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Abstract
We introduce the notion of arithmetic part. For a $p$-valued field $(K, v)$ , an arithmetic part

$N$ of $K$ is a dense subsemiring of the valuation ring and the 2-ary relation $v(x)\leq v(y)$ on $N$

is definable in $N$ . We show that there is an $\aleph_{1}$ -saturated $p$-adically closed field which has no
arithmetic part satisfying $PA.$

1 Introduction
First of all, we recall some results in [1], where they gave a necessary and sufficient condition for
the recursive saturation of real closed fields. $A$ real closed field is a model of the theory of the
field $\mathbb{R}$ of reals in the language $L_{or}=\{+, \cross, 0,1, <\}$ of ordered rings. For an ordered field $R$ , an
integer part is a subset of $R$ such as the relationship between $\mathbb{Z}$ and $\mathbb{R}$ . Suppose $R$ is an ordered
field and $I$ is a unitary subring of $R$ . We say that $I$ is an integer part if there is no element
between $0$ and 1, and for each $x\in R$ , there is some $i\in I$ such that $i\leq x<i+1$ . Mourges
and Ressayre [2] proved that every real closed field has an integer part. D Aquino, Knight, and
Starchenko showed the following theorem.

Theorem 1.1 ( $D$ ’Aquino, Knight, and Starchenko [1]). Suppose $R$ is a real closed field. If there
is an integer part I of $R$ which is a nonstandard model of $PA$ , then $R$ is recursively saturated.
In addition if $R$ is countable then the converse holds.

In this theorem, the countable condition is necessarily. In fact, Marker and Steinhorn showed
the following theorem.
Theorem 1.2 (Marker and Steinhorn [9]). There is an $\aleph_{1}$ -saturated real closed field which has
no integer part satisfying $PA.$

We consider a $p$-adic analogy of [1] and [9]. The author showed the following $p$-adic analogy
of Theorem 1.1 (see, Theorem 2.3). In this paper, we show the $p$-adic analogy of Theorem 1.2,
that is, there is an $\aleph_{1}$ -saturated $p$-adically closed field which has no arithmetic part satisfying
$PA.$

In the section 2, we recall definitions and facts necessary for understanding the statement
of the main result (Theorem 2.3). In the section 3, we recall the definition of the ordinal Hahn
fields, and in section 4, we mention a $p$-adic analogy of Hahn fields introduced by Poonen. In
section 5, we prove the main theorem.

2 Preliminaries
An ordered group $G$ is called a $\mathbb{Z}$ -group if it is elementary equivalent to $\mathbb{Z}$ in the language
$\{+, 0,1, <\}$ . There is a well-known fact.
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Fact 2.1. $A$ unitary ordered group $G$ is a $\mathbb{Z}$ -group if and only if the unit is the least positive
element and $G/\mathbb{Z}$ is divisible.

This fact is proved using the method of quantifier elimination, for more detail see [7].
Suppose $K$ is a field, $G$ is an ordered abelian group and $v$ : $K^{X}arrow G$ a surjective group

homomorphism. We say that $(K, v, G)$ is a valued field if all triples $x,$ $y,$ $x+y\in K^{\cross}$ satisfy the
strong triangle inequality

$v(x+y) \geq\min\{v(x), v(y)\}.$

If $G$ and $v$ are obvious, we say simply that $(K, v)$ or $K$ is a valued field. For a valued field $(K, v)$ ,
we say that $G$ is the valued group of $K$ denoted by $vK$ . The set $\{x\in K^{x} : v(x)\geq 0\}\cup\{0\}$

of all positive value elements of $K$ with $0$ forms a subring of $K$ . The subring is called the
valuation ring, denoted by $\mathcal{O}_{K}$ . The valuation ring of $K$ is a local ring whose unique maximal
ideal $\mathcal{M}_{K}=\{x\in K^{x} : v(x)>0\}\cup\{0\}$ . The residue field of $K$ is the residue field $\mathcal{O}_{K}/\mathcal{M}_{K}$ of
$\mathcal{O}_{K}$ , denoted by $Kv$ . The characteristic of the valued field $(K, v)$ is the pair $(ch(K), ch(Kv))$ .
The possibility of characteristic of valued fields is $(0,0),$ $(0,p)$ , or $(p,p)$ . The case of $(0,0)$ or
$(p,p)$ is called equi-characteristic case, and otherwise mixed characteristic.

