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Abstract

Ongoing financial crisis has revealed a serious issue on contagion effects for both credit risk
management and evaluating portfolio credit derivatives. Default contagion is a phenomenon
where a default by one firm has direct impact on the health of other surviving firms. Several
credit models such as reduced-form model and incomplete information structural model have
recently incorporated default contagion. In this study, we present a multi-name incomplete
information structural model, which possess the contagion mechanism. Here, we suppose that
investors can observe firm values and defaults but are not informed of the threshold level
at which a firm is deemed to default. Also, to analyze the contagion effects under general
settings, we consider the dependence structure of firm value dynamics and joint distribution
of default thresholds. Additionally, in order to model the possibility of crisis normalization,
we introduce the concept of memory penod after default. During the memory period after a
default, public investors remember when the previous default occurred and directly reflect
that information for updating their belief. When the memory period after a default ftnish,
investors forget about that default and shift their interest to recent defaults if exist. Simple
Monte Carlo algorithm is proposed to make default distribution.

Keywords and phrases: Credit risk, Default contagion, Monte Carlo method.
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1 Introduction

Interaction of financial default events plays a central role for both credit risk management
and credit derivatives valuation. Recent financial crisis has revealed a necessity of quantitative
methodology to analyze default contagion effects which are observed in several financial mar-
kets. Default contagion is a phenomenon where a default by one firm has direct impact on the
health of other surviving firms. Existing dynamic credit risk models which deal with default
contagion include, among others, [1], [2], [5], [6], [7], [8], [9], [13], [14] and comprehensive surveys
can be found in Chapter 9 of [11]. Generally, credit risk modeling methodologies are catego-
rized to either reduced form approach or structural approach. In the reduced form approach,
by introducing interacting intensities, default contagion can be captured by the jump up of the
default intensity immediately after the default as in [1], [2], [5], [9] and [14]. However it is not
easy to incorporate this mechanism of the crisis mode which will cool down after some period.
Information based default contagion described in Chapter 9 of [11] and [6] might be promising
methods that allow to represent normalization of crisis via belief updating, however, explicit
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formulation of normalization and its effects to future defaults are not thoroughly studied. On
the other hand, [7] and [8] have studied multi-name structural model under incomplete infor-
mation and proposed a simulation method for sequential defaults without covering the explicit
formulation of normalization. In this paper, we present a multi-name incomplete information
structural $mo$del which possess a default contagion mechanism naturally in the sense that the
sudden change of default probabilities arise from the investors revising their perspectives towards
unobserved factors which characterize thejoint density of default thresholds. Here, in our model,
default thresholds are assumed to be unobservable from public investors and firms are deemed
to default when firm values touch this level of threshold for the first time. This formulation is a
slight generalization of [8]. Additionally, in order to model the possibility of crisis normalization,
we introduce the concept of memory period after default. The model is designed so as to confine
investor’s attention to the recent defaults. During the memory period after a default, public
investors remember when the previous default occurred and directly reflect that information for
updating their belief. When the memory period after a default finish, investors forget about that
default and shift their interest to recent defaults if exist. When all the existing memory periods
terminate, we can consider the situation as a complete return to the normal economic condition.
In order to evaluate the credit risk under the presence of the default contagion and possibilities
of normalization, Monte Carlo simulation is the most reasonable method because of their non
Markovian environment.

The rest of this paper is organized as follows. Section 2 introduce our model and deduces
an expression for the conditional joint distribution of the default thresholds. Section 3 develops
standard Monte Carlo simulation algorithm. Section 4 provides numerical examples and Section
5 concludes,

2 Incomplete information credit risk model

Uncertainty is modeled by a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ equipped with a filtration $(\mathcal{F}_{t})_{t\geq 0}$ that
describes the information flow over time. We impose two additional technical conditions, often
called the usual conditions. The first is that $\mathcal{F}_{t}$ is right-continuous and the second is that $\mathcal{F}_{0}$

contains all $\mathbb{P}$ -null sets, meaning that one can always identify a sure event. Without mentioning
it again, these conditions will be imposed on every filtration that we introduce in the sequel.
The probability measure $\mathbb{P}$ serve as the statistical real world measure in risk management ap-
plications, while in derivatives pricing applications, $\mathbb{P}$ is a risk-neutral pricing measure. On the
financial market, investors can trade credit risky securities such as bonds and loans issued by
several firms indexed by $i(i=1,2, \cdots, n)$ . In the following, we extend naturally the Credit-
Grades model in the sense that we consider more than two firms in the portfolio and their asset
correlation as well as the dependence structure of the default barriers. Furthermore, we give a
slight modification of the CreditGrades model reflecting the fact that the surviving firm’s default
barrier is lower than its historical path of asset value.
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2.1 Model setting

