f(\tau)$ be a function of exponential order, i.e., there exist some constants $M$ and
$\lambda_{0}\geq 0$ , for which $|f(\tau)|\leq Me^{\lambda_{0^{\mathcal{T}}}}$ for all $\tau\geq 0$ . Then, the LCT $f^{*}(\lambda)$ of a function $f(\tau)$ is
defined by

$f^{*}( \lambda)\equiv \mathcal{L}C[f(\tau)]=\int_{0}^{\infty}\lambda e^{-\lambda\tau}f(\tau)d\tau,$
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where $\lambda$ is a complex number with ${\rm Re}(\lambda)>\lambda_{0}$ . There is $no$ essential difference between LCT
and Laplace transform. The principal reason why LCT is often preferred to Laplace transform in

the context of option pricing would be that LCT generates relatively simpler formulas for option

pricing problems because constant values are invariant after transformation [26, 27, 28]. Since
the time-reversed quantities $\tilde{P}(\tau, S)$ and $\tilde{B}_{p}(\tau)$ are bounded functions of $\tau\in \mathbb{R}+$ , we can define
the LCTs of these functions for ${\rm Re}(\lambda)>0$ . The randomization approach can be interpreted to
mean that the LCT $P^{*}(\lambda, S)=\mathcal{L}C[\tilde{P}(\tau, S)]$ is an exponentially weighted sum (integral) of the

time-reversed value $\tilde{P}(\tau, S)$ for (infinitely many) different values of the maturity $T=\lambda^{-1}\in \mathbb{R}_{+},$

which makes $\tilde{P}(\tau, S)$ and $P^{*}(\lambda, S)$ well defined for $\tau\geq 0$ and $\lambda>0$ , respectively.

From $(2.8)-(2.10)$ , the LCT $P^{*}(\lambda, S)$ satisfies the $ODE$

$\frac{1}{2}\sigma^{2}S^{2}\frac{d^{2}P^{*}}{dS^{2}}+(r-\delta)S\frac{dP^{*}}{dS}-(\lambda+r)P^{*}+\lambda(K-S)^{+}=0, S>B_{p}^{*}$, (3.1)

together with the boundary conditions

$\lim_{s\uparrow\infty}P^{*}(\lambda, S)=0$

$\lim_{S\downarrow B_{p}^{*}}P^{*}(\lambda, S)=K-B_{p}^{*}$ (3.2)

$\lim_{S\downarrow B_{p}^{*}}\frac{dP^{*}}{dS}=-1,$

where $B_{p}^{*}\equiv B_{p}^{*}(\lambda)=\mathcal{L}C[\tilde{B}_{p}(\tau)]$ is a constant in the Laplace world due to the memoryless

property of the exponential distribution. Solving this boundary-value problem, Kimura [26,

Theorems 3.1 and 3.3] proved that

$P^{*}(\lambda, S)=\{\begin{array}{ll}K-S, S\leq B_{p}^{*}p^{*}(\lambda, S)+e_{p}^{*}(\lambda, S) , S>B_{p}^{*},\end{array}$ (3.3)

where $p^{*}(\lambda, S)$ is the LCT of $\tilde{p}(\tau, S)$ , the time-reverse value of the European put option associated
with the American put option on target, which is given by

$p^{*}(\lambda, S)=\{\begin{array}{ll}\xi(S)+\frac{\lambda K}{\lambda+r}-\frac{\lambda S}{\lambda+\delta}, S<K\eta(S) , S\geq K,\end{array}$ (3.4)

with

$\{\begin{array}{ll}\xi(S)=\frac{K}{\theta_{1}-\theta_{2}}\frac{\lambda}{\lambda+\delta}(1-\frac{r-\delta}{\lambda+r}\theta_{2})(\frac{S}{K})^{\theta_{1}} S<K\eta(S)=\frac{K}{\theta_{1}-\theta_{2}}\frac{\lambda}{\lambda+\delta}(1-\frac{r-\delta}{\lambda+r}\theta_{1})(\frac{S}{K})^{\theta_{2}} S\geq K,\end{array}$ (3.5)

and the parameters $\theta_{i}\equiv\theta_{i}(\lambda)(i=1,2, \theta_{1}>1, \theta_{2}<0)$ are two roots of the quadratic equation