A valued field $(K, v)$ is $p$ -valued if characteristic of $K$ is $0,$ $v(p)$ is the least positive element
in the value group $vK$ , and the residue field $Kv$ is the finite field $\mathbb{F}_{p}$ of $p$ elements. $A$ p–valued
field $(K, v)$ is called $p$ -adically closed if there is no proper algebraic p–valued extension. The
language $L_{V}$ of valued fields is the language $L_{r}=\{+, \cross, 0,1\}$ of rings with one unary predicate
symbol $V$ . For a valued field $(K, v)$ , we regard $K$ as an $L_{V}$ -structure as follows: for $a\in K,$

$K\models V(a)\Leftrightarrow a\in \mathcal{O}_{K}.$

Ax, Kochen, and Ershov have characterized -adically closed fields from model theoretic point
of view.

Fact 2.2 (AKE-principle, the proof see [4]). For a valued field $(K, v)$ , the following are equiv-
alent;

1. $K$ is $p$ -adically closed.
2. $K$ is elementary equivalent to $\mathbb{Q}_{p}$ as $L_{V}$ -structure.

3. the valuation ring $\mathcal{O}_{K}$ is henselian, the residue field $Kv$ is $\mathbb{F}_{p}$ , and the value group $vK$ is
elementary equivalent to $\mathbb{Z}$ as $\{+, 0,1, <\}$ -structure, that is $vK$ is a $\mathbb{Z}$-group.

We denote $pCF$ the theory $Th_{L_{V}}(\mathbb{Q}_{p})$ of $\mathbb{Q}_{p}$ in the language $L_{V}.$

For a p–valued field $K$ , we will define an arithmetic part of $K$ which is an analogy of integer
part. Our arithmetic part is something like in $\mathbb{Q}_{p}$ , while the arithmetic part corresponds to $\mathbb{N}$

in the given field. Suppose $(K, v)$ is a $p$-valued field and $N$ is a subsemiring of $K$ . We say that
$N$ is an arithmetic part if it is dense with respect to valuation topology in the valuation ring of
$K$ and the 2-ary relation $v(x)\leq v(y)$ on $N$ is definable in $N$ . There is the following theorem.

Theorem 2.3 ([10]). Suppose $K$ is a $p$ -adically closed field. If there is an arithmetic part $N$

of $K$ which is a nonstandard model of $PA$ , then $K$ is recursively saturated. In addition if $K$ is
countable then the converse holds.

The rest of this paper, we consider necessity of the countability condition in the theorem
2.3. In fact, we show the following theorem.

Theorem 2.4. There is an $\aleph_{1}$ -saturated $p$ -adically closed field which has no arithmetic part
satisfying $PA.$

3 Mal’cev-Neuman rings and Hahn fields
Suppose $k$ is a unitary ring and $G$ is an ordered abelian group. The Mal’cev-Neumann ring
$k((t^{G}))$ is the ring with the underlying set { $\alpha$ : $Garrow k$ : $supp(\alpha)$ is well ordered}, where

18



$supp(\alpha)=\{g\in G:\alpha_{g}:=\alpha(g)\neq 0\}$ . We denote $f\in k((t^{G}))$ by a formal sum $\sum_{g\in G}\alpha_{g}t^{g}$ in an

$t. If\alpha=\sum_{=t^{g},,and\alpha\beta}\alpha_{g}t^{g},\beta=\sum_{g}\beta_{g}t^{g}aree1ementsofk((t^{G})),$$then\alpha+\beta isdefinedas\sum_{g}(\beta_{g})\xi:_{g}(\sum_{i+j^{\alpha_{i}\beta_{j})t^{g}.Itiseasyt\circ seethat\alpha+\beta and\alpha\beta arewelldefined}}^{indeter\min_{\alpha_{g}+}ate}$

Thus, they make $k((t^{G}))$ a ring.
Define $v$ : $k((G))^{\cross}arrow G$ by $v(\alpha)=$ min supp $(\alpha)$ for $\alpha\neq 0$ . There is the fact that if $k$ is

a field then $(k((t^{G})), v)$ is a valued field (see, [8]), so in the case we call $k((t^{G}))$ a Hahn field.
Suppose $K=k((t^{G}))$ is a Hahn field, then the value group $vK$ is $G$ and the residue field $Kv$

is $k$ , so ch$(K)=$ ch$(Kv)$ . Thus, any Hahn fields have equi-characteristic. It is natural to ask
whether we can construct a mixed characteristic valued field for given an ordered group $G$ and
a field $k$ . We will answer to this question in the next section.