Let $V_{i}(t)(i=1,2, \cdots, n)$ represent the time $t$ asset value of the firm $i$ on a per share basis
which solves the next stochastic differential equation

$\frac{dV_{i}(t)}{V_{i}(t)} = \delta_{i}dW_{i}(t) , i=1,2, \cdots, n$ , (1)

$V_{i}(0) = v_{i}$ , (2)

where $\delta_{i}\in \mathbb{R}$ is the asset volatility and $v_{i}$ is the firm value at time $0$ at which we stand. We
assume that the asset value processes have correlations, i.e., $d\langle W_{i}(\cdot),$ $W_{j}(\cdot)\rangle_{t}=\rho_{ij}dt$ , where
$\langle W_{i}(\cdot),$ $W_{j}(\cdot)\rangle$ is the quadratic covariation. Filtrations generated by observed asset values are
denoted by $\mathcal{G}_{t}^{i}=\sigma(V_{i}(s) : 0\leq s\leq t)$ . There is a random default threshold $L_{i}D_{i}$ such that
firm $i$ default as soon as the asset value falls to the level $L_{i}D_{i}$ , where $L_{i}$ denotes the recovery
rate at default and $D_{i}$ is a positive constant representing debt per share, which may given by
accounting reports. Then the default time of the firm $i$ is a random variable $\tau_{i}\in(0, \infty]$ given by

$\tau_{i}=\inf\{t>0:V_{i}(t)\leq L_{i}D_{i}\}$ . (3)

Here random variables $L_{i}(i=1,2, \cdots, n)$ are mutually independent of the $V_{i}(t)(i=1,2, \cdots, n)$ .
After a default, bond holders have high expectations to fully recover debt $D_{i}$ , however, in many
cases, recovery of original principal ends in failure and only the amount of its recovery rate $L_{i}$

is returned. More complicated stochastic processes for $V_{i}(t)$ such as stochastic volatility may
be possible, however, we shed lights to the multi-name setting and model the so-called default
contagion. Let $H_{i}(t)=1_{\{\tau_{t}\leq t\}}$ be a right-continuous process which indicate the default status
of the firm $i$ at time $t$ and we denote by $\mathcal{H}_{t}^{i}=\sigma(H_{i}(s) : 0\leq s\leq t)$ the associated filtration.

2.2 Incomplete information

With the view to analyzing how the period of past default memories affect succeeding defaults, we
consider the incomplete information framework which is known to represent contagion. In order
to depict the incomplete information structure more concretely, in addition to the assumption
of the randomness of the default threshold, we postulate the following assumptions.

Assumption 2.1. Public investors can observe firm values and default events although they
can not directly observe the firm’s default thresholds $L_{i}D_{i}(i=1,2, \cdots, n)$ except for the default
time $\tau_{i}.$

Define the set of survived firms $S_{t}=\{i\in\{1,2, \cdots , n\};\tau_{i}>t\}$ and the set of defaulted firms
$\mathcal{D}_{t}=\{i\in\{1,2, --, n\};\tau_{i}\leq t\}$ at the time $t$ . We write $r_{t}=\# S_{t}$ , the number of elements in the
set $S_{t}.$

Assumption 2.2. At time $t=0$ , we assume every firm in the portfolio are surviving, i. e.,
$r_{0}=n$ and then the inequality $v_{i}>L_{i}D_{i}$ holds for all $i\in\{1,2, \cdots, n\}$ under the condition
$\mathcal{H}_{0}=\mathcal{H}_{0}^{1}\vee\cdots\vee \mathcal{H}_{0}^{n}.$

Let $(\log L_{1}^{*}, \cdots, \log L_{n}^{*})^{T}$ be normally distributed random variable with mean vector $\mu=$

