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1 Introduction

Estimation of small probability is one of the most important theme in many application fields
such as reliability engineering for structural systems or risk analysis. The well-known and most
widely used Monte Carlo simulation method is crucial for such purposes because of its very
slow convergence property. Transforming probability measure works quite well for reducing the

variance inherent in the Monte Carlo simulation procedure, which enables us to estimate very
small probability with good accuracy.

The author has been proposed a method for accelerating the Monte Carlo simulation by ap-
plying the probability measure transformation based upon the well-known Maruyama-Girsanov
theorem[1] and its variations. In Refs.[2], [3] and [4], the method has been applied to stochastic
systems driven by Wiener processes, in which a systematic procedure has been constructed for
selecting the optimal probability measure under which an importance sampling simulation is

executed by the use of a concept of design point playing a quite important role in the structural
reliability engineering$[5][6]$ . In Refs.[7] and [8], the method has been extended for treating a
stochastic system driven by compound Poisson processes.

Recently, more generalized stochastic models have been applied for modeling various phe-

nomena, especially, L\’evy processes have been widely used for modeling dynamics of securities or
wealth[9] For instance, a variance gamma process has been widely used for modeling wealth pro-
cesses in credit risk analysis[10]. Thus, we need to refine the probability measure transformation
technique so that it can be applied to stochastic systems driven by L\’evy processes.

In this paper, we give a brief survey of an application of probability measure transformation
technique to reduce the variance inherent in Monte Carlo simulations. Further, two examples

of its application are shown.

2 Basic Formulation

Let $(\Omega, \mathscr{F}, P)$ be a probability space and $\{\mathscr{F}_{t};0\leq t\leq T\}$ be a filtration on $(\Omega, \mathscr{F}, P)$ . We
consider a system such as. An input noise disturbing the system behavior is described by a real-valued and temporally

homogeneous L\’evy process denoted by $\mathbb{Z}(\omega)=\{Z_{t}(\omega);0\leq t\leq T\}.$

. An output is described by a real-valued stochastic process denoted by $\mathbb{X}(\omega)=\{X_{t}(\omega);0\leq$

$t\leq T\}$ , which is supposed to be adapted to the filtration.
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. The output $\mathbb{X}$ is related to the input noise $\mathbb{Z}$ as

$\mathbb{X}(\omega)=\mathscr{H}[\mathbb{Z}(\omega)]$ ( $a$ . $s$ .), (2.1)

where $\mathscr{H}$ is a functional representing the system.

Next we introduce an indicator functional $f$ for identifying a risk event which is our main
subject of analysis, i.e.,

$f[\mathbb{X}]=\{\begin{array}{l}1 (risk event occurs in [0, T])0 (otherwise)\end{array}$ (2.2)

The main target of our analysis is to estimate its expectation, denoted by $\psi(T)$ , as

$\psi(T)=\int_{\Omega}f[\mathbb{X}(\omega)]P(d\omega)=\int_{\Omega}f[\mathscr{H}[\mathbb{Z}(\omega)]]P(d\omega)=E_{P}\{f[\mathscr{H}[\mathbb{Z}]]\}$, (2.3)

where $E_{P}$ denotes an operator to take expectation under the original probability measure $P$ . If
the risk event represents a failure of a system, $\psi(T)$ represents probability of system failure up
to time $T$ , which is a main target quantity in the reliability engineering. On the other hand,
if $X_{t}$ represents a wealth of a company at time $t$ and the risk event represents an occurrence
of ruin of the company, $\psi(T)$ represents probability of ruin (or frequently called probability of
default) with in time $T$ , which is a main subject in the field of collective risk theory[11].

In many fields of application including reliability analysis as well as risk analysis, it is fre-
quently required to estimate $\psi(T)$ when it takes on a very small value. As the well-known Monte
Carlo method does not work well for estimating such small probability, we have to execute sim-
ulation procedure based upon another probability measure.

