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1. INTRODUCTION

In [6], Hrushovski developed connections between amalgamation properties and definable groupoids
for a stable theory: if a stable theory $T$ fails the 3-uniqueness property, then there exists a definable
groupoid. J. Goodrick and A. Kolesnikov constructed such groupoid in [5]. Furthermore J. Goodrick,

B. Kim, and A. Kolesnikov developed homology groups $H_{n}$ associated to a family of amalgamation
functors and computed the group $H_{2}$ for strong types in stable theories. In particular, they showed
that if $T$ has n- $CA$ based on $A=$ acl $(A)$ for $n\geq 3$ , then $H_{n-2}=0$ for $p\in S(A)$ , thus $H_{1}(p)=0$ holds
for any simple $T.$

In this article, we work with amenable families of functors and corresponding homology groups
from [3],[4] to show $H_{1}(p)=0$ holds for a rosy $T$ , where $p$ is a Lascar type and classify all the possible
2-chains with a 1-shell boundary in a nontrivial amenable collection of functors.

This article is only intended to present a summary of the results from [7],[8] and we do not include
all the details of the proofs.

BASIC DEFINITIONS

In this section, we recall the basic definitions and facts which are established in [3],[4]. Throughout,
$s$ denotes some finite set of natural numbers. $A$ subset $X\subseteq \mathcal{P}(s)$ is called downward closed if whenever
$u\subseteq v\in X$ , then $u\in X$ . Then as an ordered (by inclusion) set, $Xi$ a category. Before defining an
amenable family of functors, we introduce some notations. We fix a category $C$ . Given a functor
$f:Xarrow C$ and $u\subseteq v\in X,$ $f_{v}^{u};=f(\iota_{u,v})\in Mor_{C}(f(u), f(v))$ where $\iota_{u,v}$ is the single inclusion map in
Mor$(u, v)$ .

Definition 1.1. (1) Let $X$ be a downward closed subset of $\mathcal{P}(s)$ and let $t\in X$ . The symbol $X|_{t}$

denotes the set
$\{u\in \mathcal{P}(s\backslash t)|t\cup u\in X\}\subseteq X.$

(2) For $s,$ $t$ , and $X$ as above, let $f$ : $Xarrow C$ be a functor. Then the localization of $f$ at $t$ is the
functor $f|_{t}$ : $X|_{t}arrow C$ such that

$f|_{t}(v)=f(t\cup v)$ ,

and $(f|_{t})_{v}^{u}=f_{v\cup}^{u\cdot t}t$ , for any $u\subseteq v\in X|t.$

(3) Let $X\subseteq \mathcal{P}(s)$ and $Y\subseteq \mathcal{P}(t)$ be downward closed subsets, where $s$ and $t$ are finite sets of
natural numbers. Let $f$ : $Xarrow C$ and $g$ : $Yarrow C$ be functors. We say $g$ is a permutation of $f$ if
there is a bijection (not necessarily order-preserving) $\sigma$ : $sarrow t$ such that $Y=\{\sigma(u) : u\in X\}$

and for $v\subseteq w\in Y,$ $g(w)=f(\sigma^{-1}(w))$ and $(g)_{w}^{v}=f_{\sigma^{-1}(w)}^{\sigma^{-1}(v)}$ . In this case we write $g=fo\sigma^{-1}.$

We say that $f$ and $g$ are isomorphic if there are an order-preserving bijection $\tau$ : $sarrow t$

such that $Y=\{\tau(u) : u\in X\}$ and a family of morphisms $\{h_{u} : f(u)arrow g(\tau(u))|u\in X\}$ from
Mor$(C)$ such that for any $u\subseteq v\in X,$

$h_{v}of_{v}^{u}=g_{\tau(v)}^{\mathcal{T}(u)}oh_{u}.$

For example $f$ and $fo\sigma^{-1}$ are isomorphic when $\sigma$ is order-preserving.
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Remark 1.2. It easily follows that for a downward closed $X\subseteq \mathcal{P}(s)$ and $t\in X$ , we have

$X|_{t}=X\cap \mathcal{P}(s\backslash t)$ iff $X=\cup\{\mathcal{P}(u)|t\subseteq u\in X\}$ ;

and in that case $X|_{t}=\cup\{\mathcal{P}(u\backslash t)|t\subseteq u\in X\}.$

Definition 1.3. Let $\mathcal{A}$ be a non-empty collection of functors $f$ : $Xarrow C$ for various non-empty

downward-closed subsets $X\subseteq P(s)$ for all finite sets $s$ of natural numbers. We say that $\mathcal{A}$ is amenable
if it satisfies all of the following properties.