$( \log\overline{L}_{1}-\frac{\gamma_{11}}{2}, \cdots, \log\overline{L}_{n}-\frac{\gamma_{nn}}{2})^{T}$ and variance-covariance matrix $\Gamma=(\gamma_{ij})_{\leq i,j\leq n}$ . Here, $\overline{L}_{i},$ $i=$

$1,2,$ $\cdots,$ $n$ , are some constants. And we assume that $(\log L_{1}, \cdots, \log L_{n})^{T}$ be the truncation of
$(\log L_{1}^{*}, --, \log L_{n}^{*})$ above $c=(\log(v_{1}/D_{1}), \cdots, \log(v_{n}/D_{n}))^{T}$ . We denote $l_{i}^{de}=^{f}\log L_{i}.$

84



Remark 2.3. The definition of the mean vector $\mu=(\log\overline{L}_{1}-\frac{\gamma_{11}}{2},$
$\cdots,$

$\log\overline{L}_{n}-\frac{\gamma_{nn}}{2}I^{T}$ is given
along the line of original CreditGrades model. $[4J$ proposed that the random recovery rate $L_{i}$ is
modeled as $L_{i}=\overline{L}_{i}e^{\gamma_{ii}Z-\gamma_{\iota i}^{2}/2}$ with $Z\sim N(0,1)$ .

Assumption 2.4. There is a consensus on the priorjoint distribution offirm’s default thresholds
among the public investors. More concretely, investor’s uncertainty about the default thresholds
$L_{i}^{*}D_{i}$ is expressed by

$(\log L_{1}^{*}, \cdots, \log L_{n}^{*})^{T} \sim N_{n}(\mu, \Gamma)$ (4)

where $N_{n}$ is a $n$ -dimensional Normal distribution.

Assumption 2.5. For each default time $\tau_{i}$ , public investors update their belief on the joint
distribution function of surviving firm’s default thresholds based on the assumption (4) and
newly arrived information, i. e., the realized recovery rate $V_{\’{i}}(\tau_{i})/D_{i}.$

Remark 2.6. Since public investors observe all the history of the firm value, they know that the
unobservable threshold should be located below the running minimum of the firm value. Despite
these knowledge, we assume that public investors treat the logarithm of the recovery rate $\ell_{i}^{*}=$

$\log L_{i}^{*}$ as normally distributed random variable.

Assumption 2.1, Assumption 2.4 and Assumption 2.5 provide the default contagion mech-
anism; The default of a firm reveals information about the default threshold and then public
investors update their beliefs on surviving firm’s joint distribution of thresholds. From pubhc
investors’ perspective, this naturally causes the sudden change of default probabilities of sur-
vived firms, which is just what we wanted to model. The situation of contagious defaults can
be translated to the recession, however, it will not continue forever. In our model, we further
assume that public investors view the crisis will return to normal condition after some finite
time interval.

Assumption 2.7. The covariance parameter jumps from $\gamma_{ij}$ to $0$ at time $\min\{\tau_{i}+s_{i}, \tau_{j}+s_{j}\}$ for
some constants $s_{i}\in(0, \infty)$ and $s_{j}\in(0, \infty)$ . This can be captured by introducing time-depending
covariance parameters $\gamma_{ij,t}$ defined as

$\gamma_{ij,t} = \gamma_{ij}1_{\{t<\tau_{i}+s_{i}\}^{1}\{t<\tau_{j}+s_{j}\}}, 1\leq i, j\leq n$ , (5)

and then assume that the elements of the variance-covariance matrix $\Gamma$ are given by (5). We
call $s_{i}$ the memory period of $i$ afler $\tau_{i}.$

Thus the mean vector $\mu_{t}$ and the variance-covariance matrix $\Gamma_{t}$ at time $t$ can be defined ae

$\mu_{t} = (\log\overline{L}_{1}-\frac{\gamma_{11,t}}{2}, \cdots, \log\overline{L}_{n}-\frac{\gamma_{nn,t}}{2})^{T}$ (6)

$\Gamma_{t} = (\gamma_{ij,t})_{1\leq i,j\leq n}$ (7)

