REGARDING 2-CHAINS WITH 1-SHELL BOUNDARIES IN ROSY THEORIES

SUNYOUNG KIM (JOINT WORK WITH BYUNGHAN KIM AND JUNGUK LEE) YONSEI UNIVERSITY, KOREA

1. INTRODUCTION

In [6], Hrushovski developed connections between amalgamation properties and definable groupoids for a stable theory: if a stable theory T fails the 3-uniqueness property, then there exists a definable groupoid. J. Goodrick and A. Kolesnikov constructed such groupoid in [5]. Furthermore J. Goodrick, B. Kim, and A. Kolesnikov developed homology groups H_n associated to a family of amalgamation functors and computed the group H_2 for strong types in stable theories. In particular, they showed that if T has n-CA based on $A = \operatorname{acl}(A)$ for $n \ge 3$, then $H_{n-2} = 0$ for $p \in S(A)$, thus $H_1(p) = 0$ holds for any simple T.

In this article, we work with amenable families of functors and corresponding homology groups from [3],[4] to show $H_1(p) = 0$ holds for a rosy T, where p is a Lascar type and classify all the possible 2-chains with a 1-shell boundary in a nontrivial amenable collection of functors.

This article is only intended to present a summary of the results from [7], [8] and we do not include all the details of the proofs.

BASIC DEFINITIONS

In this section, we recall the basic definitions and facts which are established in [3],[4]. Throughout, s denotes some finite set of natural numbers. A subset $X \subseteq \mathcal{P}(s)$ is called *downward closed* if whenever $u \subseteq v \in X$, then $u \in X$. Then as an ordered (by inclusion) set, X is a category. Before defining an amenable family of functors, we introduce some notations. We fix a category \mathcal{C} . Given a functor $f: X \to \mathcal{C}$ and $u \subseteq v \in X$, $f_v^u := f(\iota_{u,v}) \in \operatorname{Mor}_{\mathcal{C}}(f(u), f(v))$ where $\iota_{u,v}$ is the single inclusion map in $\operatorname{Mor}(u, v)$.

Definition 1.1. (1) Let X be a downward closed subset of $\mathcal{P}(s)$ and let $t \in X$. The symbol $X|_t$ denotes the set

$$\{u \in \mathcal{P}(s \setminus t) | t \cup u \in X\} \subseteq X.$$

(2) For s, t, and X as above, let $f : X \to C$ be a functor. Then the *localization* of f at t is the functor $f|_t : X|_t \to C$ such that

$$f|_t(v) = f(t \cup v),$$

and $(f|_t)_v^u = f_{v \cup t}^{u \cup t}$, for any $u \subseteq v \in X|_t$.

(3) Let X ⊆ P(s) and Y ⊆ P(t) be downward closed subsets, where s and t are finite sets of natural numbers. Let f: X → C and g: Y → C be functors. We say g is a permutation of f if there is a bijection (not necessarily order-preserving) σ: s → t such that Y = {σ(u) : u ∈ X} and for v ⊆ w ∈ Y, g(w) = f(σ⁻¹(w)) and (g)^v_w = f^{σ⁻¹(w)}_{σ⁻¹(w)}. In this case we write g = f ∘ σ⁻¹. We say that f and g are *isomorphic* if there are an order-preserving bijection τ : s → t such that Y = {τ(u) : u ∈ X} and a family of morphisms {h_u : f(u) → g(τ(u))| u ∈ X} from

such that $Y = \{\tau(u) : u \in X\}$ and a family of morphisms $\{h_u : f(u) \to g(\tau(u)) | u \in X\}$ Mor (\mathcal{C}) such that for any $u \subseteq v \in X$,

$$h_v \circ f_v^u = g_{\tau(v)}^{\tau(u)} \circ h_u.$$

For example f and $f \circ \sigma^{-1}$ are isomorphic when σ is order-preserving.