$\frac{1}{2}\sigma^{2}\theta^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta-(\lambda+r)=0$ , (3.6)

i. e.,

$\theta_{i}=\frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})-(-1)^{i}\sqrt{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)}\}, i=1,2.$
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In (3.3), the function $e_{p}^{*}(\lambda, S)$ can be regarded as the LCT of the time-reverse early exercise
premium of the American put option, which is given by

$e_{p}^{*}( \lambda, S)=-\frac{1}{\theta_{2}}\{\theta_{1}\xi(B_{p}^{*})+\frac{\delta}{\lambda+\delta}B_{p}^{*}\}(\frac{S}{B_{p}^{*}})^{\theta_{2}} S>B_{p}^{*},$

and $B_{p}^{*}(\leq K)$ is a unique positive solution of the functional equation

$\lambda(\frac{B_{p}^{*}}{K})^{\theta_{1}}+\delta\theta_{1}\frac{B_{p}^{*}}{K}+r(1-\theta_{1})=0$. (3.7)

3.2 Put-Call Symmetry

For the backward running process $(\tilde{S}_{\tau})_{\tau\leq T}$ , let $\tilde{C}(\tau,\tilde{S}_{\tau})\equiv C(T-\tau, S_{T-\tau})=C(t, S_{t})$ and
$\tilde{B}_{c}(\tau)\equiv B_{c}(T-\tau)=B_{c}(t)$ . Also, for $\lambda>0$ , let $C^{*}(\lambda, S)=\mathcal{L}C[\tilde{C}(\tau,\tilde{S}_{\tau})]$ and $B_{c}^{*}(\lambda)=\mathcal{L}C[\tilde{B}_{c}(\tau)].$

Then, for American put and call options in the Laplace domain, we have symmetric relations
similar to (2.3) and (2.4):

Theorem 1 Between the option values $P^{*}(\lambda, S)\equiv P^{*}(\lambda, S;K, r, \delta)$ and $C^{*}(\lambda, S)\equiv C^{*}(\lambda, S;K, r, \delta)$ ,
there exists a symmetric relation such that

$C^{*}(\lambda, S;K, r, \delta)=P^{*}(\lambda, K;S, \delta, r)$ , $\lambda>0$ . (3.8)

In addition, between the early exercise boundaries $B_{p}^{*}(\lambda)\equiv B_{p}^{*}(\lambda;r, \delta)$ and $B_{c}^{*}(\lambda)\equiv B_{c}^{*}(\lambda;r, \delta)$ ,
there exists a symmetric relation such that

$B_{c}^{*}(\lambda;r, \delta)B_{p}^{*}(\lambda;\delta, r)=K^{2}, \lambda>0$. (3.9)

Proof Let $V_{p}\equiv V_{p}(x)$ and $G$ be the solution of the following boundary value problem

$\frac{1}{2}\sigma^{2}x^{2}\frac{d^{2}V_{p}}{dx^{2}}+(\delta-r)x\frac{dV_{p}}{dx}-(\lambda+\delta)V_{p}+\lambda(K-x)^{+}=0, x>G$, (3.10)

with the boundary conditions
$\lim_{x\uparrow\infty}V_{p}(x)=0$

$\lim_{x\downarrow G}V_{p}(x)=K-G$ (3.11)

$\lim_{x\downarrow G}\frac{dV_{p}(x)}{dx}=-1.$

Comparing (3.10) and (3.11) with (3.1) and (3.2), we see that $V_{p}(x)=P^{*}(\lambda, x;K, \delta, r)$ and
$G=B_{p}^{*}(\lambda;\delta, r)$ ; note that the parameters $r$ and $\delta$ are exchanged. With the changes of variables
$y:=K^{2}/x$ and $H$ $:=K^{2}/G$ , define a transformed function

$V_{c}(y)= \frac{K}{x}V_{p}(x)|_{x=K^{2}/y}=\frac{y}{K}V_{p}(\frac{K^{2}}{y}) , 0<y<H.$

Then, in (3.11), the first boundary condition is rewritten for $V_{c}(y)$ as

$\lim_{y\downarrow 0}V_{c}(y)=0$ (3.12)
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and the value-matching condition and the smooth-pasting condition respectively become