(1) (Closed under isomorphisms and permutations) If $f$ : $Xarrow C$ is in $\mathcal{A}$ , then every functor
$g:Yarrow C$ which is either a permutation of $f$ or is isomorphic to $f$ is also in $\mathcal{A}.$

(2) (Closed under restrictions and unions) Given a functor $f$ : $Xarrow C,$ $f\in \mathcal{A}$ if and only if for

every $u\in X$ , we have that $fr\mathcal{P}(u)\in \mathcal{A}.$

(3) (Closed under localizations) Suppose that $f$ : $Xarrow C$ is in $\mathcal{A}$ . Then for any $t\in X,$ $f|_{t}:X|_{t}arrow C$

is also in $\mathcal{A}.$

(4) (Extensions of localizations are localizations of extensions.) Let $f$ : $Xarrow C$ be in $\mathcal{A}$ , and let
$t\in X\subseteq \mathcal{P}(s)$ be such that $X|_{t}=X\cap \mathcal{P}(s\backslash t)$ (see Remark 1.2). Suppose that the localization
$f|_{t}$ : $X|_{t}arrow C$ has an extension $g:Zarrow C$ in $\mathcal{A}$ for some $(X|_{t}\subseteq)Z\subseteq \mathcal{P}(s\backslash t)$ . Then there is a
functor $g_{0}$ : $Z_{0}arrow C$ in $\mathcal{A}$ such that $Z_{0}=\{u\cup v:u\in Z, v\subseteq t\},$ $f\subseteq g_{0}$ , and $g_{0}|_{t}=g.$

Definition 1.4. Let $B\in$ Ob $(C)$ and suppose $f(\emptyset)=B$ . We say that $f$ is over $B$ and we let $\mathcal{A}_{B}$

denote the set of all functors $f\in \mathcal{A}$ that are over $B.$

Let $\mathcal{A}$ be a non-empty amenable collection of functors mapping into the category $C.$

Definition 1.5. Let $n\geq 0$ be a natural number. $A$ (regular) $n$-simplex in $\mathcal{C}$ is a functor $f$ : $\mathcal{P}(s)arrow C$

for some set $s\subseteq\omega$ with $|s|=n+1$ . The set $s$ is called the support of $f$ , or $supp(f)$ .
Let $S_{n}(\mathcal{A};B)$ denote the collection of all regular $n$-simplices in $\mathcal{A}_{B}$ . Then put $S(\mathcal{A};B)$ $:= \bigcup_{n}S_{n}(\mathcal{A};B)$

and $S(\mathcal{A})$ $:= \bigcup_{B\in Ob(C)}S(\mathcal{A};B)$ .
Let $C_{n}(\mathcal{A};B)$ denote the free abelian group generated by $S_{n}(\mathcal{A};B)$ ; its elements are called n-

chains in $\mathcal{A}_{B}$ , or $n$-chains over $B$ . Similarly, we define $C(\mathcal{A};B)$ $:= \bigcup_{n}C_{n}(\mathcal{A};B)$ and $C(\mathcal{A})$ $:=$

$\bigcup_{B\in Ob(C)}C(\mathcal{A};B)$ .
If $c$ is an $n$-chain in the form $\sum_{1\leq i\leq k}n_{i}f_{i}$ , where the $f_{i}$ ’s are distinct $n$-simplices and the $n_{i}$ ’s are

nonzero integers, then we define the length of $c$ as $|c|=|n_{1}|+\cdots+|n_{k}|$ and the support of $c$ as the

union of the supports of $f_{i}’ s.$

Of course $c$ can be sometimes written as $(c+g)-g$ , but $|c|$ and the support of $c$ are always uniquely

computed in its standard form.

We use $a,$ $b,$ $c,$ $\ldots,$
$f,$ $g,$ $h,$ . , $\alpha,$

$\beta,$ . . to denote simplices and chains. Now we will define the bound-
ary operators and the homology groups.

Definition 1.6. If $n\geq 1$ and $0\leq i\leq n$ , then the i-th boundary operator $\partial_{n}^{i}$ : $C_{n}(\mathcal{A};B)arrow C_{n-1}(\mathcal{A};B)$

is defined so that if $f$ is a regular $n$-simplex with domain $\mathcal{P}(s)$ with $s=\langle s_{0}<\cdots<s_{n}\}$ , then
$\partial_{n}^{i}(f)=f|\mathcal{P}(s\backslash \{s_{i}\})$

and extended linearly to a group map on all of $C_{n}(\mathcal{A};B)$ .
If $n\geq 1$ and $0\leq i\leq n$ , then the boundary map $\partial_{n}:C_{n}(\mathcal{A};B)arrow C_{n-1}(\mathcal{A};B)$ is defined by the rule

$\partial_{n}(c)=\sum_{0\leq i\leq n}(-1)^{i}\partial_{n}^{i}(c)$ .
We write $\partial^{i}$ and $\partial$ for $\partial_{n}^{i}$ and $\partial_{n}$ , respectively, if $n$ is clear from context.

Definition 1.7. The kernel of $\partial_{n}$ is denoted $Z_{n}(\mathcal{A};B)$ , and its elements are called $(n-)$cycles. The

image of $\partial_{n+1}$ in $C_{n}(\mathcal{A};B)$ is denoted $B_{n}(\mathcal{A};B)$ . The elements of $B_{n}(\mathcal{A};B)$ are called $(n-)$boundaries.
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Since $\partial_{n}0\partial_{n+1}=0,$ $B_{n}(\mathcal{A};B)\subseteq Z_{n}(\mathcal{A};B)$ and we can define simplicial homology groups relative
to $A_{B}.$

Definition 1.8. The nth (simplicial) homology group of $\mathcal{A}$ over $B$ is
$H_{n}(\mathcal{A};B) :=Z_{n}(\mathcal{A};B)/B_{n}(\mathcal{A};B)$ .