Remark 1.2. It easily follows that for a downward closed $X \subseteq \mathcal{P}(s)$ and $t \in X$, we have

$$X|_{t} = X \cap \mathcal{P}(s \setminus t) \text{ iff } X = \bigcup \{\mathcal{P}(u) \mid t \subseteq u \in X\};$$

and in that case $X|_t = \bigcup \{ \mathcal{P}(u \setminus t) | t \subseteq u \in X \}.$

Definition 1.3. Let \mathcal{A} be a non-empty collection of functors $f : X \to C$ for various non-empty downward-closed subsets $X \subseteq P(s)$ for all finite sets s of natural numbers. We say that \mathcal{A} is *amenable* if it satisfies all of the following properties:

- (1) (Closed under isomorphisms and permutations) If $f : X \to C$ is in \mathcal{A} , then every functor $g: Y \to C$ which is either a permutation of f or is isomorphic to f is also in \mathcal{A} .
- (2) (Closed under restrictions and unions) Given a functor $f: X \to C$, $f \in A$ if and only if for every $u \in X$, we have that $f \upharpoonright \mathcal{P}(u) \in A$.
- (3) (Closed under localizations) Suppose that $f: X \to C$ is in \mathcal{A} . Then for any $t \in X$, $f|_t: X|_t \to C$ is also in \mathcal{A} .
- (4) (Extensions of localizations are localizations of extensions.) Let f : X → C be in A, and let t ∈ X ⊆ P(s) be such that X|t = X ∩ P(s\t) (see Remark 1.2). Suppose that the localization f|t : X|t → C has an extension g : Z → C in A for some (X|t ⊆)Z ⊆ P(s\t). Then there is a functor g₀ : Z₀ → C in A such that Z₀ = {u ∪ v : u ∈ Z, v ⊆ t}, f ⊆ g₀, and g₀|t = g.

Definition 1.4. Let $B \in Ob(\mathcal{C})$ and suppose $f(\emptyset) = B$. We say that f is over B and we let \mathcal{A}_B denote the set of all functors $f \in \mathcal{A}$ that are over B.

Let \mathcal{A} be a non-empty amenable collection of functors mapping into the category \mathcal{C} .

Definition 1.5. Let $n \ge 0$ be a natural number. A (regular) n-simplex in \mathcal{C} is a functor $f : \mathcal{P}(s) \to \mathcal{C}$ for some set $s \subseteq \omega$ with |s| = n + 1. The set s is called the support of f, or $\operatorname{supp}(f)$.

Let $S_n(\mathcal{A}; B)$ denote the collection of all regular *n*-simplices in \mathcal{A}_B . Then put $S(\mathcal{A}; B) := \bigcup_n S_n(\mathcal{A}; B)$ and $S(\mathcal{A}) := \bigcup_{B \in Ob(\mathcal{C})} S(\mathcal{A}; B)$.

Let $C_n(\mathcal{A}; B)$ denote the free abelian group generated by $S_n(\mathcal{A}; B)$; its elements are called *n*chains in \mathcal{A}_B , or *n*-chains over *B*. Similarly, we define $C(\mathcal{A}; B) := \bigcup_n C_n(\mathcal{A}; B)$ and $C(\mathcal{A}) := \bigcup_{B \in Ob(C)} C(\mathcal{A}; B)$.

If c is an n-chain in the form $\sum_{1 \le i \le k} n_i f_i$, where the f_i 's are distinct n-simplices and the n_i 's are nonzero integers, then we define the *length* of c as $|c| = |n_1| + \cdots + |n_k|$ and the *support* of c as the union of the supports of f_i 's.

Of course c can be sometimes written as (c+g)-g, but |c| and the support of c are always uniquely computed in its standard form.

We use $a, b, c, \ldots, f, g, h, \ldots, \alpha, \beta, \ldots$ to denote simplices and chains. Now we will define the boundary operators and the homology groups.