Suppose that $Q$ is such a probability measure defined on the same measurable space $(\Omega, \mathscr{F})$ ,
which is equivalent to the original probability measure $P$ . Using the measure $Q$ , we can rewrite
Eq. (2.3) as

$\psi(T)=\int_{\Omega}f[\mathscr{H}[\mathbb{Z}(\omega)]]\frac{dP}{dQ}(\omega)Q(d\omega)=E_{Q}\{f[\mathscr{H}[\mathbb{Z}]]\frac{dP}{dQ}\}$ , (2.4)

where $dP/dQ$ expresses the Radon-Nikodym derivative and $E_{Q}$ denotes an operator to take
expectation under $Q$ . The Monte Carlo estimator under $Q$ based upon Eq.(2.4) is then given as
follows;

$\hat{\psi}(T;N)=\frac{1}{N}\sum_{k=1}^{N}f[\mathscr{H}[\mathbb{Z}_{Q}^{(k)}]](\frac{dP}{dQ})_{Q}^{(k)}$ (2.5)

where $\mathbb{Z}_{Q}^{(k)}$ and $(dP/dQ)_{Q}^{(k)}(k=1, \ldots, N)$ are independent samples of $\mathbb{Z}$ and $dP/dQ$ respectively
generated under $Q.$

If we select a suitable measure $Q$ so that we can generate many samples which contribute to
the estimation of $\psi(T)$ , the variance of $\hat{\psi}(T;N)$ inherent in the Monte Carlo procedure can be
effectively reduced, which is one of variance reduction techniques known as importance sampling.
Thus, we call the measure $Q$ importance sampling measure in what follows. To execute a Monte
Carlo simulation based upon the importance sampling measure, we need to select $Q$ under
which we can easily generate independent samples of both $\mathbb{Z}$ and $dP/dQ$ with giving an effective
reduction of the variance.
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3 Probability measure transformation based upon the L\’evy-It\^o
decomposition

In this section, we give a basic framework of the probability measure transformation from $P$ to
$Q$ available for L\’evy processes by the use of the well-known L\’evy-It\^o decomposition$[12][13]$ based
upon Ref.[14].

3.1 The L\’evy-It\^o decomposition

The L\’evy-It\^o decomposition for temporally homogeneous L\’evy processes are expressed as follows;

$Z_{t}= \sigma_{B}B_{t}+q_{B}t+\int_{|u|>0}\{u\mu_{t}^{Z}(du)-t\cdot h(u)m_{Z}(du)\}$ , (3.1)

in which $B_{t}$ is a Wiener process, $\sigma B$ and $q_{B}$ are constants, $\mu_{t}^{Z}$ (A)represents the number of dis-
continuousjumps of $Z_{t}$ appearing in $[0, t]$ withjump variation belonging to a set $A$ . The measure
$\mu_{t}^{Z}$ is the so-called Poisson random measure such that $\mu_{t}^{Z}(A)$ obeys a Poisson distribution with
mean

$E_{P}\{\mu_{t}^{Z}(A)\}=m_{Z}(A)$ , (3.2)

which determines a measure called L\’evy measure. The function $h(u)$ appearing in the integral
in the third term is required so that the accumulation of small jumps does not diverge for some
subclass of L\’evy processes. For example, the following function is frequently used;

$h(u)=\{\begin{array}{l}-1 (u<-1)u (-1\leq u\leq 1) .1 (1<u)\end{array}$ (3.3)

Provided that $h(u)$ is given, $\sigma_{B},$ $q_{B}$ and the L\’evy measure $m_{Z}$ determine a L\’evy process $Z_{t}$

under the weak uniqueness. Thus, the triplet $(\sigma B, q_{B}, m_{Z})$ is called characteristic quantities of
L\’evy processes.