Remark/Definition 1.9. Let $\sigma$ : $\mathbb{N}arrow \mathbb{N}$ be a bijection. Then $\sigma$ induces an automorphism $\sigma^{*}$ :
$C_{n}(\mathcal{A}, B)arrow C_{n}(\mathcal{A}, B)$ as follows: Let $c= \sum_{i}n_{i}f_{i}\in C_{n}(\mathcal{A}, B)$ , where each $n$-simplex $f_{i}$ with $s_{i}$ $:=$

$supp(f_{i})=\{s_{i,0}<\cdots<s_{i,n}\}$ . Let a $:=\sigma rs_{i}$ and let $t_{i}$ $:=\sigma_{i}(s_{i})=\{t_{0}<\cdots<t_{n}\}$ . We define

$\sigma^{*}(c):=\sum_{i}n_{i}(-1)^{|\sigma_{i}|}f_{i}\circ\sigma_{i}^{-1}$

(see Definition 1.1 (3)) with $|\sigma_{i}|$ $:=|\sigma_{i}’|$ (so $=0$ or 1), where $\sigma_{i}’\in$ Sym$(n+1)$ such that for $j\leq n,$

$\sigma_{i}(s_{i,j})=t_{\sigma_{i}’(j)}.$

Now $\sigma^{*}$ commutes with $\partial$ , i.e.,
$\partial(\sigma^{*}(c))=\sigma^{*}(\partial(c))$ .

This can be inductively shown after verifying when $\sigma$ is a transposition.

Next we define the amalgamation properties. Notice that for $n=\{0, \ldots, n-1\}$ , we use $\mathcal{P}^{-}(n)$ is
$\mathcal{P}(n)\backslash \{n\}.$

Definition 1.10. Let $\mathcal{A}$ be a non-empty amenable family of functors into a category $C$ and let $n\geq 1.$

(1) $\mathcal{A}$ has $n$-amalgamation if for any functor $f$ : $\mathcal{P}^{-}(n)arrow C,$ $f\in \mathcal{A}$ , there is an $(n-1)$-simplex
$g\supseteq f$ such that $g\in \mathcal{A}.$

(2) $\mathcal{A}$ has $n$-complete amalgamation or n-$CA$ if $\mathcal{A}$ has $k$-amalgamation for every $k$ with $1\leq k\leq n.$

(3) $\mathcal{A}$ has strong 2-amalgamation if whenever $f$ : $\mathcal{P}(s)arrow C,$ $g$ : $\mathcal{P}(t)arrow C$ are simplices in $\mathcal{A}$ and
$fr\mathcal{P}(s\cap t)=gr\mathcal{P}(s\cap t)$ , then $f\cup g$ can be extended to a simplex $h:\mathcal{P}(s\cup t)arrow C$ in $\mathcal{A}.$

Definition 1.11. An amenable family of functors $\mathcal{A}$ is called non-trivial if it is non-empty and satisfies
the strong 2-amalgamation property.

It easily follows that any non-trivial amenable family of functors contains an $n$-simplex for each
$n\geq 1$ . In the rest of the paper, we shall only work with a non-trivial amenable family $\mathcal{A}$ of functors
into $C.$

Definition 1.12. If $n\geq 1$ , an $n$-shell is an $n$-chain $c$ of the form

$\pm\sum_{0\leq i\leq n+1}(-1)^{i}f_{i},$

where $f_{0},$
$\ldots,$

$f_{n+1}$ are $n$-simplices such that whenever $0\leq i<j\leq n+1$ , we have $\partial^{i}f_{j}=\partial^{j-1}f_{i}.$

Remark/Definition 1.13. The boundary of an $(n+1)$-simplex is an $n$-shell, and the boundary of any
$n$-shell is $0$ . Note that $\mathcal{A}$ has $(n+2)$-amalgamation iff any $n$-shell is a boundary of an $(n+1)$-simplex.
For an $(n+1)$ -chain $c$ having an $n$-shell boundary, $|c|$ is always an odd integer.

Now we introduce a weaker notion than 3-amalgamation: $\mathcal{A}$ has weak 3-amalgamation over $B$ if
any 1-shell over $B$ is the boundary of a 2-chain over $B$ of length $\leq 3.$

The details of the following fact and corollaries can be found in [3],[4].

Fact 1.14. If $\mathcal{A}$ has $(n+1)-CA$ for some $n\geq 1$ , then
$H_{n}(\mathcal{A};B)=$ { $[c]$ : $c$ is an $n$-shell over $B$ with support $n+2$ }.

Since $\mathcal{A}$ already has 2-amalgamation, we have that $H_{1}(\mathcal{A};B)$ is trivial iff any 1-shell over $B$ is the
boundary of some 2-chain over $B.$
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Corollary 1.15. Assume that $T$ has n-$CA$ over $A=$ acl $(A)$ for some $n\geq 3$ . Then $H_{n-2}(p)=0$ for
$p\in S(A)$ .

Corollary 1.16. If $T$ is simple, then $H_{1}(p)=0$ for any complete type $p$ in $T.$

From now on, we work with a large saturated model $\mathcal{M}=\mathcal{M}^{eq}$ whose theory $T$ is rosy. Recall that
$T$ is rosy if there is a ternary independence relation $\rangle L$ on the small sets of $\mathcal{M}$ satisfying the basic
independence properties [1],[2]. We take $iL$ here as thorn-independence.