Assumption 2.8. $V_{i}(t)=V_{i}(\tau_{i})$ for $t\leq\tau_{i}+s_{i}.$

Define the set $\tilde{\mathcal{D}}_{t}=\mathcal{D}_{t}\cap\{i\in\{1,2, \cdots, n\};\tau_{i}\leq t<\tau_{i}+s_{i}\}$ at time $t$ and let $\tilde{r}_{t}=\#\tilde{\mathcal{D}}_{t}$ be the
number of elements in the set $\tilde{\mathcal{D}}_{t}$ . Rearrange the order of firm identity numbers in such a way
that the elements of $\tilde{\mathcal{D}}_{t}$ come after the elements of $S_{t}$ and the elements of $\mathcal{D}_{t}\backslash \tilde{\mathcal{D}}_{t}$ are located the
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last. Let $\overline{\Gamma}_{t}$ be $a(r_{t}+\tilde{r}_{t})\cross(r_{t}+\tilde{r}_{t})$ submatrix formed by selecting the rows and columns from
the subset $S_{t}\cup\tilde{\mathcal{D}}_{t}$ and let $\overline{\ell}_{t}$ and $\overline{\mu}_{t}$ be corresponding $(r_{t}+\tilde{r}_{t})$ -dimensional vectors respectively.

$\overline{\ell}_{t}$ $=$ $(\log L_{1}, \cdots, \log L_{r_{t}}, \log L_{r_{t}+1}^{*}, \cdots, \log L_{r_{t}+\tilde{r}_{t}}^{*})^{T}$ (8)

$\overline{\mu}_{t}$ $=$ $( \log\overline{L}_{1}-\frac{\gamma_{11,t}}{2}, \cdots, \log\overline{L}_{r_{t}}-\frac{\gamma_{r_{t},r_{t},t}}{2}, \cdots, \log\overline{L}_{r_{t}+\tilde{r}_{t}}-\frac{\gamma_{r_{t}+\overline{r}_{t},r_{t}+\overline{r}_{t},t}}{2})^{T}$ (9)

Assumption 2.8 implies that during the memory period, public investors remember the firm
values at which the defaults occurred. We note that

$\{\tau_{i}\leq t\}=\{\min_{0\leq s\leq t}V_{i}(s)\leq L_{i}D_{i}\},$ $\forall i\in \mathcal{D}_{t}$ . (10)

By virtue of Assumption 2.4, we can deduce the conditional joint distribution of the default
thresholds as follows. Here we don’t eliminate the possibility of simultaneous defaults, i.e., we
don’t need to assume $\mathbb{P}(\tau_{i}=\tau_{j})=0.$

Proposition 2.9. Let $\ell_{\mathcal{D}_{t}^{-}}$ be a $\tilde{r}_{t}$ -dimensional vector consists of the logarithm of the realized
recovery rate at time $t$ . Partition the vector $\overline{\ell}_{t},\overline{\mu}_{t}$ and the matrix $\overline{\Gamma}_{t}$ into

$\overline{\ell}_{t}=(\begin{array}{l}p_{S_{t}}\ell_{\mathcal{D}_{t}^{-}}\end{array}), \overline{\mu}_{t}=(\begin{array}{l}\mu_{S_{t}}\mu_{\tilde{\mathcal{D}}_{t}}\end{array}), \overline{\Gamma}_{t}=(\begin{array}{ll}\Gamma_{S_{t}S_{t}} \Gamma_{\mathcal{S}_{t}\tilde{\mathcal{D}}_{t}}\Gamma_{\mathcal{D}_{t}^{-}S_{t}} \Gamma_{\tilde{\mathcal{D}}_{t}\tilde{\mathcal{D}}_{t}}\end{array})$

where $\ell_{S_{t}}$ and $\mu_{S_{t}}$ are $r_{t}$ dimensional vectors, $\ell_{\mathcal{D}_{t}^{-}}$ and $\mu_{\mathcal{D}_{t}^{-}}$ are $\tilde{r}_{t}$ dimensional vectors, $\Gamma_{S_{t}\mathcal{S}_{t}}$ is
a $r_{t}\cross r_{t}$ matrix, and $\Gamma_{\mathcal{D}_{t}^{-}\mathcal{D}_{t}^{-}}$ is a $\tilde{r}_{t}\cross\tilde{r}_{t}$ matrix. Then $\mathcal{F}_{t}$ -conditional joint density of $\ell s_{t}$ is given
$by$