$\lim_{y\uparrow H}V_{c}(y)=\frac{K}{G}(K-G)|_{G=K^{2}/H}=\frac{H}{K}(K-\frac{K^{2}}{H})=H-K$ (3.13)

and

$\lim_{y\uparrow H}\frac{dV_{c}(y)}{dy}=\lim_{y\uparrow H}\frac{d}{dx}(\frac{K}{x}V_{p}(x))\frac{dx}{dy}=\lim_{y\uparrow H}(-\frac{K}{x^{2}}V_{p}+\frac{K}{x}\frac{dV_{p}}{dx})\frac{dx}{dy}$

$= \{-\frac{K}{G^{2}}(K-G)-\frac{K}{G}\}\lim_{y\uparrow H}(-\frac{K^{2}}{y^{2}})=(-\frac{K^{2}}{G^{2}})(-\frac{K^{2}}{H^{2}})=1$. (3.14)

Next we will derive the $ODE$ for $V_{c}(y)(0<y<H)$ . By straightforward calculation, we have

$x \frac{dV_{p}}{dx}=\frac{K}{y}(V_{c}-y\frac{dV_{c}}{dy})$ and $x \frac{d}{dx}(x\frac{dV_{p}}{dx})=\frac{K}{y}\{y\frac{d}{dy}(y\frac{dV_{c}}{dy})-2y\frac{dV_{c}}{dy}+V_{c}\},$

from which the $ODE$ (3.10) for $V_{p}(x)$ can be rewritten as

$0= \frac{1}{2}\sigma^{2}x\frac{d}{dx}(x\frac{dV_{p}}{dx})+(\delta-r-\frac{1}{2}\sigma^{2})x\frac{dV_{p}}{dx}-(\lambda+\delta)V_{p}+\lambda(K-x)^{+}$

$= \frac{K}{y}[\frac{1}{2}\sigma^{2}\{y\frac{d}{dy}(y\frac{dV_{c}}{dy})-2y\frac{dV_{c}}{dy}+V_{c}\}+(\delta-r-\frac{1}{2}\sigma^{2})(V_{c}-y\frac{dV_{c}}{dy})-(\lambda+\delta)V_{c}+\lambda(y-K)^{+}]$

$= \frac{K}{y}[\frac{1}{2}\sigma^{2}y^{2}\frac{d^{2}V_{c}}{dy^{2}}+(r-\delta)y\frac{dV_{c}}{dy}-(\lambda+r)V_{C}+\lambda(y-K)^{+}].$

Hence, we obtain the $ODE$

$\frac{1}{2}\sigma^{2}y^{2}\frac{d^{2}V_{c}}{dy^{2}}+(r-\delta)y\frac{dV_{c}}{dy}-(\lambda+r)V_{c}+\lambda(y-K)^{+}=0,$ $0<y<H$ . (3.15)

In much the same way as in (3.1) and (3.2) for the put case, the $ODE$ (3.15) together with the
boundary conditions $(3.12)-(3.14)$ is no more than the boundary-value problem for the call case,
which means that $V_{c}(y)=C^{*}(\lambda, y;K, r, \delta)$ and $H=B_{c}^{*}(\lambda;r, \delta)$ . By the definition of $V_{c}$ and a
change of num\’eraire, we obtain

$C^{*}( \lambda, S;K, r, \delta)=V_{c}(S)=\frac{S}{K}V_{p}(\frac{K^{2}}{S})=\frac{S}{K}P^{*}(\lambda, \frac{K^{2}}{S};K, \delta, r)=P^{*}(\lambda, K;S, \delta, r)$ ,

which proves (3.8). From the relation $GH=K^{2}$ , we immediately have (3.9). $\square$

Let $\nu_{1}\equiv\nu_{1}(\lambda)>1$ and $\nu_{2}\equiv\nu_{2}(\lambda)<0$ be two real roots of the quadratic equation

$\frac{1}{2}\sigma^{2}\nu^{2}+(\delta-r-\frac{1}{2}\sigma^{2})\nu-(\lambda+\delta)=0$, (3.16)

i. e.,

$\nu_{i}=\frac{1}{\sigma^{2}}\{-(\delta-r-\frac{1}{2}\sigma^{2})-(-1)^{i}\sqrt{(\delta-r-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+\delta)}\}, i=1,2.$

Clearly, $v_{i}(\lambda)\equiv v_{i}(\lambda;r, \delta)$ and $\theta_{i}(\lambda)\equiv\theta_{i}(\lambda;r, \delta)(i=1,2)$ are symmetric with respect to $r$ and
$\delta$ , namely, $\theta_{i}(\lambda;\delta, r)=v_{i}(\lambda;r, \delta)$ . In addition, there is an important relation among these roots:
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Lemma 1 For $\lambda>0$ , we have

$\{\begin{array}{l}\theta_{1}(\lambda)+\nu_{2}(\lambda)=1\theta_{2}(\lambda)+\nu_{1}(\lambda)=1.\end{array}$

Proof We only prove the first equation $\theta_{1}+\nu_{2}=1$ . The second one follows similarly.