Definition 1.6. If $n \ge 1$ and $0 \le i \le n$, then the *i*-th boundary operator $\partial_n^i : C_n(\mathcal{A}; B) \to C_{n-1}(\mathcal{A}; B)$ is defined so that if f is a regular *n*-simplex with domain $\mathcal{P}(s)$ with $s = \{s_0 < \cdots < s_n\}$, then

$$\partial_n^i(f) = f \restriction \mathcal{P}(s \setminus \{s_i\})$$

and extended linearly to a group map on all of $C_n(\mathcal{A}; B)$.

If $n \ge 1$ and $0 \le i \le n$, then the boundary map $\partial_n : C_n(\mathcal{A}; B) \to C_{n-1}(\mathcal{A}; B)$ is defined by the rule $\partial_n(c) = \sum_{0 \le i \le n} (-1)^i \partial_n^i(c).$

We write ∂^i and ∂ for ∂^i_n and ∂_n , respectively, if n is clear from context.

Definition 1.7. The kernel of ∂_n is denoted $Z_n(\mathcal{A}; B)$, and its elements are called (n-)cycles. The image of ∂_{n+1} in $C_n(\mathcal{A}; B)$ is denoted $B_n(\mathcal{A}; B)$. The elements of $B_n(\mathcal{A}; B)$ are called (n-)boundaries.

Since $\partial_n \circ \partial_{n+1} = 0$, $B_n(\mathcal{A}; B) \subseteq Z_n(\mathcal{A}; B)$ and we can define simplicial homology groups relative to \mathcal{A}_B .

Definition 1.8. The *n*th (simplicial) homology group of \mathcal{A} over B is

$$H_n(\mathcal{A}; B) := Z_n(\mathcal{A}; B) / B_n(\mathcal{A}; B).$$

Remark/Definition 1.9. Let $\sigma : \mathbb{N} \to \mathbb{N}$ be a bijection. Then σ induces an automorphism $\sigma^* : C_n(\mathcal{A}, B) \to C_n(\mathcal{A}, B)$ as follows: Let $c = \sum_i n_i f_i \in C_n(\mathcal{A}, B)$, where each *n*-simplex f_i with $s_i := \sup p(f_i) = \{s_{i,0} < \cdots < s_{i,n}\}$. Let $\sigma_i := \sigma \upharpoonright s_i$ and let $t_i := \sigma_i(s_i) = \{t_0 < \cdots < t_n\}$. We define

$$\sigma^*(c) := \sum_i n_i (-1)^{|\sigma_i|} f_i \circ \sigma_i^-$$

(see Definition 1.1(3)) with $|\sigma_i| := |\sigma'_i|$ (so = 0 or 1), where $\sigma'_i \in \text{Sym}(n+1)$ such that for $j \leq n$, $\sigma_i(s_{i,j}) = t_{\sigma'_i(j)}$.

Now σ^* commutes with ∂ , i.e.,

$$\partial(\sigma^*(c)) = \sigma^*(\partial(c)).$$

This can be inductively shown after verifying when σ is a transposition.

Next we define the amalgamation properties. Notice that for $n = \{0, ..., n-1\}$, we use $\mathcal{P}^{-}(n)$ is $\mathcal{P}(n) \setminus \{n\}$.

Definition 1.10. Let \mathcal{A} be a non-empty amenable family of functors into a category \mathcal{C} and let $n \ge 1$.

- (1) \mathcal{A} has *n*-amalgamation if for any functor $f : \mathcal{P}^{-}(n) \to \mathcal{C}, f \in \mathcal{A}$, there is an (n-1)-simplex $g \supseteq f$ such that $g \in \mathcal{A}$.
- (2) \mathcal{A} has *n*-complete amalgamation or *n*-CA if \mathcal{A} has *k*-amalgamation for every *k* with $1 \leq k \leq n$.
- (3) \mathcal{A} has strong 2-amalgamation if whenever $f: \mathcal{P}(s) \to \mathcal{C}, g: \mathcal{P}(t) \to C$ are simplices in \mathcal{A} and $f \upharpoonright \mathcal{P}(s \cap t) = g \upharpoonright \mathcal{P}(s \cap t)$, then $f \cup g$ can be extended to a simplex $h: \mathcal{P}(s \cup t) \to \mathcal{C}$ in \mathcal{A} .