Now fix an algebraically closed set $B=$ acl $(B)$ , and let $C_{B}$ denote the category of all small subsets
of $\mathcal{M}$ containing $B$ and morphisms are elementary maps over $B$ $(i.e.,$ fixing $B$ pointwise) . For a
functor $f$ : $Xarrow C_{B}$ and $u\subseteq v\in X$ , we write $f_{v}^{u}(u)$ $:=f_{v}^{u}(f(u))\subseteq f(v)$ . We now fix $p(x)\in S(B)$

where the tuple $x$ may possibly have an infinite arity.

Definition 1.17. $A$ closed independent functor in $p$ is a functor $f$ : $Xarrow C_{B}$ such that:

(1) $X$ is a downward-closed subset of $\mathcal{P}(s)$ for some finite $s\subseteq\omega;f(\emptyset)\supseteq B$ ; and for $i\in s,$ $f(\{i\})$

is of the form acl $(Cb)$ , where $b(\models p)$ is independent with $C=f_{(i\}}^{\emptyset}(\emptyset)$ over $B.$

(2) For all non-empty $u\in X$ , we have

$f(u)= ac1(B_{\cup}\bigcup_{i\in u}f_{u}^{(i\}}(\{i\}))$
;

and $\{f_{u}^{\{i\}}(\{i\})|i\in u\}$ is independent over $f_{u}^{\emptyset}(\emptyset)$ .

Let $\mathcal{A}(p)$ denote all closed independent functors in $p.$

Fact 1.18. $\mathcal{A}(p)$ is a non-trivial amenable family of functors.

2. MAIN RESULT: $H_{1}(p)=0$ IN $RO$SY THEORIES

We have $H_{1}(p)=0$ for any Lascar strong type which follows from the fact that Lascar distances
are finite in rosy theories. Meanwhile the same holds for a simple $T$ due to 3-amalgamation and
Fact 1.14. For given $f$ : $Xarrow C_{B}$ in $\mathcal{A}(p)_{B}$ $(so f(\emptyset)=B)$ , and $u=\{i_{0}< . . . <i_{k}\}\in X$ , we
write $f(u)=[a_{0}, \ldots, a_{k}]$ , where $a_{j}\models p,$ $f(u)=$ acl $(B, a_{0}\ldots a_{k})$ , and acl $(a_{j}B)=f_{u}^{\{i_{j}\}}(\{i \})$ . Thus
$\{a_{0}, \ldots, a_{k}\}$ is independent over $B.$

Theorem 2.1. If $B=M$ is a model, then $\mathcal{A}(p)$ has weak 3-amalgamation over $M$ . Therefore
$H_{1}(p)=0.$

Definition 2.2. Let a set $B$ and tuples $a,$
$b$ be such that $a\equiv Bb$ . By the Lascar distance over $B$

of $a$ and $b$ , denoted by $d_{B}(a, b)$ , we mean the smallest natural number $n$ such that there are tuples

$a=a_{0},$ $\ldots,$
$a_{n}=b$ , where for each $a_{i}a_{i+1}(i<n)$ begins some $B$-indiscernible sequence.

Theorem 2.3. Suppose that the strong type $p$ is the Lascar (strong) type. Then $H_{1}(p)=0.$

Proof For notational simplicity we may assume $B$ to be $\emptyset$ . Given a 1-shell $f=a_{12}-a_{02}+a_{01}$ where
each $a_{ij}$ : $\mathcal{P}(\{i,j\})arrow C_{B}$ is a 1-simplex in $S_{1}(\mathcal{A}(p))$ , we want to find a 2-chain $g$ such that $\partial g=f.$

Again there is no harm to assume that $a_{01}(\{1\})=[b]=a_{12}(\{1\})$ and $a_{02}(\{2\})=[c]=a_{12}(\{2\})$ ,

and $a_{01}(\{0\})$ $:=[d],$ $a_{02}(\{0\})$ $:=[d’]$ . By the extension axiom, we can assume that $\{b, c, d, d’\}$ is
independent. Let $d,$ $d’\models p$ such that $d(d, d’)=n$ . So we have $d=d_{0},$

$\ldots,$
$d_{n}=d’$ , where $d_{i}d_{i+1}(i<n)$

begins an indiscernible sequence. Assume that $b_{C\rangle}L_{dd’}d_{i}d_{n-1}$ so $b_{\mathcal{C}^{\backslash }}Ld_{0}\cdots d_{n}.$

Claim. There are $e_{i}\models p(i<n)$ such that $d_{i}d_{i+1}\backslash Le_{i}$ and $e_{i}d_{i}\equiv e_{i}d_{i+1}.$

Proof of Claim. Let $I=\langle d_{i}d_{i+1}\cdots\rangle$ be an indiscernible sequence having a sufficiently large length.
Due to the extension axiom, we can choose $e_{i}’\equiv d_{i}$ with $e_{i}’\backslash LI$ . Since there are only boundedly many
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types over $e_{i}’$ , one can find $d_{j},$ $d_{j’}(j<j’)$ with $e\’{i} dj\equiv e_{i}’d_{j’}$ . Due to the indiscernibility of $I$ , there is a
map $f$ that maps $d_{i}d_{i+1}$ to $d_{j}d_{j’}$ . Then $e_{i}:=f(e_{i}’)$ satisfies $e_{i}d_{i}\equiv e_{i}d_{i+1}$ as desired. $\dashv$

Again by extension we suppose $bc^{\lambda_{d_{1}d_{i+1}}}e_{i}$ , so that each $\{b, d_{i}, e_{i}\},$ $\{b, d_{i+1}, e_{i}\}$ is independent,
Also each $\{b, c, e_{n-1}\},$ $\{c, d_{n}, e_{n-1}\}$ is independent $(*)$ .