4 -adic Hahn fields
The $p$-adic Hahn field are introduced by B.Poonen in [8]. To construct an analogy of mixed
characteristic, it requires a more complicated construction. We recall a result about complete
discrete valuation rings.

Fact 4.1. If $k$ is a perfect field of characteristic $p>0$ , then there exists a unique field $W(k)$ of
characteristic $0$ with a discrete valuation $v’$ such that the residue field is $k,$ $v(p)=1\in \mathbb{Z}$ , and
$W(k)$ is complete with respect to $v’.$

For example, if $k=\mathbb{F}_{p}$ , then $W(k)=\mathbb{Q}_{p}$ with the $p$-adic valuation. In fact, $W(k)$ is well
known as the set of Witt vectors over $k.$

To construct $p-$-adic analogy of Hahn field, at first, we consider the Mal’cev-Neuman ring
$\mathcal{O}_{W(k)}((t^{G}))$ . We want to replace $t$ to $p$ in $\mathcal{O}_{W(k)}((t^{G}))$ , that is we want to consider something

$shou1dbe0in\mathcal{O}_{W(k)}((t^{(i}))throughoutrep1acingttop;1$
ikethestructure $\mathcal{O}_{W(k}((t^{G}))/(t-p).Poonendefined$ the following set $N$ which elements

$N= \{\alpha\in \mathcal{O}_{W(k)}((t^{G})):\forall g\in G;\sum_{n=-\infty}^{\infty}\alpha_{g+n}p^{n}=0 in W(k)\}.$

And he show the following proposition.

Proposition 4.2 (Poonen, [8]). 1. $N$ is a maximal ideal of $\mathcal{O}_{W(k)}((t^{G}))$ .
2. $\mathcal{O}_{W(k)}((t^{G}))/N$ is a valued field whose the value group is $G$ and the residue field is $k.$

3. $\mathcal{O}_{W(k)}((t^{G}))/N$ is of the form

$\{\alpha=\sum_{g\in G}\alpha_{g}p^{9}$ : $\alpha_{g}\in k,$ $supp(\alpha)$ $is$ $well-ordered\}.$

We write $k((p^{G}))$ for $\mathcal{O}_{W(k)}((t^{G}))/N$ , and call $k((p^{G}))$ a $p$-adic Hahn field. For example,
$\mathbb{F}_{p}((p^{\mathbb{Z}}))=\mathbb{Q}_{p}$ . Moreover, he showed the maximal completeness of p–adic Hahn fields,

Proposition 4.3 (Poonen, [8]). The $p$ -adic Hahn fields are maximally complete. In particular,
they are henselian valued fields.

5 Proof of Theorem 2.3
The proof of Theorem 2.3 is divided three parts.

Proposition 5.1. Let $G$ be a $\mathbb{Z}$ -group. Then the $p$ -adic Hahn field $\mathbb{F}_{p}((p^{G}))$ is a $p$ -adically
closed field.

Proof It is clear, by Proposition 4.3 and AKE-principle (Fact 2.2). $\square$

19



Proposition 5.2. There is $\aleph_{1}$ -saturated $\mathbb{Z}$ -group such that there is no expansion to a model of
$PA.$

Proof. The following proof is the analogy of $\aleph_{0}$-saturated case in [7].
Let $Z$ be an $\aleph_{1}$ -saturated $\mathbb{Z}$-group of cardinality $>2^{N_{0}}$ and let $Q$ be an $\aleph_{1}$ -saturated model

of Th $(\mathbb{Q}, +, <)$ of cardinality $2^{N_{0}}$ . Let $G=Q\cross Z$ with addition defined coordinatewise and
with the lexicographic ordering $(q_{1}, z_{1})<(q_{2}, z_{2})$ if and only if $q_{1}<q_{2}$ or $q_{1}=q_{2}$ and $z_{1}<z_{2}.$

The integers $\mathbb{Z}$ are embedded in $G$ as $\{0\}\cross \mathbb{Z}\subset G$ . Since $(0,1)\in G$ is the least positive element
and $G/\mathbb{Z}=Q\cross Z/\mathbb{Z}$ is divisible, $G$ is a $\mathbb{Z}$-group. In order to prove the proposition, we shall
show two claims.