$\nu_{2}=\frac{1}{\sigma^{2}}\{-(\delta-r-\frac{1}{2}\sigma^{2})-\sqrt{(\delta-r-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+\delta)}\}$

$=1- \frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})+\sqrt{(\delta-r-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)+2\sigma^{2}(\delta-r)}\}$

$=1- \frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})+\sqrt{(r-\delta-\frac{1}{2}\sigma^{2})^{2}+2\sigma^{2}(\lambda+r)}\}=1-\theta_{1},$

and hence $\theta_{1}(\lambda)+\nu_{2}(\lambda)=1$ for $\lambda>0.$ $\square$

From Lemma 1, we can calculate $C^{*}(\lambda, S)$ from the results $(3.3)-(3.7)$ for $P^{*}(\lambda, S)$ without
directly solving a boundary-value problem associated with (3.1) and (3.2).

Theorem 2 The $LCTC^{*}(\lambda, S)$ for the American call value is given by

$C^{*}(\lambda, S)=\{\begin{array}{ll}S-K, S\geq B_{c}^{*}c^{*}(\lambda, S)+e_{c}^{*}(\lambda, S) , S<B_{c}^{*},\end{array}$

where $c^{*}(\lambda, S)$ is the $LCTof\tilde{c}(\tau, S)$ , the time-reverse value of the European call option associated
with the American call option on target, and $e_{c}^{*}(\lambda, S)$ is the $LCT$ of the time-reverse early exercise
premium, which are

$c^{*}(\lambda, S)=\{\begin{array}{ll}\xi(S) , S<K\eta(S)+\frac{\lambda S}{\lambda+\delta}-\frac{\lambda K}{\lambda+r}, S\geq K,\end{array}$

$e_{c}^{*}( \lambda, S)=\frac{1}{\theta_{1}}\{\frac{\delta}{\lambda+\delta}B_{c}^{*}-\theta_{2}\eta(B_{c}^{*})\}(\frac{S}{B_{c}^{*}})^{\theta_{1}} S<B_{c}^{*}.$

The functions $\xi(\cdot)$ and $\eta(\cdot)$ are defined in (3.5), and the $LCTB_{c}^{*}\equiv B_{c}^{*}(\lambda)(\geq K)$ is a unique
positive solution of the functional equation

$\lambda(\frac{B_{c}^{*}}{K})^{\theta_{2}}+\delta\theta_{2}\frac{B_{c}^{*}}{K}+r(1-\theta_{2})=0$. (3.17)

Proof We prove only the functional equation (3.17) for the LCT $B_{c}^{*}$ , because this equation
plays a key role in this paper. The LCT $C^{*}(\lambda, S)$ for the American call value can be proved
in a similar and straightforward manner: If we exchange the two parameters $r$ and $\delta$ in the
functional equation (3.7) for $B_{p}^{*},$

$\theta_{1}$ should be replaced by $v_{1}$ and $B_{p}^{*}/K$ by $K/B_{c}^{*}$ , due to (3.9)
and (3.16). Hence, using Lemma 2, we have

$0= \lambda(\frac{K}{B_{c}^{*}})^{\nu_{1}}+r\nu_{1}\frac{K}{B_{c}^{*}}+\delta(1-\nu_{1})$

$= \lambda(\frac{K}{B_{c}^{*}})^{1-\theta_{2}}+r(1-\theta_{2})\frac{K}{B_{c}^{*}}+\delta\theta_{2}$

$= \frac{K}{B_{c}^{*}}\{\lambda(\frac{B_{c}^{*}}{K})^{\theta_{2}}+\delta\theta_{2}\frac{B_{c}^{*}}{K}+r(1-\theta_{2})\},$
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from which (3.17) holds for the LCT $B_{c}^{*}.$
$\square$

4 Asymptotic Approximations

4.1 Asymptotic Properties

Prior to approximating the EEB of American options, we briefly review some known asymptotic

properties of the time-reverse EEB as $\tauarrow 0$ and $\tauarrow\infty$ : From the initial-value theorem in the
theory of Laplace transforms, we obtain