$\frac{f(\ell_{\mathcal{S}_{t}}1\ell_{\mathcal{D}_{t}^{-}})}{\int_{-\infty}^{C_{t}}f(\ell_{s_{t}|\ell_{\mathcal{D}_{t}^{-}})d\ell_{\mathcal{S}_{t}}}}1_{\{\ell_{S_{t}}\leq c_{t}\}}$

(11)

where

$f(l_{S_{t}}|\ell_{\mathcal{D}_{l}^{-}})$ $=$ $\frac{1}{(\sqrt{2\pi})^{r_{t}}\sqrt{\det\Gamma_{112,t}}}\exp(-\frac{1}{2}(\ell_{S_{t}}-\mu_{1,t})’\Gamma_{112,t}^{-1}(\ell_{S_{t}}-\mu_{1,t}))$ , (12)

$\mu_{1,t}$ $=$ $\mu_{S_{t}}+\Gamma_{S_{t}\tilde{\mathcal{D}}_{t}}\Gamma_{\tilde{\mathcal{D}}_{t}\tilde{\mathcal{D}}_{t}}^{-1}(\ell_{\mathcal{D}_{t}^{-}}-\mu_{\mathcal{D}_{t}^{-}})$, (13)

$\Gamma_{11.2,t}$ $=$ $r_{s_{t}s_{t}-\Gamma_{S_{t}\tilde{\mathcal{D}}_{t}}\Gamma_{\tilde{D}_{t}\tilde{\mathcal{D}}_{t}}^{-1}\Gamma_{\mathcal{D}_{t}^{-}S_{t}}}$ , (14)

$c_{t}$ $=$ $( \log(\min_{0\leq s\leq t}V_{1}(s)/D_{1}),$ $\cdots,$
$\log(\min_{0\leq s\leq t}V_{r_{t}}(s)/D_{r_{t}}))^{T}$ (15)

Proof. From the continuity of the asset process $V^{i}(t)$ and equation (10), public investors know
that $L_{i}D_{i}= \min_{0<s\leq\tau_{t}}V_{i}(s)$ for all defaulted firms $i\in\tilde{\mathcal{D}}_{t}$ and $L_{i}D_{i}< \min_{0<s\leq t}V_{i}(s)$ for all
survived firms $i\in S_{t}$ . Here, whenever defaults occur, let the order of the firms be rearranged in
such a way that the elements of $\tilde{\mathcal{D}}_{t}$ come after the elements of $S_{t}$ . Define the set

$R( \tilde{\mathcal{D}}_{t})^{de}=^{f}(0, \frac{\min_{0<s\leq t}V_{s}^{1}}{D_{1}})\cross\cdots\cross(0, \frac{\min_{0<s\leq t}V_{s}^{r_{t}}}{D_{r_{t}}})\cross\{\frac{\min_{0<s\leq t}V_{s}^{r\iota+1}}{D_{r_{t}+1}}\}\cross\cdots\cross\{\frac{\min_{0<s\leq t}V_{s}^{r_{t}+\overline{r}_{t}}}{D_{r_{t}+\tilde{r}t}}\},$

with the special case

$R( \emptyset)=(0, \frac{\min_{0<s\leq t}V_{s}^{1}}{D_{1}})\cross\cdots\cross(0,\frac{\min_{0<s\leq t}V_{s}^{n}}{D_{n}})$
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to be the possible range of the recovery rate vector $L=(L_{1}, L_{2}, \cdots, L_{n})$ under the condition of
$\mathcal{F}_{t}$ . In particular, for $i\in\tilde{\mathcal{D}}_{t},$ $L_{i}$ takes value $\frac{\min_{0<s<t}V_{s}^{t}}{D_{i}}$ . Let $\mathcal{G}_{t}=\mathcal{G}_{t}^{1}\vee \mathcal{G}_{t}^{2}\vee\cdots\vee \mathcal{G}_{t}^{n}$ . As in the
proof of the lemma 4.1 of [7], from Bayes’ Theorem,

$\mathbb{P}(L\in A|\mathcal{F}_{t}) = \mathbb{P}(L\in A|\tilde{\mathcal{D}}_{t},\mathcal{G}_{t})$