For example, if $q_{B}=0,$ $\sigma_{B}=1$ and $m_{Z}\equiv 0,$ $Z_{t}$ gives a Wiener process $B_{t}$ . On the other
hand, if $q_{B}=\sigma_{B}=0$ and the L\’evy measure is given as, with a positive constant $\lambda,$

$m_{Z}(A)=\{\begin{array}{l}\lambda (1\in A)0 (otherwise) ’\end{array}$ (3.4)

$Z_{t}$ is reduced to a Poisson process with an intensity $\lambda.$

3.2 Probability measure transformation based upon the L\’evy-It\^o decompo-
sition

Next, we give a probability measure transformation procedure[15] based upon the L\’evy-It\^o de-
composition given by Eq.(3.1).

The target measure $Q$ , which is a probability measure defined on a measurable space $(\Omega, \mathscr{F})$ ,
is assumed to be equivalent with the original probability measure $P$ . Then, the Radon-Nikodym
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derivative $dQ/dP$ , as well as $dP/dQ$ , exists, which generates a $P$-martingale $M_{t}$ given as

$M_{t}= E_{P}\{\frac{dQ}{dP}|\mathscr{F}_{t}\}$ . (3.5)

Since $E_{P}\{M_{t}\}$ clearly equals to unity, $M_{t}$ can be expressed, by the use of a suitable $P$-martingale
$N_{t}$ , as

$M_{t}=\mathscr{E}(N)_{t}$ , (3.6)

where $\mathscr{E}(N)_{t}$ is the well-known Dol\’eans-Dade exponential defined as follows;

$\mathscr{E}(N)_{t}=\exp\{N_{t}-\frac{1}{2}[N, N]_{t}^{c}\}\prod_{s\leq t}(1+\triangle N_{s})e^{-\triangle N_{s}}$ , (3.7)

in which $[N, N]_{t}$ represents a quadratic variation of $N_{t},$ $[N, N]_{t}^{c}$ represents its continuous part
and $\triangle N_{s}=N_{S}-N_{s}$ -represents a discontinuous jump of $N_{t}$ at time $s$ . In this study, we confine
ourselves to the case in which the martingale $N_{t}$ is a L\’evy process with mean zero under $P,$

whose L\’evy-It\^o decomposition is supposed to be given as

$N_{t}= \eta\sigma B_{t}+\int_{|u|>0}\{g(u)-1\}\{\mu_{t}^{Z}(du)-t\cdot m_{Z}(du)\}$ , (3.8)

where $\eta$ is a constant, $g(u)$ is a certain deterministic, as well as integrable, function. Substituting
Eq.(3.8) into Eq.(3.7), we can obtain

$M_{t}=e^{\hat{N}_{t}}$ , (3.9)

$\hat{N}_{t}=\eta\sigma B_{t}-\frac{1}{2}\eta^{2}\sigma^{2}t+\int_{|u|>0}\{\logg(u)\mu_{t}^{Z}(du)-t(g(u)-1)m_{Z}(du)\}$ . (3.10)

The probability measure $Q$ is finally constructed by substituting Eq.(3.10) into Eq.(3.5). In
what follows, we call $(\eta, g(u))$ characteristics of the probability measure transformation from $P$

to $Q.$

If the probability measure can be fully determined by the information up to $t=T$ , we can
obtain, from Eq.(3.6) and Eq.(3.10), as

$\frac{dQ}{dP}=e^{\hat{N}_{T}}$ , (3.11)

since $dQ/dP$ is $\mathscr{F}_{T}$ -measurable. Thus, we can give an analytical formula for the Radon-Nikodym
derivative between two measures.