There is $g_{0}$ $:=g_{0}^{+}-g_{0}^{-}$ , where $g_{0}^{+},$ $g_{0}^{-}$ are 2-simplices with support $u:=\{0,1,3\}$ such that $g_{0}^{+}(u)=$

$[d_{0}, b, e_{0}]$ and $g_{0}^{-}(u)=[d_{1}, b, e_{0}];\partial^{0}g_{0}^{+}=\partial^{0}g_{0}^{-};\partial^{1}g_{0}^{+}=\partial^{1}g_{0}^{-}$ (this follows from the above Claim); and
$g_{0}^{+}$ extends $a_{01}$ $(i.e., \partial^{2}g_{0}^{+}=a_{01})$ . Hence $\partial g_{0}=a_{01}-\partial^{2}g_{0}^{-}.$

Similarly, we can find $g_{i}$ $:=g_{i}^{+}-g_{i}^{-}(0<i<n-1)$ , where each $g_{i}^{+},$ $g_{i}^{-}$ is a 2-simplex with support $u$

such that $g_{i}^{+}(u)=[d_{i}, b, e_{i}]$ and $g_{i}^{-}(u)=[d_{i+1}, b, e_{i}];\partial^{0}g^{+}=\partial^{0}g^{-};\partial^{1}g^{+}=\partial^{1}g^{-}$; and $\partial^{2}g_{i}^{+}=\partial^{2}g_{i-1}^{-}.$

Therefore we have
$\partial(g_{0}+\cdots+g_{n-2})=a_{01}-\partial^{2}g_{n-2}^{-}.$

Put $g_{n-1}$ $:=g_{n-1}^{+}-a_{023}+a_{123}$ , where $a_{j23}$ is a 2-simplex with support $\{j, 2,3\}$ extending $a_{j2}$

such that $a_{023}(\{0,2,3\})=[d_{n}, c, e_{n-1}],$ $a_{123}(\{1,2,3\})=[b, c, e_{n-1}]$ . Also $g_{n-1}^{+}$ is a 2-simplex with
$g_{n-1}^{+}(\{0,1,3\})=[d_{n-1}, b, e_{n-1}]$ extending $\partial^{2}g_{n-2}^{-}$ . Moreover again by $(*)$ , we have $\partial^{1}g_{n-1}^{+}=\partial^{1}a_{023}.$

Thus it follows
$\partial g_{n-1}=\partial^{2}g_{n-1}^{+}-a_{02}+a_{12}=\partial^{2}g_{n-2}^{-}-a_{02}+a_{12}.$

Therefore $g:=g_{0}+\cdots+g_{n-1}$ satisfies $\partial g=f$ ae desired. $\square$

3. CLASSIFICATION

In this section, we classify 2-chains having 1-shell boundaries using two operations, the crossing
operation and the renaming support operation.

Remark/Definition 3.1. Suppose that an $n$-chain $c= \sum_{i}n_{i}f_{i}$ is given where each $f_{i}$ is an $n$-simplex.
Assume that $j\in supp(c)\backslash supp(\partial(c))$ . In this case we say $c$ has a vanishing support (in its boundary).
Given $k\not\in s;=supp(c)$ , we let $\sigma$ be a map sending $j$ to $k$ while fixing numbers in $s\backslash \{j\}$ . Now as in
1.9, $\partial(\sigma^{*}(c))=\sigma^{*}(\partial(c))=\partial(c)$ .

Definition 3.2. (1) The crossing operation (or $CR$-operation): Let $\alpha$ and $\beta$ be 2-simplices with
$supp(\alpha)=\{i_{0}, i_{1}, i_{2}\},$ $supp(\beta)=\{i_{1}, i_{2}, i_{3}\}(i_{0}\neq i_{3})$ such that $\alpha r\mathcal{P}(\{i_{1}, i_{2}\})=\beta r$

$\mathcal{P}(\{i_{1}, i_{2}\})$ $:=\gamma$ . Suppose that $\partial(\alpha+\epsilon\beta)(\epsilon=1 or -1)$ has no term $\gamma$ (i.e., $\gamma$ is cancelled
out). Now by strong 2-amalgamation there is a 3-simplex $\delta$ with $supp(\delta)=\{i_{0}, i_{1}, i_{2}, i_{3}\}$ such
that $\delta r\mathcal{P}(\{i_{0}, i_{1}, i_{2}\})=\alpha$ and $\delta r\mathcal{P}(\{i_{1}, i_{2}, i_{3}\})=\beta$ . We take $\alpha’$ $:=\delta r\mathcal{P}(\{i_{0}, i_{2}, i_{3}\})$ and
$\beta’$ $:=\delta|\mathcal{P}(\{i_{1}, i_{2}, i_{3}\})$ . Then it follows $\partial(\alpha+\epsilon\beta)=\partial(\alpha’+\epsilon\beta’)$ . Replacing $\alpha+\epsilon\beta$ by $\alpha’+\epsilon\beta’$

is called the crossing operation. Hence from a 2-chain $c$ , if we obtain $c’$ by the $CR$-operation
(applied to two terms in c) then $\partial(c)=\partial(c’)$ and $|c’|\leq|c|.$