Definition 1.11. An amenable family of functors \mathcal{A} is called *non-trivial* if it is non-empty and satisfies the strong 2-amalgamation property.

It easily follows that any non-trivial amenable family of functors contains an *n*-simplex for each $n \ge 1$. In the rest of the paper, we shall only work with a non-trivial amenable family \mathcal{A} of functors into \mathcal{C} .

Definition 1.12. If $n \ge 1$, an *n*-shell is an *n*-chain *c* of the form

$$\pm \sum_{0 \leqslant i \leqslant n+1} (-1)^i f_i,$$

where f_0, \ldots, f_{n+1} are *n*-simplices such that whenever $0 \le i < j \le n+1$, we have $\partial^i f_j = \partial^{j-1} f_i$.

Remark/Definition 1.13. The boundary of an (n+1)-simplex is an *n*-shell, and the boundary of any *n*-shell is 0. Note that \mathcal{A} has (n+2)-amalgamation iff any *n*-shell is a boundary of an (n+1)-simplex. For an (n+1)-chain *c* having an *n*-shell boundary, |c| is always an odd integer.

Now we introduce a weaker notion than 3-amalgamation: \mathcal{A} has weak 3-amalgamation over B if any 1-shell over B is the boundary of a 2-chain over B of length ≤ 3 .

The details of the following fact and corollaries can be found in [3],[4].

Fact 1.14. If \mathcal{A} has (n + 1)-CA for some $n \ge 1$, then

 $H_n(\mathcal{A}; B) = \{ [c] : c \text{ is an } n \text{-shell over } B \text{ with support } n+2 \}.$

Since \mathcal{A} already has 2-amalgamation, we have that $H_1(\mathcal{A}; B)$ is trivial iff any 1-shell over B is the boundary of some 2-chain over B.

Corollary 1.15. Assume that T has n-CA over $A = \operatorname{acl}(A)$ for some $n \ge 3$. Then $H_{n-2}(p) = 0$ for $p \in S(A)$.

Corollary 1.16. If T is simple, then $H_1(p) = 0$ for any complete type p in T.

From now on, we work with a large saturated model $\mathcal{M} = \mathcal{M}^{eq}$ whose theory T is rosy. Recall that T is rosy if there is a ternary independence relation \downarrow on the small sets of \mathcal{M} satisfying the basic independence properties [1],[2]. We take \downarrow here as thorn-independence.

Now fix an algebraically closed set $B = \operatorname{acl}(B)$, and let \mathcal{C}_B denote the category of all small subsets of \mathcal{M} containing B and morphisms are elementary maps over B (i.e., fixing B pointwise). For a functor $f: X \to \mathcal{C}_B$ and $u \subseteq v \in X$, we write $f_v^u(u) := f_v^u(f(u)) \subseteq f(v)$. We now fix $p(x) \in S(B)$ where the tuple x may possibly have an infinite arity.

Definition 1.17. A closed independent functor in p is a functor $f: X \to C_B$ such that:

- (1) X is a downward-closed subset of $\mathcal{P}(s)$ for some finite $s \subseteq \omega$; $f(\emptyset) \supseteq B$; and for $i \in s$, $f(\{i\})$ is of the form $\operatorname{acl}(Cb)$, where $b(\models p)$ is independent with $C = f_{\{i\}}^{\emptyset}(\emptyset)$ over B.
- (2) For all non-empty $u \in X$, we have

$$f(u) = \operatorname{acl}(B \cup \bigcup_{i \in u} f_u^{\{i\}}(\{i\}));$$

and $\{f_u^{\{i\}}(\{i\}) | i \in u\}$ is independent over $f_u^{\emptyset}(\emptyset)$.

Let $\mathcal{A}(p)$ denote all closed independent functors in p.

Fact 1.18. $\mathcal{A}(p)$ is a non-trivial amenable family of functors.