$\overline{B}_{p}\equiv B_{p}(T)=\lim_{\tauarrow 0}\tilde{B}_{p}(\tau)=\lim_{\lambdaarrow\infty}B_{p}^{*}(\lambda)=\min(\frac{r}{\delta}, 1)K$ . (4.1)

See Kimura [26, Theorem 3.4] for details, and also see Kim $[24J$ and Kwok [29, pp. 257-258] for
alternative proofs. For the call case, due to the put-call symmetry in (3.9), we have

$\underline{B}_{c}\equiv B_{c}(T)=\max(\frac{r}{\delta}, 1)K$. (4.2)

To see asymptotic behavior of the time-reverse EEB as $\tauarrow\infty$ , we consider the case that $\lambda$

is sufficiently small, which is due to the final-value theorem in the theory of Laplace transforms.

Lemma 2 For sufficiently small $\lambda>0$ , we have two different pairs of asymptotic approxima-
tions for $B_{p}^{*}(\lambda)$ and $B_{c}^{*}(\lambda)$ , which are

$B_{p}^{*}( \lambda)\approx\frac{r}{\delta}\frac{\theta_{1}-1}{\theta_{1}}K$ and $B_{c}^{*}( \lambda)\approx\frac{r}{\delta}\frac{\theta_{2}-1}{\theta_{2}}K$ , (4.3)

and
$B_{p}^{*}( \lambda)\approx\frac{\theta_{2}}{\theta_{2}-1}K$ and $B_{c}^{*}( \lambda)\approx\frac{\theta_{1}}{\theta_{1}-1}K$. (4.4)

Proof From (3.7) and (3.17), we obtain (4.3) by removing the first terms of the functional
equations (3.7) and (3.17). Applying the basic relations in quadratic equations to (3.7)

$\{\begin{array}{l}\lambda+r=-\frac{1}{2}\sigma^{2}\theta_{1}\theta_{2}r-\delta=-\frac{1}{2}\sigma^{2}(\theta_{1}+\theta_{2}-1) ,\end{array}$ (4.5)

we have another expression of the equation (3.7) for $B_{p}^{*}$ , which is

$\lambda(1-\frac{r-\delta}{\lambda+r}\theta_{2})(\frac{B_{p}^{*}}{K})^{\theta_{1}}+\delta(1-\theta_{2})\frac{B_{p}^{*}}{K}+r\theta_{2}\frac{\lambda+\delta}{\lambda+r}=0$ . (4.6)

Deleting the first term in (4.6) and using the approximation $(\lambda+\delta)/(\lambda+r)\approx\delta/r$ for sufficiently
small $\lambda$ , we obtain the approximation for $B_{p}^{*}(\lambda)$ in (4.4). Similarly, from (3.17), we can calculate
the approximation for $B_{c}^{*}(\lambda)$ in (4.4) by replacing $\theta_{1}$ with $\theta_{2}.$

$\square$

From Lemma 2, we immediately obtain the exact limiting values when $\mathcal{T}arrow\infty[29$ , pp. 258-
260] as

$\{\begin{array}{l}\underline{B}_{p}\equiv\lim_{\mathcal{T}arrow\infty}\tilde{B}_{p}(\tau)=\frac{r}{\delta}\frac{\theta_{\mathring{1}}-1}{\theta_{1}^{o}}K=\frac{\theta_{\mathring{2}}}{\theta_{2}^{O}-1}K\overline{B}_{c}\equiv\lim_{\tauarrow\infty}\tilde{B}_{c}(\tau)=\frac{r}{\delta}\frac{\theta_{\mathring{2}}-1}{\theta_{\mathring{2}}}K=\frac{\theta_{1}^{o}}{\theta_{1}^{o}-1}K,\end{array}$ (4.7)

9



where $\theta_{i}^{o}=\lim_{\lambdaarrow 0}\theta_{i}(\lambda)$ , i.e.,

$\theta_{i}^{o}=\frac{1}{\sigma^{2}}\{-(r-\delta-\frac{1}{2}\sigma^{2})-(-1)^{i}\sqrt{(r-\delta_{\tilde{2}}^{1}-\sigma^{2})^{2}+2\sigma^{2}r}\}, i=1,2.$