(2) The renaming support operation (or $RS$-operation): This is basically what is described in 3.1
with $n=2$ . So let $c= \sum_{i}n_{i}f_{i}$ ( $f_{i}2$-simplices) be a 2-chain having a vanishing support, say
$j\in supp(c)\backslash supp(\partial(c))$ . Let $k\not\in supp(c)$ . Then as in Remark/Definition 3.1, we can change
the support $j$ to $k$ and replace $c$ by some $\mathcal{C}’;=\sigma^{*}(c)$ so that $c$ and $c’$ have the same boundary.
This replacement of $c$ by $c’$ is called the $RS$-operation. In general, if $d’$ is the result of $d$ by
applying the $RS$-operation to a subsummand of $d$ , then $\partial(d)=\partial(d’)$ and $|d’|\leq|d|.$

Remark/Definition 3.3. (1) In general, the $CR$-operation is not symmetric. For example sup-
pose that $c=f_{0}-f_{1}+f_{2}$ is given where $f_{i}$ is a 2-simplex with $supp(f_{i})=\{0,1,2,3\}\backslash \{i\}$

such that $f_{i}r\mathcal{P}(\{k, 3\})=f_{j}r\mathcal{P}(\{k, 3\})(\{i,j, k\}=\{0,1,2\})$ . Now aesume that by the $CR$-

operation, $f_{0}-f_{1}$ is replaced by $f_{4}-f_{2}$ where $supp(f_{4})=\{0,1,2\}$ and $\partial f_{4}=\partial c$ so that $c$ is
replaced by $(f_{4}-f_{2})+f_{2}=f_{4}$ . But $c$ is not obtained from $f_{4}$ using the $CR$-operation (unless
$f_{4}$ is redundantly written as $f_{4}-f_{2}+f_{2}$ ).
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(2) Now we say a 2-chain $c$ is proper if for any $c’$ obtained from $c$ by finitely many applications

of the $CR$ or $RS$-operation (to subsummands), we have $|c|=|c’|$ . Among proper 2-chains,

now the $CR$ and $RS$-operations are symmetric. Moreover clearly any 2-chain is reduced to a
proper 2-chain by finitely many applications of the two operations.

We call proper 2-chains $c$ and $c’$ are equivalent (written $c\sim c’$ ) if $d$ is obtained from $c$ by
finitely many applications of the $CR$ or $RS$-operation to some subsummands. Hence if proper
$c$ and $c’$ are equivalent then $\partial(c)=\partial(c’)$ and $|c|=|c’|.$

Now we are ready to define the notions of two different types of 2-chain having a 1-shell boundary.

Definition 3.4. Let $\alpha$ be a 2-chain having a 1-shell boundary.

(1) We call $\alpha$ renameable type (or $RN$-type) if a subsummand of $\alpha$ has a vanishing support. If $\alpha$

is not an $RN$-type 2-chain $(so |supp(\alpha)|=3)$ we call $\alpha$ non-renameable ( $NR$-)type.
(2) $\alpha$ is said to be minimal if it is proper, and for any proper $\alpha’$ equivalent to $\alpha$ there does not

exist a subsummand $\beta$ of $\alpha’$ such that $\partial(\beta)=0.$

For the notational simplicity, given a simplex $f_{i}$ with $u=\{j_{0}, \ldots, j_{k}\}\subseteq supp(f_{i})$ , we write $f_{i}^{j_{0},\ldots,j_{k}}$

to denote $f_{i}r\mathcal{P}(u)$ . Also given a chain $c= \sum_{i\in I}n_{i}f_{i}$ (in its unique form), we write $c^{j_{0},\ldots,j_{k}}$ to denote
$\sum_{i\in J}n_{i}f_{i}$ , where $J$ $:=\{i\in I|supp(f_{i})=\langle j_{0}, \ldots,j_{k}\}\}.$

For the rest of this section, we fix a 1-shell boundary $f_{12}-f_{02}+f_{01}$ with $supp(f_{jk})=\{j<k\}.$

Definition 3.5. Let $\alpha$ be a 2-chain having the boundary $f_{12}-f_{02}+f_{01}.$ $A$ subchain $\beta=\sum_{i=0}^{m}\epsilon_{i}b_{i}(b_{i}$

$2$-simplex) of $\alpha$ is called a chain-walk in $\alpha$ from $f_{01}$ to $-f_{02}$ if

(1) there are non-zero numbers $k_{0},$
$\ldots,$

$k_{m+1}$ (not necessarily distinct) such that $k_{0}=1,$ $k_{m+1}=2,$

and for $i\leq m,$ $supp(b_{i})=\{k_{i}, k_{i+1},0\}$ ;
(2) each $\epsilon_{i}\in\{1, -1\};(\partial\epsilon_{0}b_{0})^{0,1}=f_{01},$ $(\partial\epsilon_{m}b_{m})^{0,2}=-f_{02}$ ; and
(3) for $0\leq i<m,$