2. MAIN RESULT :
$$H_1(p) = 0$$
 in rosy theories

We have $H_1(p) = 0$ for any Lascar strong type which follows from the fact that Lascar distances are finite in rosy theories. Meanwhile the same holds for a simple T due to 3-amalgamation and Fact 1.14. For given $f : X \to C_B$ in $\mathcal{A}(p)_B$ (so $f(\emptyset) = B$), and $u = \{i_0 < \cdots < i_k\} \in X$, we write $f(u) = [a_0, \ldots, a_k]$, where $a_j \models p$, $f(u) = \operatorname{acl}(B, a_0 \ldots a_k)$, and $\operatorname{acl}(a_j B) = f_u^{\{i_j\}}(\{i_j\})$. Thus $\{a_0, \ldots, a_k\}$ is independent over B.

Theorem 2.1. If B = M is a model, then $\mathcal{A}(p)$ has weak 3-amalgamation over M. Therefore $H_1(p) = 0$.

Definition 2.2. Let a set B and tuples a, b be such that $a \equiv_B b$. By the Lascar distance over B of a and b, denoted by $d_B(a, b)$, we mean the smallest natural number n such that there are tuples $a = a_0, \ldots, a_n = b$, where for each $a_i a_{i+1} (i < n)$ begins some B-indiscernible sequence.

Theorem 2.3. Suppose that the strong type p is the Lascar (strong) type. Then $H_1(p) = 0$.

Proof. For notational simplicity we may assume B to be \emptyset . Given a 1-shell $f = a_{12} - a_{02} + a_{01}$ where each $a_{ij} : \mathcal{P}(\{i, j\}) \to \mathcal{C}_B$ is a 1-simplex in $S_1(\mathcal{A}(p))$, we want to find a 2-chain g such that $\partial g = f$. Again there is no harm to assume that $a_{01}(\{1\}) = [b] = a_{12}(\{1\})$ and $a_{02}(\{2\}) = [c] = a_{12}(\{2\})$, and $a_{01}(\{0\}) := [d]$, $a_{02}(\{0\}) := [d']$. By the extension axiom, we can assume that $\{b, c, d, d'\}$ is independent. Let $d, d' \models p$ such that d(d, d') = n. So we have $d = d_0, \ldots, d_n = d'$, where $d_i d_{i+1}(i < n)$ begins an indiscernible sequence. Assume that $bc \downarrow_{dd'} d_i d_{n-1}$ so $bc \downarrow d_0 \cdots d_n$.

Claim. There are $e_i \models p$ (i < n) such that $d_i d_{i+1} \downarrow e_i$ and $e_i d_i \equiv e_i d_{i+1}$.

Proof of Claim. Let $I = \langle d_i d_{i+1} \cdots \rangle$ be an indiscernible sequence having a sufficiently large length. Due to the extension axiom, we can choose $e'_i \equiv d_i$ with $e'_i \, \cup I$. Since there are only boundedly many types over e'_i , one can find d_j , $d_{j'}(j < j')$ with $e'_i dj \equiv e'_i d_{j'}$. Due to the indiscernibility of *I*, there is a map *f* that maps $d_i d_{i+1}$ to $d_j d_{j'}$. Then $e_i := f(e'_i)$ satisfies $e_i d_i \equiv e_i d_{i+1}$ as desired. \dashv

Again by extension we suppose $bc \downarrow_{d_id_{i+1}} e_i$, so that each $\{b, d_i, e_i\}, \{b, d_{i+1}, e_i\}$ is independent. Also each $\{b, c, e_{n-1}\}, \{c, d_n, e_{n-1}\}$ is independent (*).

There is $g_0 := g_0^+ - g_0^-$, where g_0^+, g_0^- are 2-simplices with support $u := \{0, 1, 3\}$ such that $g_0^+(u) = [d_0, b, e_0]$ and $g_0^-(u) = [d_1, b, e_0]$; $\partial^0 g_0^+ = \partial^0 g_0^-$; $\partial^1 g_0^+ = \partial^1 g_0^-$ (this follows from the above Claim); and g_0^+ extends a_{01} (i.e., $\partial^2 g_0^+ = a_{01}$). Hence $\partial g_0 = a_{01} - \partial^2 g_0^-$.