Since the Wiener process and the accumulation of discontinuous jumps characterized by the
L\’evy measure, appearing in the L\’evy-It\^o decomposition, are statistically independent, the above
measure transformation is reduced to a combination of the following two independent measure
transformation as

(a) The process $B_{t}^{Q}$ defined as
$B_{t}^{Q}=B_{t}-\eta\sigma Bt$ (3.12)

is a Wiener process under $Q.$

(b) The L\’evy measure under $Q$ , denoted by $m_{Z}^{Q}$ , is given as follows;

$m_{Z}^{Q}(A)= \int_{A}g(u)m_{Z}(du)$ . (3.13)

The transformation given by Eq.(3.12) is the well-known Maruyama-Girsanov transformation[1].
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4 Optimal selection of $Q$

In this section, we briefly review a method[14] for selecting optimal measure $Q$ so that the

variance of Monte Carlo simulation under $Q$ can be most effectively reduced.

To make discussion clear, we suppose that the risk event occurs when the system process

arrives at a certain risk set $A$ , i.e., the indicator functional $f$ is given as

$f[X]=\{\begin{array}{l}1 (0\leq\exists t\leq T s.t X_{t}\in A)0 (otherwise)\end{array}$ (4.1)

In Ref. [14], the author has clarified that the convergence is effectively accelerated when the mean
behavior of $\mathbb{X}$ under $Q$ arrives at the risk set $A$ at time $t_{d}$ , which is called design time in Ref.[14].

That is,
$\tilde{E}_{Q}\{X_{t_{d}}\}=x_{c}$ , (4.2)

in which $\tilde{E}_{Q}\{X_{t_{d}}\}$ represents an approximated mean value of $X_{t_{d}}$ under $Q$ and $x_{c}$ represents

a point on the boundary of $A$ nearest to the initial state. If $Q$ is selected so that Eq.(4.2)

is satisfied, risk event occurs for about 50 % of generated samples under $Q$ , which has been
used for realizing the most effective reduction of simulation time in structural system reliability
analysis[6].

Next, a variance of the estimator under $Q$ is given as

$Var_{Q}\{\hat{\psi}(T;N)\}=\frac{1}{N}(E_{P}\{f[\mathscr{K}[\mathbb{Z}]]^{2}\frac{dP}{dQ}\}-\psi(T)^{2})$ . (4.3)

It should be noted that, although we can perfectly reduce the variance given by Eq.(4.3) by
selecting $Q$ as

$dQ= \frac{1}{\psi(T)}f[\mathscr{H}[\mathbb{Z}]]dP$, (4.4)

which is clearly an impossible selection for estimating $\psi(T)^{[16]}$ . That is, we can not reduce the

variance itself in selecting the measure $Q.$

Equation(4.3) can be rewritten as the following inequality;

Var$Q \{\hat{\psi}(T;N)\}\leq\frac{1}{N}E_{P}\{f[\mathscr{K}[\mathbb{Z}]]^{2}\frac{dP}{dQ}\}$ . (4.5)

Further applying the Schwarz inequality, we can obtain

Var$Q \{\hat{\psi}(T;N)\}\leq\frac{1}{N}(E_{P}\{f[\mathscr{K}[\mathbb{Z}]]^{4}\})^{1/2}(E_{P}\{(\frac{dP}{dQ})^{2}\})^{1/2}$ (4.6)

which gives one of upper bounds of the variance. Since $E_{P}\{f[\mathscr{K}[\mathbb{Z}]]^{4}\}$ does not depend on the
measure $Q$ , we can minimize the upper bound by minimizing $E_{P}\{(dP/dQ)^{2}\}.$

Consequently, we can determine the optimal measure $Q$ by solving the following conditional
minimizing problem for the characteristics $(\eta, g(u))$ ;

$minimize(\eta,g(u)) E_{P}\{(\frac{dP}{dQ})^{2}\}$ (4.7)

subject to $\tilde{E}_{Q}\{X_{t_{d}}\}-x_{c}=0$ (4.8)
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5 Application to risk analysis for infrastructures

Fist, we apply the importance sampling simulation scheme constructed in this paper to a random
damage growth model recently developed for tunnel concrete linings[17] as an important example
of maintenance for infrastructures.