Claim 5.3. There is no multiplication $\cross onG$ satisfying the rules $x<yarrow xz<yz,$ $(x\pm y)z=$

$xz\pm yz$ , and $1z=z.$

Proof. Suppose that such a multiplication exists. Let $a=(q, 0),$ $q>0(q\in Q)$ . Then $a>(O, z)$

for all $z\in Z$ . Consider the map $Garrow G/Z$ defined as $x\mapsto[xa]$ . This is a one-to-one order
preserving homomorphism of $G$ into $G/Z\simeq Q$ since if $x>y$ then $(x-y)a>1a=a>(O, z)$ for
all $z\in Z$ , and hense, $[xa]\neq[ya]$ . But it is a contradiction because $|G|>2^{N_{0}}$ and $|Q|=2^{N_{0}}.$ $\square$

Claim 5.4. $G$ is $\aleph_{1}$ -saturated.

Proof. Let $\Sigma(x)$ be a non-algebraic complete type over a countable $A\subset G$ . Using the elimination
of quantifiers for Th $(\mathbb{Z}, 0,1, +, <, \equiv_{n})_{n\in \mathbb{N}}$ , we can replace each formula of $\Sigma(x)$ by a disjunction of
conjunctions of atomic formulas in $\{0,1, +, <, \equiv_{n}\}_{n\in N}$ . Since $\Sigma(x)$ is maximal we have that $\Sigma(x)$

is equivalent to $\Sigma_{1}(x)\cup\Sigma_{2}(x)\cup\Sigma_{3}(x)$ , where $\Sigma_{1}(x)$ is a set of formulas of the form $x\equiv_{n}i_{n},$ $i_{n}\in \mathbb{N}$

and $\Sigma_{2}(x)$ is a set of formulas of the form $j_{n}x\gtrless t_{n}(\overline{a}_{n}),$ $\overline{a}_{n}\in A$ and $j_{n}\in \mathbb{N}$ , where $t_{n}(\overline{y}_{n})$ is a
term whose variables are $\overline{y}_{n}$ and $\ln(\overline{y}_{n})=\ln(\overline{a}_{n})$ , and $\Sigma_{3}(x)$ is a set of equalities. Since $\Sigma(x)$

is non-algebraic, $\Sigma_{3}(x)$ is empty. Let $t_{n}(\overline{a}_{n})=j_{n}b_{n}+r_{n},$ $0\leq r_{n}<k_{n}$ . Then $k_{n}x\gtrless t_{n}(\overline{a}_{n})$ if
and only if $x\gtrless b_{n}$ . Let $\Sigma_{2}’(x)$ be the set of formulas of this form corresponding to the formula
of $\Sigma_{2}(x)$ . Then $\Sigma(x)$ is equivalent to $\Sigma_{1}(x)\cup\Sigma_{2}’(x)$ . Let $\overline{\Sigma}_{2}(x)=\{x\gtrless[c] : x\gtrless c\in\Sigma_{2}’(x)\}.$

Hence $\overline{\Sigma}_{2}(x)$ is a countable set of formulas in $G/Z\simeq Q.$

If $\overline{\Sigma}_{2}(x)$ is consistent then there is a realization $q_{0}\in Q$ of $\overline{\Sigma}_{2}(x)$ . Then all the inequalities
in $\Sigma_{2}’(x)$ are satisfied by $(q_{0}, a)$ for any $a\in Z$ . Choose $z_{0}\in Z$ satisfying $\Sigma_{1}(x)$ . Then $(q_{0}, z_{0})$

satisfying $\Sigma(x)$ .
If $\overline{\Sigma}_{2}(x)$ is inconsistent then there are two inequalities $b_{1}<x<b_{2}$ in $\Sigma_{2}’(x)$ with $[b_{1}]=[b_{2}].$