Similarly, we can find $g_i := g_i^+ - g_i^-$ (0 < i < n-1), where each g_i^+, g_i^- is a 2-simplex with support u such that $g_i^+(u) = [d_i, b, e_i]$ and $g_i^-(u) = [d_{i+1}, b, e_i]$; $\partial^0 g^+ = \partial^0 g^-$; $\partial^1 g^+ = \partial^1 g^-$; and $\partial^2 g_i^+ = \partial^2 g_{i-1}^-$. Therefore we have

$$\partial(g_0 + \dots + g_{n-2}) = a_{01} - \partial^2 g_{n-2}^-.$$

Put $g_{n-1} := g_{n-1}^+ - a_{023} + a_{123}$, where a_{j23} is a 2-simplex with support $\{j, 2, 3\}$ extending a_{j2} such that $a_{023}(\{0, 2, 3\}) = [d_n, c, e_{n-1}], a_{123}(\{1, 2, 3\}) = [b, c, e_{n-1}]$. Also g_{n-1}^+ is a 2-simplex with $g_{n-1}^+(\{0, 1, 3\}) = [d_{n-1}, b, e_{n-1}]$ extending $\partial^2 g_{n-2}^-$. Moreover again by (*), we have $\partial^1 g_{n-1}^+ = \partial^1 a_{023}$. Thus it follows

$$\partial g_{n-1} = \partial^2 g_{n-1}^+ - a_{02} + a_{12} = \partial^2 g_{n-2}^- - a_{02} + a_{12}.$$

Therefore $g := g_0 + \cdots + g_{n-1}$ satisfies $\partial g = f$ as desired.

3. CLASSIFICATION

In this section, we classify 2-chains having 1-shell boundaries using two operations, the crossing operation and the renaming support operation.

Remark/Definition 3.1. Suppose that an *n*-chain $c = \sum_i n_i f_i$ is given where each f_i is an *n*-simplex. Assume that $j \in \text{supp}(c) \setminus \text{supp}(\partial(c))$. In this case we say c has a vanishing support (in its boundary). Given $k \notin s := \text{supp}(c)$, we let σ be a map sending j to k while fixing numbers in $s \setminus \{j\}$. Now as in $1.9, \partial(\sigma^*(c)) = \sigma^*(\partial(c)) = \partial(c)$.