Let $X_{t}$ be a quantified damage degree at time $t$ for tunnel concrete linings, which is here
supposed to obey the following stochastic differential equation;

$dX_{t}=\mu X_{t}+X_{t-}dC_{t},$ $X_{0}=x_{0}$ (a.s.), (5.1)

where $\mu$ is a positive constant representing a damage growth resistance and $C=\{C_{t};t\geq 0\}$ is
a compound Poisson process drives random damage growth. $A$ compound Poisson process $C$ is
a L\’evy process whose L\’evy measure, here denoted by $m_{C}$ , is uniformly integrable, i.e.,

$\int_{|u|>0}mc(du)\equiv\lambda<+\infty$ , (5.2)

which indicates that a measure $v_{C}$ defined as

$\nu_{C}(A)=\frac{1}{\lambda}m_{C}(A)$ , (5.3)

is a probability measure. Therefore, according to the basic property of L\’evy processes, $C$ can
be expressed as

$C_{t}= \sum_{k=1}^{N_{t}^{HPP}}Y_{k}$ , (5.4)

in which $N_{t}^{HPP}$ is a temporally homogeneous Poisson process with an intensity $\lambda$ give by Eq.(5.2)
and $\{Y_{k}\}$ is a set of i.i.d. random variables obeying the probability measure defined by Eq.(5.3),
Since $C$ drives the damage growth, $Y_{k}>0$ (a.s.) for $\forall k.$

The risk event is here supposed to be a failure of tunnel concrete linings, which is here
supposed to occur when the damage degree exceeds a certain critical level $x_{c}(>x_{0})$ . Hence,
the indicator functional is given by Eq.(4.1) with $A=\{X;X>x_{c}\}.$

As a L\’evy measure of any compound Poisson process is uniformly integrable, $C$ is again a
compound Poisson process under $Q$ provided that the function $g$ satisfies

$\int_{u>0}g(u)m_{C}(du)\equiv\frac{\lambda^{Q}}{\lambda}<+\infty$ , (5.5)

where $\lambda^{Q}$ gives an intensity of $C$ under $Q$ and jumps $\{Y_{k}\}$ obeys a probability measure defined
by

$\nu_{C}^{Q}(A)=\frac{1}{\lambda^{Q}}m_{C}^{Q}(A)=\frac{1}{\lambda^{Q}}\int_{A}g(u)m_{C}(du)$ . (5.6)

Applying the result obtained in Section 3, we can obatain the Radon-Nikodym derivative as

$\frac{dP}{dQ}=\exp\{(\lambda^{Q}-\lambda)T-\hat{C}_{T}\}$ (5.7)

$\hat{C}_{t}=\int_{|u|>0}\log g(u)\mu_{t}^{c}(du)=\sum_{k=1}^{N_{t}^{HPP}}\log g(Y_{k})$ (5.8)
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It should be noted that the characteristic $\eta$ is not needed in this measure transformation.
Equation(4.2) is here approximated as

$\tilde{E}_{Q}\{X_{t_{d}}\}=x_{0}\exp\{(a+\lambda^{Q}q_{1}^{Q})t_{d}\}=x_{c}$, (5.9)

$q_{1}^{Q}= E_{Q}\{Y_{1}\}=\int_{0}^{\infty}u\nu_{C}^{Q}(du)=\int_{0}^{\infty}yg(y)\nu_{C}(dy)$, (5.10)

where $x_{0}=X_{0}$ . Further, we can calculate Eq.(4.7) as

$E_{P}\{(\frac{dP}{dQ})^{2}\}=\exp[-3\lambda T+\lambda T\int_{0}^{\infty}\{2g(y)+g(y)^{-2}\}\nu_{C}(dy)]$ (5.11)

Here we assume that $\{Y_{k}\}$ obeys an exponential distribution with mean $q_{1}$ under $P$ , i.e.,

$v_{C}(A)= \int_{A}\frac{1}{q_{1}}\exp(-\frac{y}{q_{1}})dy$ . (5.12)