Let $q_{0}\in Q$ with $[(q_{0},0)]=[b_{1}]=[b_{2}]$ . Let $\overline{\overline{\Sigma}}_{2}(x)=\{x\gtrless z : x\gtrless(q_{0}, z)\in\Sigma_{2}(x)\}$ . Think
of $\Sigma_{1}(x)\cup\overline{\overline{\Sigma}}_{2}(x)$ as a type in $Z$ over some countable subset of $Z$ . It is finitely satisfiable.
Hence by the $\aleph_{1}$ -saturation of $Z$ we can choose $z_{0}\in Z$ which satisfies it. Then $(q_{0}, z_{0})$ satisfies
$\Sigma_{1}(x)\cup\Sigma_{2}’(x)$ in G. $\square$

By Claim 5.3. 5.4, $G$ satisfies the required properties in the proposition. $\square$

Proposition 5.5. Suppose $K$ is a $p$ -adically closed field and $N\subset K$ is an arithmetic part which
is a model of $PA$ . Then there is an isomorphism from $(vK_{\geq 0}, +, 0,1, <)$ to $(N, +, 0,1, <)$ .

Proof First of all, we note that the exponential function $p^{x}$ is definable function on $N$ since
$N$ is a model of $PA$ . We denote $p^{N}$ is the set $\{p^{a} : a\in N\}$ . First, we cheek the valuation
map $v$ : $(p^{N}, \cross, 1,p)arrow(vK_{\geq 0}, +, 0,1)$ is an isomorphism. Indeed, since $N\subset \mathcal{O}_{K},$ $v(p^{N})\subset$

$v(N)\subset vK_{>0}$ . And, if a $\in N$ is non-zero, then there is $b\in N$ such that $a=b+1$ , hence
$v(p^{a})=v(p^{b\overline{+}1})=v(p^{b})+1>0$ . This shows the injectivity of $v$ : $(p^{N}, \cross, 1,p)arrow(vK_{\geq 0}, +, 0,1)$ .
The subjectivity of $v$ : $(p^{N}, \cross, 1,p)arrow(vK_{\geq 0}, +, 0,1)$ is implied by the density of $N$ . Indeed,
for any $\gamma\in vK_{\geq 0}$ , by density of $N$ , there is $c\in N$ such that $v(c)=\gamma$ . We write $c$ as $bp^{a}$ where
$a,$ $b\in N$ and $(b,p)=1.$

Claim 5.6. If $(b,p)=1$ then $v(p)=0.$
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Proof We prove by induction on $b$ . Since $K$ is $p$-adically closed field, for $b(0\leq b\leq p-1)$

$v(b)=0$ . So, we may assume that $b\geq p$ . Suppose that $(b,p)=1$ and for any $b’<b$ if $(b’,p)=1$
then $v(b’)=0$ . Then $v(b-p)=0$ . By strong triangular inequality, $v(b)= \min\{v(b-p), v(p)\}=$

$v(b-p)=0.$ $\square$

Hence, $\gamma=v(c)=v(bp^{a})=v(p^{a})$ . This shows the subjectivity of $v$ : $(p^{N}, \cross, 1,p)arrow$

$(vK_{\geq 0}, +, 0,1)$ , so it is an isomorphism.
We can check easily that the exponential map $p^{x}$ : $(N, +, 0,1)arrow(p^{N}, \cross, 1,p)$ is an iso-

morphism. Thus, there is an isomorphism $v\circ p^{x}$ : $(N, +, 0,1)arrow(vK_{\geq 0}, +, 0,1)$ . Clearly, this
isomorphism preserves both orders. $\square$

Fact 5.7 ([6]). In the theory $pCF$ , the multiplicative subgroup of non-zero n-th powers has finite
index with coset representatives among the $\lambda p^{r},$ $0\leq r<m$ and $v(\lambda)=0.$

Proposition 5.S. Suppose $G$ is an $\aleph_{1}$ -saturated $\mathbb{Z}$ -group. Then the $p$ -adic Hahn field $\mathbb{F}_{p}((p^{G}))$

is $\aleph_{1}$ -saturated.