$(\partial\epsilon_{i}b_{i})^{0,k_{i+1}}+(\partial\epsilon_{i+1}b_{i+1})^{0,k_{+1}}\cdot=0.$

Notice that such a representation is sensitive to its order, and a chain-walk can have distinct repre-
sentations. Unless said otherwise a chain-walk is written in a form of a representation. $A$ subchain

of the chain-walk $\beta$ of a form $\beta’$ $:=m\acute{\sum_{i=j}}\epsilon_{i}b_{i}$ for some $0\leq j<m’\leq m$ is called a section of $\beta.$ $A$

chain-walk $\beta$ in $\alpha$ is called maximal (in $\alpha$ ) if it has the maximal possible length. We say $\alpha$ is centered
at $0$ if $a$ (so every) maximal chain-walk in $\alpha$ from $f_{01}$ to $-f_{02}$ is, as a chain, equal to $\alpha.$

Now a chain-walk in $\alpha from-f_{02}$ to $f_{12}$ , and that $\alpha$ is centered at 2, and so on are similarly defined.

Lemma 3.6. Let $\alpha$ be a 2-chain with the 1-shell boundary $f_{12}-f_{02}+f_{01}$ . Let $\beta=\sum_{i=0}^{m}\epsilon_{i}b_{i}$ be

a chain-walk in $\alpha$ , say from $-f_{02}$ to $f_{12}$ . Assume there is a section $\beta’=\sum_{i=\acute{j}}^{m}\epsilon_{i}b_{i}$ of $\beta$ such that for

$supp(b_{i})=\{2, k_{i}, k_{i+1}\}$ , either $k_{i}\neq k_{m’+i}$ for all $i\in\{j, \ldots, m’\}$ ; or $k_{i}\neq k_{j}$ for all $i\in\{j+1, \ldots, m’+1\}.$

Then by finitely many applications of the $CR$-operation to $\beta’$ , we obtain a 2-simplex $c$ with $supp(c)=$

$\{2, k_{j}, k_{m’+1}\}$ and $\epsilon=1$ or $-1$ so that $\beta";=\sum_{i=0}^{j-1}\epsilon_{i}b_{i}+\epsilon c+\sum_{i>m}^{m},$ $\epsilon_{i}b_{i}$ is still a chain-walk from $-f_{02}$ to

$f_{12}.$

Theorem 3.7. Let $\alpha$ be a minima12-chain with the boundary $f_{12}-f_{02}+f_{01}.$

(1) Assume $\alpha$ is of $NR$-type. Then $|\alpha|=1$ or $|\alpha|\geq 5$ . If $|\alpha|\geq 5$ then any chain-walk in $\alpha$ from

$f_{01}$ to $-f_{02}$ is of the form $\sum_{i=0}^{2n}(-1)^{i}a_{i}$ which is as a chain equal to $\alpha$ such that $f_{12}=a_{2j}^{1,2}$ for

some $1\leq j\leq n-1.$
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(2) $\alpha$ is of $RN$-type iff $\alpha$ is equivalent to a 2-chain

$\alpha’=a_{0}+\sum_{i=1}^{2n-1}\epsilon_{i}a_{i}+a_{2n}$

$(n\geq 1)$ which is a chain-walk from $f_{01}to-f_{02}$ such that $supp(a_{2n})=\{0,1,2\}$ and $\partial^{0}a_{2n}=f_{12},$

$\partial^{1}(a_{2n})=-f_{02}.$

Proof. (1) This is easy to check,

(2) Here we give a brief sketch of the left to right.
$(\Rightarrow)$ Note that $|\alpha|\geq 3.$

Claim 1. There is $\alpha_{1}\sim\alpha$ centered at 2 such that $|supp(\alpha_{1})|>3.$

Claim 2. There is a 2-chain $\alpha_{2}\sim\alpha_{1}$ such that $\alpha_{2}$ has a 1-simplex term $c$ (with the coefficient 1)
such that $supp(c)=\{0,1,2\}$ , and $f_{12}-f_{02}=\partial^{0}(c)-\partial^{1}(c)$ .

Then let us take a chain-walk $\gamma$ from $f_{01}to-f_{02}$ in $\alpha_{2}$ terminating with $c$ . By repeatedly applying
the $CR$-operations to $\gamma$ (while $c$ unchanged), we obtain a desired $\alpha’\sim\alpha_{2}$ centered at $0$ forming a
chain-walk from $f_{01}to-f_{02}$ . Then we reorder the representation of the chain-walk $\alpha’$ if necessary. $\square$

The following theorem is proved using the notions of directed graph theory which are not covered
in this note.

Theorem 3.8. Let $\alpha$ be a minima12-chain having the 1-shell boundary $f_{12}-f_{02}+f_{01}$ . Then $\alpha$ is
equivalent to a 2-chain which is a chain-walk from $f_{01}$ to $-f_{02}$ such that $supp(\alpha’)=\{0,1,2\}.$

In the next section, we explore some of the consequences of this theorem.

4. ApPLICATION : MATRIX EXPRESSION

In this section, we introduce the notion of a matrix expression, which determines whether a given
minima12-chain having a 1-shell boundary is of $RN$-type.