$= \mathbb{P}(L\in A|L\in R(\tilde{\mathcal{D}}_{t}), \mathcal{G}_{t})$

$= \frac{\mathbb{P}(L\in A\cap R(\tilde{\mathcal{D}}_{t})|\mathcal{G}_{t})}{\mathbb{P}(L\in R(\tilde{\mathcal{D}}_{t})|\mathcal{G}_{t})}$

$= \frac{\mathbb{P}(L\in A\cap R(\overline{\mathcal{D}}_{t}))}{\mathbb{P}(L\in R(\tilde{\mathcal{D}}_{t}))}.$

The last equality holds because $L$ is independent of $\mathcal{G}_{t}$ . Hence the joint distribution of the
surviving firm’s logarithm of recovery rates are given by the conditional distribution of $\ell s_{t}$ given
$\ell_{\mathcal{D}_{t}^{-}}$ at which the realization $L_{i}D_{i}= \min_{0<s\leq\tau_{i}}V_{i}(s)$ hold for all $i\in\tilde{\mathcal{D}}_{t}$ . Conditional distributions
of the multivariate normal distribution are well known. See for example [3] for details. However,
from Assumption 2.1, public investors have already know the following inequalities hold.

$L_{i}D_{i}< \min_{0\leq s\leq t}V_{i}(s) , i\in S_{t}$ . (16)

Therefore the conditional distribution $f(\ell_{S_{t}}|P_{\mathcal{D}_{t}^{-}})$ should be truncated above $c_{t}$ given by (15). $\square$

In the case $\rho_{ij}=0$ for all $i\neq j$ , the problem become quite easy because first-passage time
of 1-dimensional Geometric Brownian motion is well known. In fact, in such a case, [8] showed
that the counting process $\sum_{i=1}^{n}H_{i}(t)$ has intensity process and they proposed the simulation
method based on the total hazard rate even if $V_{i},$ $i=1,2,$ $\cdots,$ $n$ are not observable.

$0$ $T_{1}=\tau_{5}$ $T_{2}=\tau_{3}$ $T_{3}=\tau_{1}$$\frac{\wedge-}{T7|T||}$$1$ $1$
$1$

$1$ $1$ $1$

$\underline{|s_{5||}}$ $1$

$1$ $1$

$\underline{||s_{3}||}$$1$

$1$ $1$

$\underline{||s_{1}|}$
$1$

$1$ $1$ $1$

$1$ $1$ $1$

$1$ $1$ $1$

$1$ $1$ $1$

$\{\begin{array}{l}\ell_{1}\ell_{2}\ell_{3}\frac{\ell_{4}}{\ell_{5}}\end{array}\} [\frac{\ell_{4}\ell_{2}p_{1}}{p_{3},p_{5}}]\perp \perp [\frac{\ell_{4}\ell_{2}}{\ell_{3},\ell_{1}}]\perp$

$\perp$

Figure 1: Sequence of defaults and the corresponding memory periods

Let $T_{1},$ $T_{2},$ $\cdots$ , $T_{n}$ be an ordered default times of $\{\tau_{1}, \tau_{2}, \cdots , \tau_{n}\}$ . Figure 1 illustrate an
example of sequence of defaults with $n=5$ and the corresponding memory periods. At time
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$0$ , since all the firms are active and then the unconditional joint density of $(\ell_{1}, \cdots,\ell_{5})^{T}=$

$(\log L_{1}, \cdots, \log L_{5})^{T}$ is given by

$\frac{f(\ell_{s_{0}^{-}})}{\int_{-\infty}^{C_{0}}f(\ell_{\mathcal{S}_{0}^{-}})d\ell_{s_{0}^{-}}}1t\ell_{s_{0}}-\leq c_{0}\}$

. (17)