Proof. Suppose $\Sigma(x)$ is a non-algebraic complete type over a countable set $A\subset \mathbb{F}_{p}((p^{G}))$ .
Without loss of generality, $\Sigma(x)$ is of the form $\{\varphi_{i}(x) : i\in \mathbb{N}\}$ , where $\varphi_{i}(x)$ is a $L_{V}(A)$-formula
and $\mathbb{F}_{p}((p^{G}))\models\forall x(\varphi_{i+1}(x)arrow\varphi_{i}(x))$ for all $i\in \mathbb{N}$ . By $p-$-adic cell decomposition theorem (see,
[5] $)$ and the completeness of $\Sigma(x)$ , we may assume that for all $i\in \mathbb{N},$ $\varphi_{i}(x)$ is a cell

$\{x:g_{i}\leq v(x-t_{i})\leq h_{i}, x-t_{i}\in d_{i}(\mathbb{F}_{p}((p^{G}))^{\cross})^{m_{i}}\},$

where $g_{i},$ $h_{i}\in G\cup\{\infty, -\infty\},$ $t_{i},$ $d_{i}(\neq 0)\in \mathbb{F}_{p}((p^{G})),$ $m_{i}\in \mathbb{N}.$

Claim 5.9. Suppose $C=\{x:g\leq v(x-t)\leq h, x-t\in d(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}\}$ is a cell. Then for
any $a\in \mathbb{F}_{p}((p^{G})),$ $a\in C$ if and only if there is $r\in \mathbb{N}$ with $0\leq r<m$ and $\lambda,$ $\mu\in \mathbb{F}_{p}((p^{G}))$ with
$v(\lambda)=v(\mu)=0$ such that $v(a-(t+p^{v(a-t)}\lambda\mu^{m}))>v(a-t)+2v(m)$ and $g\leq v(a-t)\leq h,$

where $d(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}=\lambda p^{r}(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}.$

Proof. Note that, by Hensel’s Lemma, the following (a) and (b) are equivalent; for $x\in \mathbb{F}_{p}((p^{G}))$

with $v(x)=0$ , (a) $x$ is a m-th power, (b) there is $\mu\in \mathbb{F}_{p}((p^{G}))$ with $v(\mu)=0$ such that
$v(x-\mu^{m})>2v(m)$ .

Suppose $d(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}=\lambda p^{r}(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}$ as described in Fact 5.7. The condition $a-$
$t\in\lambda p^{r}(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}$ is equivalent to $(a-t)p^{-v(a-t)-r}\lambda^{-1}\in(\mathbb{F}_{p}((p^{G}))^{\cross})^{m}$. Since $v((a-$
$t)p^{-v(a-t)}\lambda^{-1})=0$ , there is $\mu\in \mathbb{F}_{p}((p^{G}))$ with $v(\mu)=0$ such that $v((a-t)p^{-v(a-t)}\lambda^{-1}-\mu^{m})>$

$2v(m)$ . Hence, we have $v(a-(t+p^{v(a-t)}\lambda\mu^{m}))>v(a-t)+2v(m)$ . $\square$

By the above claim and our assumption, there are $\{s_{i}\in \mathbb{F}_{p}((p^{G})) : i\in \mathbb{N}\}$ and $\{\gamma_{i}\in G$ :
$i\in \mathbb{N}\}$ such that, for all $i,$ $s_{i}\in C_{i}$ , max supp $(s_{i})=\gamma_{i}+2v(m_{i}),$ $\gamma_{i}+2v(m_{i})\leq\gamma_{i+1}+2v(m_{i+1})$ ,
and $v(s_{i+1}-s_{i})>\gamma_{i}+2v(m_{i})$ . Let $s\in \mathbb{F}_{p}((p^{G}))$ be the natural limit of $\{s_{i}:i\in \mathbb{N}\}$ . Since $G$

is $\aleph_{1}$ -saturated, there is $\gamma\in G$ such that $\gamma_{i}+2v(m_{i})<\gamma$ for all $i\in \mathbb{N}$ . Then, any $e\in B_{\gamma}(s)$ is
a realization of $\Sigma(x)$ . So $\mathbb{F}_{p}((p^{G}))$ is $\aleph_{1}$ -saturated. $\square$

Proof of Theorem 2.3. Suppose $G$ is a $\aleph_{1}$ -saturated $\mathbb{Z}$-group indicated by Proposition 5.2.
By Proposition 5.8, the $p$-adic Hahn field $\mathbb{F}_{p}((p^{G}))$ is $\aleph_{1}$ -saturated $p$-adically closed field. If
$\mathbb{F}_{p}((p^{G}))$ has an arithmetic part $N$ which is a model of $PA$ , then, by Proposition 5.5, $(G, 0,1, <)$
is isomorphic to $(N, 0,1, <)$ . It is a contradiction. $\square$
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