The boundary values $\underline{B}_{p}\equiv\underline{B}_{p}(r, \delta)$ and $\overline{B}_{c}\equiv\overline{B}_{c}(r, \delta)$ are of the perpetual American options
with infinite maturity, i.e. $T=\infty$ . Note that the put-call symmetry also holds for these limiting
values, i.e., $\underline{B}_{p}(\delta, r)\overline{B}_{c}(r, \delta)=K^{2}.$

4.2 Exponential Approximations

Lemma 3 For sufficiently small $\lambda>0$ , we have

$\{\begin{array}{l}\theta_{1}(\lambda)=\theta_{1}^{O}+\frac{2}{\sigma^{2}}\frac{\lambda}{\theta_{1}^{O}-\theta_{2}^{O}}+o(\lambda)\theta_{2}(\lambda)=\theta_{2}^{O}+\frac{2}{\sigma^{2}}\frac{\lambda}{\theta_{2}^{o}-\theta_{1}^{o}}+o(\lambda) .\end{array}$

Proof. For simplicity, denote $\omega\equiv r-\delta-\frac{1}{2}\sigma^{2}$ . Then, for $i=1,2$ and sufficiently small $\lambda>0,$

we have

$\theta_{i}(\lambda)=\frac{1}{\sigma^{2}}\{-\omega-(-1)^{i}\sqrt{\omega^{2}+2\sigma^{2}(\lambda+r)}\}$

$= \frac{1}{\sigma^{2}}\{-\omega-(-1)^{i}\sqrt{\omega^{2}+2\sigma^{2}r}\sqrt{1+\frac{2\sigma^{2}\lambda}{\omega^{2}+2\sigma^{2}r}}\}$

$= \frac{1}{\sigma^{2}}\{-\omega-(-1)^{i}\sqrt{\omega^{2}+2\sigma^{2}r}(1+\frac{\sigma^{2}\lambda}{\omega^{2}+2\sigma^{2}r})\}+o(\lambda)$

$= \theta_{i}^{o}-(-1)^{i}\frac{\lambda}{\sqrt{\omega^{2}+2\sigma^{2}r}}+o(\lambda)=\theta_{i}^{o}-(-1)^{i}\frac{2}{\sigma^{2}}\frac{\lambda}{\theta_{1}^{O}-\theta_{2}^{o}}+o(\lambda)$ ,

where we have used the relation $\theta_{1}^{o}-\theta_{2}^{o}=\frac{2}{\sigma}F\sqrt{\omega^{2}+2\sigma^{2}r}.$
$\square$

From Lemmas 2 and 3, we shall derive asymptotic approximations for the time-reverse EEBs
of the American put and call options. However, the asymptotic approximations (4.3) and (4.4)

in Lemma 2 are subtly different for $\lambda>0$ , though they are exactly equivalent for the limit as
$\lambdaarrow 0$ ae shown in (4.7).

Theorem 3 For sufficiently large $\tau$ , we have two different pairs of asymptotic approximations

for the time-reverse early exercise boundaries $\tilde{B}_{p}(\tau)$ and $\tilde{B}_{C}(\tau)$ , which are

$\{\begin{array}{l}\frac{\tilde{B}_{p}(\tau)}{\underline{B}_{p}}\approx 1+\frac{1}{\theta_{\mathring{1}}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})\tau\}\frac{\tilde{B}_{c}(\tau)}{\overline{B}_{c}}\approx 1+\frac{1}{\theta_{2}^{o}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{2}^{o}(\theta_{2}^{O}-\theta_{1}^{o})\tau\},\end{array}$ (4.8)

and

$\{\begin{array}{l}\frac{\tilde{B}_{p}(\tau)}{\underline{B}_{p}}\approx 1-\frac{1}{\theta_{2}^{o}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{2}^{o})\tau\}\frac{\tilde{B}_{c}(\tau)}{\overline{B}_{c}}\approx 1-\frac{1}{\theta_{1}^{o}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{1}^{o})(\theta_{\mathring{2}}-\theta_{1}^{o})\tau\}.\end{array}$ (4.9)
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Proof First, let us start from $B_{p}^{*}(\lambda)$ in (4.3). Combining the asymptotic results for $B_{p}^{*}(\lambda)$ and
$\theta_{1}(\lambda)$ , for sufficiently small $\lambda>0$ , we have