Then, if we assume that $\{Y_{k}\}$ also obeys an exponential distribution with mean $q_{1}^{Q}$ , i.e.,

$\nu_{C}(A)=\int_{A}\frac{1}{q_{1}^{Q}}\exp(-\frac{y}{q_{1}^{Q}})dy$ , (5.13)

the function $g$ is obtained as

$g(y)= \frac{\lambda^{Q}}{\lambda}\frac{q_{1}}{q_{1}^{Q}}\exp\{(\frac{1}{q_{1}}-\frac{1}{q_{1}^{Q}})y\}$ . (5.14)

Substituting Eqs. (5.9), (5.11) and (5.14) into Eqs.(4.7) and (4.8), we can reduce the optimization
procedure as

$minimizeq_{1}^{Q}>2q_{1}/3 \frac{2w}{q_{1}^{Q}}-\frac{(q_{1}^{Q})^{5}}{w^{2}q_{1}^{2}(3q_{1}^{Q}-2q_{1})}$ (5.15)

$w= \frac{1}{\lambda}(\frac{1}{T}\log\frac{x_{c}}{x_{0}}-a)$ (5.16)

The optimal $q_{1}^{Q}$ is numerically obtained from Eq.(5.16), which determines the optimal intensity
$\lambda^{Q}$ as

$\lambda^{Q}=\frac{\lambda w}{q_{1}^{Q}}=\frac{1}{q_{1}^{Q}T}(\log\frac{x_{x}}{x_{0}}-a)$ (5.17)

Figure 1 shows estimated $\psi(T)$ under parameters

$x_{0}=2.0, x_{c}=15.0, a=5.0\cross 10^{-3}, q_{1}=0.06, \lambda=0.5,$

for $T=10,20$ and 30, where vertical axis is logarithmically plotted. In Fig.1, solid crosses
represent estimated $\psi(T)$ obtained by our proposed scheme with 100 samples and error bars
show range of estimated values for ten times independent simulations. On the other hand, gray
triangle represent estimated $\psi(T)$ obtained by crude Monte Carlo simulation, i.e., Monte Carlo
simulation executed under the original measure $P$ with 5000 samples.
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Fig.1 Estimated $\psi(T)$ by proposed scheme (solid crosses) and crude Monte Carlo scheme (gray
triangle).

From the result, we can see that the proposed scheme works quite well for estimating very small
$\psi(T)$ with only 100 samples for each simulation. However, the crude Monte Carlo simulation
can not give estimation for $T\leq 20$ even though 5000 samples are generated in the simulation.

Table 1 shows optimally selected $\lambda^{Q}$ and $q_{1}^{Q}$ for each $T$ . When $T$ is small, the intensity $\lambda^{Q}$ and
mean $q_{1}^{Q}$ are magnified so that we can strongly accelerate the growth of $X$ . The magnification
ratio gradually decreases as $T$ increases.

Table 1 Comparison of parameters associated with the compound Poisson process $C_{t}$ under the
original measure $P$ and the importance sampling measure $Q.$

6 Application to Credit Default Swap pricing

6.1 Firm asset dynamics

Next, we discuss an application of the proposed simulation scheme to pricing of Credit Default
Swaps (CDS).

We suppose that dynamics of a firm asset, denoted by $X_{t}$ , is given as a solution of the
following stochastic differential equation[18];

$dX_{t}=X_{t-}d\tilde{Z}_{t}$ , (6.1)
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where the driving noise $\tilde{Z}_{t}$ is given as

$\tilde{Z}_{t}=Z_{t}+\frac{1}{2}[Z, Z]_{t}^{c}+\sum_{u\in(0,t]}\{e^{\Delta Z_{u}}-1-\triangle Z_{u}\}$ , (6.2)

where $Z_{t}$ is supposed to be a temporally homogeneous L\’evy process whose decomposition is
given by Eq.(3.1). The explicit form of the solution $X_{t}$ is given as

$X_{t}=X_{0}\exp(Z_{t})$ , (6.3)

which gives an exphcit expression of Eq.(2.1). It should be noted that the firm asset dynamics
given by Eq.(6.3) is a natural extension of the well-known Black-Scholes model.

