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ABSTRACT. Applying Weispfenning’s fundamental work on boolean products, we deduce that the theory of
adelic structures over algebraically closed valued fields in the language $\mathcal{L}_{AA}$ admits quantifier elimination
and is complete.

To call a boolean product over algebraically closed valued fields ‘adelic” one needs to express the product
formula in a first-order way. This is not achieved. Here, by an “adelic struture” we just mean a boolean
product over algebraically closed valued fields.

We use the Basarab-Kuhlmann style language $\mathcal{L}_{RV}$ for algebraically closed valued fields of mixed char-
acteristic introduced in [1]. The theory ACVF of algebraically closed valued fields (in any characteristics)
admits quantifier elimination in $\mathcal{L}_{RV}$ , a short proof of which may be found in [3],

Theorem. The theory ACVF admits quantifier elimination.

Next we describe an expanded language $\mathcal{L}_{BF}$ for boolean algebras, which includes the following:. the language of boolean algebras $\mathcal{L}_{BA}=\{0,1, \cap, \cup, \sim, \leq\}$ ;. a set of unary relations $\{0<_{n}:n\geq 1\}$ ;. a unary relation $\mathcal{F}$ ;. a constant $a.$

The theory of infinite atomic boolean algebras with the distinguished set of finite elements in $\mathcal{L}_{BF}$ (hereafter
abbreviated as IABF) states the following:. the usual axioms for boolean algebras;. for every $\xi>0$ there is an atom $\eta$ such that $\xi\geq\eta$ ;. a is an at$om$ ;. axioms for $\mathcal{F}$ :

$-\mathcal{F}(0)$ and $\neg \mathcal{F}(1)$ ;
$-\mathcal{F}(\xi\cup\eta)$ if and only if $\mathcal{F}(\xi)$ and $\mathcal{F}(\eta)$ ;
-if $\neg \mathcal{F}(\xi)$ then there is an?7 such that $\neg \mathcal{F}(\xi\cap\eta)$ and $\neg \mathcal{F}(\xi\cap\sim\eta)$ ;

$00<_{n}\xi$ if and only if there are $\eta_{1},$ $\ldots,$ $\eta_{n}$ such that $0\leq\eta_{1}<\ldots<\eta_{n}<\xi$ and $\mathcal{F}(\eta_{i})$ for each $i\leq n.$

Theorem (Weispfenning [2], Part II, 1.4(ii, iii)). The theory IABF admits quantifier elimination and is
complete.

So IABF axiomatizes the theory of powerset algebras of infinite set, where $\mathcal{F}$ ranges over finite subsets.
In order to formulate a first-order language for adelic structures over algebraically closed valued fields we

treat $(\mathcal{L}_{RV}, \mathcal{L}_{BF})$ as a 2-sorted language (these sorts shall be called the first-order sort, or $FO$-sort for short,
and the boolean algebra sort, or $BA$-sort for short) and further expand it as follows. For each $n$-ary relation
symbol $R$ (including equality and functions) in $\mathcal{L}_{RV}$ we add an $n$-ary function $\mathcal{V}_{R}$ from the $FO$-sort to the
$BA$-sort. For example, if $a,$ $b$ are two $\mathcal{L}_{RV}$-terms then $\mathcal{V}_{=}(a, b)$ is considered an $\mathcal{L}_{BF}$ -term. In fact, since
the boolean value of each quantifier-free formula in $\mathcal{L}_{RV}$ is determined by the functions $\mathcal{V}_{R}$ , for notational
simplicity we may think of one function $\mathcal{V}$ that assigns a boolean value $\mathcal{V}\phi$ to each quantifier-free $\mathcal{L}_{RV}$-formula
$\phi$ . Let $\mathcal{L}_{AA}$ denote this expansion of $(\mathcal{L}_{RV}, \mathcal{L}_{BF})$ .

For each $\forall\exists$-formula $\phi$ in $\mathcal{L}_{RV}$ of the form $\forall\vec{x}\exists\vec{y}\psi(\vec{x},\vec{y},\vec{z})$ with $\psi$ quantifier-free, let $\phi^{\mathcal{V}}$ be the $\mathcal{L}_{AA^{-}}$

formula $\forall\vec{x}\exists\vec{y}\mathcal{V}(\psi(\vec{x},\vec{y},\vec{z}))=1$ . Now it is routine to check that ACVF is a $\forall\exists$-theory in $\mathcal{L}_{RV}$ . Let
$ACVF^{\mathcal{V}}=\{\phi^{\mathcal{V}}$ : $\phi$ is an axiom of ACVF $\}.$
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The theory of adelic structures over algebraically closed valued field in $\mathcal{L}_{AA}$ (hereafter abbreviated as
AACF) states the following:. $ACVF^{\mathcal{V}}$ and IABF for the corresponding sorts;. $\mathcal{V}$(char $k=p$) is an atom for each prime number $p$ ;. $a<\mathcal{V}$ (chark $>p$ ) for each prime number $p$ ;. the axioms for abstract boolean products (hereafter abbreviated as ABP):

$-\phirightarrow \mathcal{V}\phi=1$ for each atomic formula $\phi$ in $\mathcal{L}_{RV}$ ;
$-\mathcal{V}(x=y)=\mathcal{V}(y=x)$ ;
- $\bigcap_{i=1}^{n}\mathcal{V}(x_{i}=y_{i})\cap \mathcal{V}\phi(x_{1}, \ldots, x_{n})\leq \mathcal{V}\phi(y_{1}, . . , y_{n})$ for each atomic formula $\phi$ in $\mathcal{L}_{RV}$ ;
-Finitary gluing: For all $x,$ $y\in FO$ and $\alpha,$ $\beta\in BA$ , if $\alpha\cap\beta=0$ and $\alpha\cup\beta=1$ then there is a $z$

of the first sort such that $\mathcal{V}(z=x)\geq\alpha$ and $\mathcal{V}(z=y)\geq\beta.$

Theorem. The theory AACF admits quantifier elimination in all sorts and is complete.

Proof. Quantifier elimination is immediate by the theorems above and [2, Part II, 3.7(ii)]. Completeness
follows from the representation theorem [2, Part I, 3.27]. $\square$
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