At the first default time $T_{1}=\tau_{5}$ , updated default threshold is sampled under the condition
$\ell_{5}=\log(V_{5}(\tau_{5})/D_{5})$ and this condition remains effective until $\tau_{5}+s_{5}$ . This is shown by a square
bracket $[\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}|\ell_{5}]^{T}$ which indicate that the random vector $(\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4})^{T}$ should be
sampled under the condition $p_{5}=\log(V_{5}(\tau_{5})/D_{5})$ at time $T_{1}$ . If the second default occurred at
time $T_{2}=\tau_{3}<\tau_{5}+s_{5}$ , then the updated default threshold at $T_{2}=\tau_{3}$ should be sampled under
the condition $(\ell_{3}, \ell_{5})=(\log(V_{3}(\tau_{3})/D_{3}), \log(V_{5}(\tau_{5})/D_{5}))$. However, at the third default time
$T_{3}=\tau_{1}$ , investor’s interest have changed from the first default to the second default completely,
i.e., the memory period of 5 after $\tau_{5}$ have finished. Therefore updated default threshold should
be sampled under the condition $(\ell_{3}, P_{1})=(\log(V_{3}(\tau_{3})/D_{3}), \log(V_{1}(\tau_{1})/D_{1}))$ . Notice also that
$S_{T_{1}}=$ {1,2,3,4}, $\tilde{\mathcal{D}}_{T_{1}}=\{5\},$ $S_{T_{2}}=\{1,2,4\},\tilde{\mathcal{D}}_{T_{2}}=\{5\}.$

2.3 Default Contagion

In this subsection we see how the conditional distribution of the default threshold change at
the default time. Suppose that the first default occurred at time $\tau_{j}>0$ . Let $g_{i}(x)$ denote the
unconditional density of $L_{i}D_{i}$ and let $g_{i}(x|T_{1}=\tau_{j})$ denote the conditional density of $L_{i}D_{i}$ given
$L_{j}=V_{j}(\tau_{j})/D_{j}$ . The distributions of $L_{i}D_{i},$ $i\in\{1,2, \cdots, n\}\backslash j$ change at $T_{1}=\tau_{j}$ from $g_{i}(x)$

to $g_{i}(x|T_{1}=\tau_{j})$ then the default probabilities $\mathbb{P}(\tau_{i}<t|t<T_{2})$ , which is restricted before $T_{2},$

change from

$\int_{-\infty}^{c_{t}(t)}\mathbb{P}(V_{i}(t)<x)g_{i}(x)dx$ (18)

to

$\int_{-\infty}^{\mathcal{C}|(t)}\mathbb{P}(V_{i}(t)<x)g_{i}(x|T_{1}=\tau_{j})dx$ . (19)

Figure 2 and 3 shows the conditional distribution of $L_{i}D_{i}$ at $\tau_{j}$ -and $\tau_{j}$ with $\overline{L}_{i}=0.4,$ $D_{i}=$

$0.85,$ $c_{i}(\tau_{j}-)=0.95$ . Distributions are truncated above the running minimum of the firm value
0.95. We see that the $\gamma_{ij}$ control the contagion impact effectively.

3 Monte Carlo method

This section develops a numerical method to compute the distribution of the number of defaults
via Monte Carlo simulation. Complicating matters is the fact that new information of defaults
changes the mean and covariance of the joint distribution of the thresholds. At each moment,
covariance matrix should be calculated relying upon whether the memory period have terminated
or not. Therefore, the simulation depends on the path, i.e. the order of occurrence of sequential
defaults.
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Figure 2: $g_{i}(x)$ and $g_{i}(x|T_{1}=\tau_{j})$ whith $\gamma_{ij}=0.01.$

Figure 3: $g_{i}(x)$ and $g_{i}(x|T_{1}=\tau_{j})$ whith $\gamma_{ij}=0.04.$
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The time interval $[0, T]$ is partitioned into sub-intervals of equal length $\Delta$ and firm value
processes evolve along the discretized time step $k\triangle,$ $k=1,2,$ $\cdots n$ , where $n\triangle=T$ . With the
discretization of the time variable, we redefine the default time as

$\tau_{i}=\inf\{k\Delta>0:V_{i}(k\Delta)\leq L_{i}D_{i}\}$ (20)

in analogy with its continuous time version (3).

Algorithm 3.1. To generate $a$ one sample path of the total default $\{\sum_{i}Ht\}_{t\leq T}$ , perform the
following:

Step $0$ . Initialize $V_{0},$ $H_{0}$ . Set $S_{0}=\{1,2, \cdots, n\},$ $r_{0}=n,$ $\mathcal{D}_{0}=and$ $k=1$ . Draw the random
barrier $L_{i}D_{i}$ for all firms in portfolio and fix them until the first default occurred.