The risk event discussed here is a default of the firm. It is here assumed to occur when the
firm asset $X_{t}$ falls below a prespecified default boundary $x_{d}(<X_{0})$ , i.e., the indicator functional
is given as

$f[X]=\{\begin{array}{l}1 (0\leq^{\exists}t\leq T s.t. X_{t}<x_{d})0 (otherwise)\end{array}$ (6.4)

Then, the probability $\psi(T)$ represents probability of default up to time $T$ . If we introduce a
default time, denoted by $\tau_{D}$ , as

$\tau_{D}=\inf\{t;X_{t}<x_{d}\}$ , (6.5)

$\psi(T)$ can be expressed by the use of $\tau_{D}$ as

$\psi(T)=P(\tau_{D}\leq T)$ . (6.6)

Thus, $\psi(T)$ as a function of $T$ can be regarded as a probability distribution function of the
default time $\tau D.$

6.2 Pricing of CDS

Let us consider a CDS with maturity $T_{0}.$ $A$ discounted income of the protection buyer, denoted
by $c_{B}$ , is given as

$c_{B}=ye^{-r\tau_{D}}1_{\{\tau_{D}\leq T_{0}\}}$ , (6.7)

where $y$ is the protection value, $r$ is a risk-free interest rate and $1_{A}$ is an indicator function of
event $A$ . On the other hand, a discounted income of the protection seller, denoted by $cs$ , is
given as

$c_{S}= \int_{0}^{T_{0}}qye^{-rs}1_{\{\tau_{D}\geq s\}}ds+Rye^{-r\tau_{D}}1_{\{\tau_{D}\leq T_{0}\}}$ , (6.8)

where $q$ is a premium rate of the CDS and $R$ is a recovery rate.
The CDS premium rate is determined under the condition that the expectation of $c_{B}$ coin-

cides with the expectation of $cs$ under the so-called equivalent martingale measure denoted by
$P^{*}$ , which can realize a kind of economical equilibrium. We denote $\psi(t)$ under $P^{*}$ as $\psi^{*}(t)$ , then
the expectations of $c_{B}$ and $c_{S}$ under $P^{*}$ are given as follows;

$E_{P^{*}}\{c_{B}\}=\int_{0}^{T_{0}}ye^{-rt}d\psi^{*}(t)$ , (6.9)
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$E_{P^{*}}\{c_{S}\}=\int_{0}^{T_{0}}qye^{-rt}(1-\psi^{*}(t))dt+R\int_{0}^{T_{0}}ye^{-rt}d\psi^{*}(t)$ . (6. 10)

The equilibrium condition is given as

$E_{P^{*}}\{c_{B}\}=E_{P^{*}}\{cs\}$ . (6.11)

Therefore we can express the CDS premium rate $q$ as follows;

$q= \frac{(1-R)\int_{0}^{T_{0}}e^{-rt}d\psi^{*}(t)}{\int_{0}^{T_{0}}e^{-rt}(1-\psi^{*}(t))dt}$ . (6.12)

6.3 Application of the proposed simulation scheme

The proposed simulation scheme can be applied to estimate the fair price of CDS through es-
timation of the probability of default $\psi(T)$ as the author discussed in Ref.[19]. The estimation
procedure consists of two steps. The first step is to transform the original probability measure
$P$ to the equivalent martingale measure $P^{*}$ , which is executed based upon a probability measure
transformation discussed in Section 3. To avoid the so-called incompleteness, the minimal en-
tropy principle[15] is applied. The second step is to transform the equivalent martingale measure
$P^{*}$ to the importance sampling measure $Q$ , which is executed just as discussed in Section 4.