$\frac{B_{p}^{*}(\lambda)}{K}\approx\frac{r}{\delta}\{1-\frac{\frac{1}{2}\sigma^{2}(\theta_{1}^{o}-\theta_{2}^{o})}{\lambda+\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{\mathring{1}}-\theta_{\mathring{2}})}\},$

which can be analytically inverted as

$\frac{\tilde{B}_{p}(\tau)}{K}\approx\frac{r}{\delta}[1-\frac{1}{2}\sigma^{2}(\theta_{1}^{o}-\theta_{2}^{o})\int_{0}^{\tau}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})t\}dt]$

$= \frac{r}{\delta}[\frac{\theta_{\mathring{1}}-1}{\theta_{\mathring{1}}}+\frac{1}{\theta_{1}^{o}}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})\tau\}]$

$= \frac{\underline{B}_{p}}{K}[1+\frac{1}{\theta_{1}^{o}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})\tau\}].$

Hence, for sufficiently large $\tau>0$ , we obtain the put value in (4.8). Similarly, from $B_{c}^{*}(\lambda)$ in
(4.3), we obtain the call value in (4.8). Secondly, from $B_{p}^{*}(\lambda)$ in (4.4), for sufficiently small
$\lambda>0$ , we obtain

$\frac{B_{p}^{*}(\lambda)}{K}\approx\frac{\lambda-\frac{1}{2}\sigma^{2}\theta_{2}^{o}(\theta_{1}^{o}-\theta_{\mathring{2}})}{\lambda+\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{\mathring{1}}-\theta_{\mathring{2}})}.$

Analytical inversion leads to

$\frac{\tilde{B}_{p}(\tau)}{K}\approx\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{2}^{o})\tau\}-\frac{1}{2}\sigma^{2}\theta_{\mathring{2}}(\theta_{1}^{o}-\theta_{\mathring{2}})\int_{0}^{\mathcal{T}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{\mathring{2}})t\}dt$

$= \frac{\theta_{2}^{o}}{\theta_{\mathring{2}}-1}-\frac{1}{\theta_{\mathring{2}}-1}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{2}^{o})\tau\}$

$= \frac{\underline{B}_{p}}{K}[1-\frac{1}{\theta_{\mathring{2}}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{2}^{o})\tau\}],$

and hence we obtain the put value in (4.9). Similarly, from $B_{c}^{*}(\lambda)$ in (4.4), we obtain the call
value in (4.9). $\square$

These approximations are valid for sufficiently large $\tau$ , besides their values at maturity
$\tau=0$ partially coincide with the exact ones: For the first pair of approximations in (4.8),
$\tilde{B}_{p}(0)=\overline{B}_{p}=rK/\delta$ if $r<\delta$ and $\tilde{B}_{c}(0)=\underline{B}_{c}=rK/\delta$ if $r>\delta$ , whereas for the second pair in
(4.9), $\tilde{B}_{p}(0)=\overline{B}_{p}=K$ if $r\geq\delta$ and $\tilde{B}_{c}(0)=\underline{B}_{c}=K$ if $r\leq\delta$ . These observations suggest that a
natural mixture of these approximations becomes consistent with the exact boundary behavior
at maturity. That is, a candidate pair of approximations for the time-reverse EEBs is given by

$\frac{\tilde{B}_{p}(\tau)}{\underline{B}_{p}}\approx\beta_{p}(\tau)\equiv\{\begin{array}{ll}1+\frac{1}{\theta_{1}^{o}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})\tau\}, r<\delta 1-\frac{1}{\theta_{\mathring{2}}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{2}^{o})(\theta_{1}^{o}-\theta_{2}^{o})\tau\}, r\geq\delta.\end{array}$ (4.10)

and

$\frac{\tilde{B}_{c}(\tau)}{\overline{B}_{c}}\approx\beta_{c}(\tau)\equiv\{\begin{array}{ll}1+\frac{1}{\theta_{\mathring{2}}-1}\exp\{-\frac{1}{2}\sigma^{2}\theta_{2}^{o}(\theta_{2}^{o}-\theta_{1}^{o})\tau\}, r>\delta 1-\frac{1}{\theta_{\mathring{1}}}\exp\{-\frac{1}{2}\sigma^{2}(1-\theta_{1}^{o})(\theta_{2}^{o}-\theta_{1}^{o})\tau\}, r\leq\delta.\end{array}$ (4.11)
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4.3 Heuristics near Expiry

Evans et al. [14] have derived explicit expressions valid near expiry for the EEBs of American
put and call options, which are, as $\tauarrow 0+,$