- **Definition 3.2.** (1) The crossing operation (or CR-operation): Let α and β be 2-simplices with $\supp(\alpha) = \{i_0, i_1, i_2\}, \ supp(\beta) = \{i_1, i_2, i_3\} \ (i_0 \neq i_3) \ such that \alpha \upharpoonright \mathcal{P}(\{i_1, i_2\}) = \beta \upharpoonright$ $\mathcal{P}(\{i_1, i_2\}) := \gamma$. Suppose that $\partial(\alpha + \epsilon\beta)$ ($\epsilon = 1 \ or -1$) has no term γ (i.e., γ is cancelled out). Now by strong 2-amalgamation there is a 3-simplex δ with $supp(\delta) = \{i_0, i_1, i_2, i_3\}$ such that $\delta \upharpoonright \mathcal{P}(\{i_0, i_1, i_2\}) = \alpha$ and $\delta \upharpoonright \mathcal{P}(\{i_1, i_2, i_3\}) = \beta$. We take $\alpha' := \delta \upharpoonright \mathcal{P}(\{i_0, i_2, i_3\})$ and $\beta' := \delta \upharpoonright \mathcal{P}(\{i_1, i_2, i_3\})$. Then it follows $\partial(\alpha + \epsilon\beta) = \partial(\alpha' + \epsilon\beta')$. Replacing $\alpha + \epsilon\beta$ by $\alpha' + \epsilon\beta'$ is called the crossing operation. Hence from a 2-chain c, if we obtain c' by the CR-operation (applied to two terms in c) then $\partial(c) = \partial(c')$ and $|c'| \leq |c|$.
 - (2) The renaming support operation (or RS-operation): This is basically what is described in 3.1 with n = 2. So let c = ∑_i n_if_i (f_i 2-simplices) be a 2-chain having a vanishing support, say j ∈ supp(c)\supp(∂(c)). Let k ∉ supp(c). Then as in Remark/Definition 3.1, we can change the support j to k and replace c by some c' := σ*(c) so that c and c' have the same boundary. This replacement of c by c' is called the RS-operation. In general, if d' is the result of d by applying the RS-operation to a subsummand of d, then ∂(d) = ∂(d') and |d'| ≤ |d|.
- **Remark/Definition 3.3.** (1) In general, the CR-operation is not symmetric. For example suppose that $c = f_0 f_1 + f_2$ is given where f_i is a 2-simplex with $\operatorname{supp}(f_i) = \{0, 1, 2, 3\} \setminus \{i\}$ such that $f_i \upharpoonright \mathcal{P}(\{k, 3\}) = f_j \upharpoonright \mathcal{P}(\{k, 3\})$ ($\{i, j, k\} = \{0, 1, 2\}$). Now assume that by the CR-operation, $f_0 f_1$ is replaced by $f_4 f_2$ where $\operatorname{supp}(f_4) = \{0, 1, 2\}$ and $\partial f_4 = \partial c$ so that c is replaced by $(f_4 f_2) + f_2 = f_4$. But c is not obtained from f_4 using the CR-operation (unless f_4 is redundantly written as $f_4 f_2 + f_2$).

SUNYOUNG KIM

(2) Now we say a 2-chain c is proper if for any c' obtained from c by finitely many applications of the CR or RS-operation (to subsummands), we have |c| = |c'|. Among proper 2-chains, now the CR and RS-operations are symmetric. Moreover clearly any 2-chain is reduced to a proper 2-chain by finitely many applications of the two operations.

We call proper 2-chains c and c' are equivalent (written $c \sim c'$) if c' is obtained from c by finitely many applications of the CR or RS-operation to some subsummands. Hence if proper c and c' are equivalent then $\partial(c) = \partial(c')$ and |c| = |c'|.

Now we are ready to define the notions of two different types of 2-chain having a 1-shell boundary.

Definition 3.4. Let α be a 2-chain having a 1-shell boundary.

- (1) We call α renameable type (or RN-type) if a subsummand of α has a vanishing support. If α is not an RN-type 2-chain (so $|\operatorname{supp}(\alpha)| = 3$) we call α non-renameable (NR-)type.
- (2) α is said to be *minimal* if it is proper, and for any proper α' equivalent to α there does not exist a subsummand β of α' such that $\partial(\beta) = 0$.

For the notational simplicity, given a simplex f_i with $u = \{j_0, \ldots, j_k\} \subseteq \operatorname{supp}(f_i)$, we write $f_i^{j_0, \ldots, j_k}$ to denote $f_i \upharpoonright \mathcal{P}(u)$. Also given a chain $c = \sum_{i \in I} n_i f_i$ (in its unique form), we write c^{j_0, \ldots, j_k} to denote $\sum_{i \in J} n_i f_i$, where $J := \{i \in I \mid \operatorname{supp}(f_i) = \{j_0, \ldots, j_k\}\}$.

For the rest of this section, we fix a 1-shell boundary $f_{12} - f_{02} + f_{01}$ with $supp(f_{jk}) = \{j < k\}$.