6.4 Numerical examples

Here, we give numerical examples in which the L\’evy process $Z$ is a variance gamma process.
The variance gamma process is a L\’evy process in which $\sigma_{B}=q_{B}=0$ and its L\’evy measure

is given as

$m_{Z}(A)= \int_{A}\frac{p}{|u|}\exp(-\sqrt{\frac{2}{\sigma}}|u|)du$, (6.13)

where $p$ and $\sigma$ are positive parameters characterizing the $VG$ process. The $VG$ process is
frequently used for modeling random variation of stock price or firm asset. It should also be
mentioned that more general $VG$ process has been studied including three parameters[10].

We calculate the CDS premium rate by approximating integrals in Eq.(6.12) by the use of

the trapezoidal rule by a time mesh $T_{i}=i\triangle t,$ $\triangle t=\frac{T_{0}}{M}$ , i.e., its estimator with sample size $N_{M},$

denoted by $\hat{q}(N_{M})$ is given as follows;

$(1-R) \sum\frac{e^{-rT_{i}}+e^{-rT_{i-1}}}{2}(\hat{\psi}^{*}(T_{i};N_{M})-\hat{\psi}^{*}(T_{i-1};N_{M}))M$

$\hat{q}(N_{M}) = \frac{i=1}{\sum_{i=1}^{M}\frac{e^{-rT_{i}}(1-\hat{\psi}^{*}(T_{i};N_{M}))+e^{-rT_{i-1}}(1-\hat{\psi}^{*}(T_{i-1};N_{M}))}{2}(T_{i}-T_{i-1})}$

$\sum(e^{-rT_{i}}+e^{-rT_{i-1}})(\hat{\psi}^{*}(T_{i};N_{M})-\hat{\psi}^{*}(T_{i-1};N_{M}))M$

$=$

$(1-R) \frac{M}{T_{0}}\frac{i=1}{\sum_{i=1}^{M}\{e^{-rT_{i}}(1-\hat{\psi}^{*}(T_{i};N_{M}))+e^{-rT_{i-1}}(1-\hat{\psi}^{*}(T_{i-1};N_{M}))\}}$

, (6.14)
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where $T_{i}=i \cdot\frac{T_{0}}{M}(i=1,2, \cdots, M)$ .
Table 2 shows the estimated CDS premium rate with parameters

$T_{0}=0.1, b=0.099,p=5.0, \sigma=0.05, R=0$ . (6.15)

Table 2 CDS premium rate estimated by the proposed method compared with the crude Monte
Carlo method[19]. (Parameters are set as Eq.(6.15))

Table 2 shows that the proposed simulation method with $10^{4}$ samples can give quite good
estimations of small CDS premium rate compared to the crude Monte Carlo method with $10^{5}$

samples. Therefore, we can expect that the proposed method is effective in the case when the
value of the credit derivative in interest is derived from the credit risk of many firms, since the
probability of the conjunction of many defaults is regularly quite small, even if these defaults
are considered to be correlated with each other.

Next, supposing a long term case compared to Table 2, we show estimated CDS premium
rate in Table 3, where parameters are set as

$T_{0}=1.0, b=0.099,p=3.0, \sigma=0.1, R=0$ , (6.16)

in the same way as Table 2. Even though the accuracy of the default probability estimated by

Table 3 CDS premium rate estimated by the proposed importance sampling method compared
with the crude Monte Carlo method. (Parameters are set as Eq.(6.16))

the proposed method is quite good for small $T_{i}$ , the accuracy of the estimated premium rate
is almost same as the crude Monte Carlo method. It is due to that the integral in Eq.(6.14)
mainly depends on the large default probability in the supposed time interval.
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7 Conclusion

In this paper, we have briefly discussed a variance reduction technique realizing importance sam-
pling in the Monte Carlo simulation based upon a probability measure transformation available
for stochastic systems driven by L\’evy processes. Two practical application have been shown for
demonstrating the proposed simulation scheme which works quite well for estimating very small
probability of risk event.
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