$\frac{\tilde{B}_{p}(\mathcal{T})}{\underline{B}_{p}}\sim\{\begin{array}{ll}1-\sigma\sqrt{\tau\ln(\frac{\sigma^{2}}{8\pi(r-\delta)^{2}\tau})}, r>\delta 1-\sigma\sqrt{2\tau\ln(\frac{1}{4\sqrt{\pi}\delta\tau})}, r=\delta 1-\kappa\sigma\sqrt{2\tau}, r<\delta,\end{array}$

and

$\frac{\tilde{B}_{c}(\tau)}{\overline{B}_{c}}\sim\{\begin{array}{ll}1+\sigma\sqrt{\tau\ln(\frac{\sigma^{2}}{8\pi(r-\delta)^{2}\tau})}, r<\delta 1+\sigma\sqrt{2\tau\ln(\frac{1}{4\sqrt{\pi}\delta\tau})}, r=\delta 1+\kappa\sigma\sqrt{2\tau}, r>\delta,\end{array}$

where the constant $\kappa\approx 0.4517$ is the root of the transcendental equation

$\int_{\kappa}^{\infty}e^{-(x^{2}-\kappa^{2})}dx=\frac{2\kappa^{2}-1}{4\kappa^{3}}.$

Clearly, the exponential approximations in Theorem 3 display different tangent behavior near
expiry, e.g., for $r<\delta,$

$\lim_{\tauarrow 0+}\frac{d}{d\tau}(\frac{\tilde{B}_{p}(\tau)}{\underline{B}_{p}})\approx\beta_{p}’(0)=-\frac{\sigma^{2}}{2}\frac{\theta_{1}^{o}(\theta_{1}^{o}-\theta_{2}^{o})}{\theta_{1}^{o}-1}<0,$

whereas the exact value is $-\infty$ . This may implies that our approximations for put (call) tend
to overestimate (underestimate) the true values for small $\tau>0$ . The asymptotic properties
near expiry seems to be helpful for refining our approximations. However, the exact asymptotic
expressions above cannot be directly applied to generating refined approximations for EEBs,
because if $r\geq\delta(r\leq\delta)$ for the put (call) case, (a) they cannot be defined for all $\tau>0$ ;

and (b) for the region of $\tau$ where they can be defined, they are not monotone functions of $\tau,$

being inconsistent with the exact results. In order to eliminate the defect (a), Barone-Adesi and
Whaley [5, Equations (33) and (A10)] have provided a simple but rough approximation based on
an asymptotic behavior near expiry; see Bjerksund and Stensland [7] for a minor modification.
However, their approximations also have the same defect on the monotonicity, depending on the
values of $r$ and $\delta[5, p. 310].$

To realize the tangent behavior near expiry, we further propose a pair of simple but heuristic
approximations for the time-reverse EEBs as follows:

$\frac{\tilde{B}_{p}(\tau)}{\underline{B}_{p}}\approx\beta_{p}^{o}(\tau)\equiv\{\begin{array}{ll}1+\frac{1}{\theta_{1}^{o}-1}\frac{1}{1+\sigma\sqrt{\tau}}, r<\delta 1-\frac{1}{\theta_{2}^{o}}\frac{1}{1+\sigma\sqrt{\tau}}, r\geq\delta.\end{array}$ (4.12)
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and

$\frac{\tilde{B}_{c}(\tau)}{\overline{B}_{c}}\approx\beta_{c}^{o}(\tau)\equiv\{\begin{array}{ll}1+\frac{1}{\theta_{\mathring{2}}-1}\frac{1}{1+\sigma\sqrt{\tau}}, r>\delta 1-\frac{1}{\theta_{1}^{o}}\frac{1}{1+\sigma\sqrt{\tau}}, r\leq\delta.\end{array}$ (4.13)

It is easy to check that (a) the approximations above are defined for $\tau\geq 0;(b)$ they are monotone
functions of $\tau$ and they are consistent with the exact results at $\tau=0$ as well as $\tauarrow\infty$ ; and
besides $\beta_{p}^{0/}(0)=-\infty$ and $\beta_{\mathring{c}}’(0)=+\infty$ , being consistent with the exact tangent behavior.
The approximations (4.12) and (4.13) are aimed basically at refining the tangent behavior near
expiry, thus they are not used solely but are combined with the asymptotic approximations
(4.10) and (4.11).
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