For the rest, we fix a minima12-chain $\alpha$ of length $2n+1$ with the 1-shell boundary $f_{12}-f_{02}+f_{01},$

and $supp(\alpha)=\{0,1,2\}$ . For $\{0,1,2\}=\{i, j, k\},$ $f_{i}’$ denotes $f_{J^{k}}\prime(j<k)$ . Fix $I=\{0,1,2\}$ and
$J=\{0, \ldots, n\}$ . Also, we write $\epsilon a\in\alpha$ to denote that a 2-simplex term $\epsilon a$ is in $\alpha.$

Definition 4.1. Let $\sum_{j=0}^{2n}(-1)^{j}a_{j}$ be a representation of the given $\alpha$ which is a chain-walk from $f_{2}’$ to

$-f_{1}’$ . By a matrix expression of (the representation of) $\alpha$ , we mean a function $M$ : $I\cross Jarrow J$ such
that

(1) for each $i\in I,$ $Mr\{i\}\cross J$ : $(\{i\}\cross)Jarrow J$ is a permutation of $J$ ;
(2) for each $i\in I,$ $M(i, 0)$ is an index such that $f_{i}’=\partial^{i}a_{2M(i,0);}$

(3) for each $i\in I,$ $j\in J\backslash \{O\},$ $M(i,j)$ is an index such that $\partial^{i}a_{2j-1}=\partial^{i}a_{2M(i,j)}.$

Interpret $M(i, j)$ as an entry $m_{ij}$ of a matrix in the $(i+1)$th row and the $(j+1)$ th column, then
$M=(m_{ij})_{I,J}$ is a $3\cross(n+1)$ matrix.

Notice that matrix expressions are determined according to the choices of pairs of terms which
cancel out each other.

Theorem 4.2. The following conditions are equivalent:

(1) $\alpha$ is of $RN$-type.

(2) There is a matrix expression $M$ for a representation $\alpha=\sum_{j=0}^{2n}(-1)^{j}a_{j}$ such that for some
$0\leq i_{0}<i_{1}\leq 2$ , and non-empty $J_{0}\subseteq\{1, \ldots, n\},$ $M(\{i_{0}\}\cross J_{0})=M(\{i_{1}\}\cross J_{0})$ as image set
under the function $M.$
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Proof. $(\Rightarrow)$ Let $\alpha_{1}$ be a subchain of $\alpha=\sum_{j=0}^{2n}(-1)^{j}a_{j}$ such that $\partial^{i}\alpha_{1}=0$ for $i\in I\backslash \{i_{*}\}$ and $|\alpha_{1}|=2m,$

where $i_{*}\in\{0,1,2\}$ is a vanishing support. Let $a_{2M(i,j)}\in\alpha_{1}$ for each $i\in I\backslash \{i_{*}\}$ and $j\in J_{0}$ $:=\{j\in$

$J|-a_{2j-1}\in\alpha_{1}\}$ . Then here $M$ satisfies Definition 4.1 and $M(\{i_{0}\}\cross J_{0})=M(\{i_{1}\}\cross J_{0})$ , where
$\{i_{0}, i_{1}, i_{*}\}=I$ , as desired.

$(\Leftarrow)$ Suppose that $M(\{i_{0}\}\cross J_{0})=M(\{i_{1}\}xJ_{0})$ , say $J_{1}$ , where $J_{0}\subseteq\{1, \ldots, n\}$ and $0\leq i_{0}<i_{1}\leq 2.$

Let $\alpha_{1}$

$:= \sum_{j\in J_{1}}a_{2j}+\sum_{j\in J_{0}}-a_{2j-1}$
, a subsummand of $\alpha$ . Then we have $\partial^{i_{0}}\alpha_{1}=\partial^{i_{1}}\alpha_{1}=0$, so $\alpha_{1}$ has a

vanishing support $i_{*}$ , where $\{i_{0}, i_{1}, i_{*}\}=I.$ $\square$

We end this note by stating some consequences of Theorem 4.2 which can be proved by using
permutations induced from matrix expressions.

For a matrix expression $M$ : $I\cross Jarrow J$ , there is a triple $(\sigma_{01}, \sigma_{12}, \sigma_{02})$ of permutations of $J$ such
that $\sigma_{ik}$ is a map sending the $(i+1)th$ row to the $(k+1)th$ row, i.e., $\sigma_{ik}(m_{ij})=m_{kj}$ for $j\in J$ , and
$0\leq i<k\leq 2$ . Notice that $\sigma_{02}=\sigma_{12}\circ\sigma_{01}.$

Theorem 4.3. If $n$ is odd, then $\alpha$ is always of $RN$-type.

Theorem 4.4. Suppose that for $\alpha$ as in Definition 4.1, one of the following holds:
(1) $\partial^{\ell}a_{2j_{0}-1}=\partial^{\ell}a_{2j_{1}-1}$ for some $0<j_{0}<j_{1}\leq n$ and $0\leq\ell\leq 2$ ;
(2) $\partial^{\ell}a_{2j_{0}}=\partial^{\ell}a_{2j_{1}}$ for some $0\leq j_{0}<j_{1}\leq n$ and $0\leq\ell\leq 2.$

Then $\alpha$ is of $RN$-type.
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