Step 1. Generate the $r_{(k-1)\triangle}$ -dimensional path $V_{k\triangle}=(V_{k\Delta}^{1}, \cdots, V_{k\Delta}^{r_{(k-1)\Delta}})$ and calculate the

running minimum $\mathcal{M}_{k}^{i}=^{f}\min_{0\leq s\leq k\triangle}V_{k\Delta}^{i}\triangle^{de}$ for each $i\in S_{(k-1)\triangle}.$

Step 2. Determine whether default occurred or not at time $k\triangle$ and renew the set $S_{k\triangle}$ as follows.
If $\mathcal{M}_{k\Delta}^{i}\leq L_{i}D_{i}$ , then the firm $i$ gets default at time $k\Delta$ , and then set $H_{k\triangle}^{l}=1.$

Else, set $H_{k\triangle}^{i}=0.$

Let $\{i_{1}, i_{2}, \cdots, i_{m}\}$ be a set consists of defaulted firms at time $k\triangle$ and go to Step 3.
If $\mathcal{M}_{k\triangle}^{i}>L_{i}D_{i}$ hold for all $i\in S_{k\Delta}$ , set $H_{k\Delta}^{i}=0$ for all $i$ and go to Step 1.

Step 3. Determine $\{s_{i_{1}}, s_{i_{2}}, \cdots, s_{i_{m}}\}$ for all defaulted firms and calculate the realized barner
for the defaulted firms and store $\{\ell_{i_{1}}, \ell_{i_{2}}, \cdots, \ell_{i_{m}}\}.$

Step 4. Renew the matrix $\Gamma_{k\Delta}=(\gamma_{ij,k\triangle})_{1\leq i,j\leq n}$ and the set $\tilde{\mathcal{D}}_{k\Delta}$ . Draw the random barrier
$L_{i}D_{i}$ for all survived firms $i\in S_{k\Delta}$ and fix them until next default occurred. Sampling
is based on the distribution truncated above $(\mathcal{M}_{k\Delta}^{1}, \mathcal{M}_{k\Delta}^{2}, \cdot \mathcal{M}_{k\Delta}^{r_{k\Delta}})$ .

Step 5. Set $k=k+1$ and go to stepl.

4 Numerical examples

This section demonstrates the effects of the memory period through numerical examples with a
sample portfolio consists of 25 firms. The basic set of the model parameter values are summarized
as follows;. $V_{0}^{i}=1,$ $\delta^{\’{i}}=0.2,$ $D_{i}=0.95,$ $\overline{L}_{i}=0.7$ for all $i=1,2,$ $\cdots,$ $25,$. $\rho_{ij}=0.7$ for $i\neq j$ and $\rho_{ii}=1,$ $\gamma_{ii}=0.09,$

$os_{i}=s$ for all $i,$ $T=5,$

which would be employed throughout this section. In addition, we investigate four cases such as. Case 1: $\gamma_{ij}=0.02$ for all $i\neq j,$

. Case 2: $\gamma_{ij}=0.03$ for all $i\neq j,$

. Case 3. $\gamma_{ij}=0.04$ for all $i\neq j,$. Case 4: $\gamma_{ij}=0.05$ for all $i\neq j.$
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In the following numerical examples, we performed 500000 trials that will be expected to achieve
reasonably accurate values. Next Figures 4, 5, 6, 7 show how the default distributions change in
response to the memory period $s_{i}=s$ taking values in $s\in\{5,1,0.25,0.01\}.$ $O$ne sees that the
first default occurs with the same probability for each $\gamma_{ij}$ but the second default occurs with
different probability in response to the memory period $s$ . The larger the memory periods get,
the more tail gets fat.

Default distribution: $\gamma_{ij}=0.02$

$0 5 10 15 20 25$Number of defaults

Figure 4: Case 1

5 Conclusion

This paper proposed incomplete information multi-name structural $mo$del. We extend naturally
the CreditGrades model in the sense that we consider more than two firms in the portfolio and
their asset correlation as well as the dependence structure of the default thresholds. Introduced
the notion of the memory periods which control the loss distribution as if the default correlation
changes.
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comments.
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Default distribution: $\gamma_{ii}=0.03$

Figure 5: Case 2
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Default distribution: $\gamma_{ij}=0.04$

0 5 10 15 20 25
Number of defaults

Figure 6: Case 3
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Default distribution: $\gamma_{i}=0.05i$

Figure 7: Case 4
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