Definition 3.5. Let α be a 2-chain having the boundary $f_{12} - f_{02} + f_{01}$. A subchain $\beta = \sum_{i=0}^{m} \epsilon_i b_i$ (b_i 2-simplex) of α is called a *chain-walk in* α from f_{01} to $-f_{02}$ if

- (1) there are non-zero numbers k_0, \ldots, k_{m+1} (not necessarily distinct) such that $k_0 = 1, k_{m+1} = 2$, and for $i \leq m$, $\operatorname{supp}(b_i) = \{k_i, k_{i+1}, 0\}$;
- (2) each $\epsilon_i \in \{1, -1\}; (\partial \epsilon_0 b_0)^{0,1} = f_{01}, (\partial \epsilon_m b_m)^{0,2} = -f_{02};$ and
- (3) for $0 \leq i < m$,

$$(\partial \epsilon_i b_i)^{0,k_{i+1}} + (\partial \epsilon_{i+1} b_{i+1})^{0,k_{i+1}} = 0.$$

Notice that such a representation is sensitive to its order, and a chain-walk can have distinct representations. Unless said otherwise a chain-walk is written in a form of a representation. A subchain of the chain-walk β of a form $\beta' := \sum_{i=j}^{m'} \epsilon_i b_i$ for some $0 \leq j < m' \leq m$ is called a *section* of β . A chain-walk β in α is called *maximal* (in α) if it has the maximal possible length. We say α is *centered* at 0 if a (so every) maximal chain-walk in α from f_{01} to $-f_{02}$ is, as a chain, equal to α .

Now a chain-walk in α from $-f_{02}$ to f_{12} , and that α is centered at 2, and so on are similarly defined.

Lemma 3.6. Let α be a 2-chain with the 1-shell boundary $f_{12} - f_{02} + f_{01}$. Let $\beta = \sum_{i=0}^{m} \epsilon_i b_i$ be a chain-walk in α , say from $-f_{02}$ to f_{12} . Assume there is a section $\beta' = \sum_{i=j}^{m'} \epsilon_i b_i$ of β such that for $\operatorname{supp}(b_i) = \{2, k_i, k_{i+1}\}$, either $k_i \neq k_{m'+1}$ for all $i \in \{j, \ldots, m'\}$; or $k_i \neq k_j$ for all $i \in \{j+1, \ldots, m'+1\}$. Then by finitely many applications of the CR-operation to β' , we obtain a 2-simplex c with $\operatorname{supp}(c) = \{2, k_j, k_{m'+1}\}$ and $\epsilon = 1$ or -1 so that $\beta'' := \sum_{i=0}^{j-1} \epsilon_i b_i + \epsilon c + \sum_{i>m'}^m \epsilon_i b_i$ is still a chain-walk from $-f_{02}$ to f_{12} .

Theorem 3.7. Let α be a minimal 2-chain with the boundary $f_{12} - f_{02} + f_{01}$.

(1) Assume α is of NR-type. Then $|\alpha| = 1$ or $|\alpha| \ge 5$. If $|\alpha| \ge 5$ then any chain-walk in α from f_{01} to $-f_{02}$ is of the form $\sum_{i=0}^{2n} (-1)^i a_i$ which is as a chain equal to α such that $f_{12} = a_{2j}^{1,2}$ for some $1 \le j \le n-1$.

(2) α is of RN-type iff α is equivalent to a 2-chain

$$\alpha' = a_0 + \sum_{i=1}^{2n-1} \epsilon_i a_i + a_{2n}$$

 $(n \ge 1)$ which is a chain-walk from f_{01} to $-f_{02}$ such that $\text{supp}(a_{2n}) = \{0, 1, 2\}$ and $\partial^0 a_{2n} = f_{12}$, $\partial^1(a_{2n}) = -f_{02}$.

Proof. (1) This is easy to check.

(2) Here we give a brief sketch of the left to right.

 (\Rightarrow) Note that $|\alpha| \ge 3$.

Claim 1. There is $\alpha_1 \sim \alpha$ centered at 2 such that $|\operatorname{supp}(\alpha_1)| > 3$.

Claim 2. There is a 2-chain $\alpha_2 \sim \alpha_1$ such that α_2 has a 1-simplex term c (with the coefficient 1) such that $\operatorname{supp}(c) = \{0, 1, 2\}$, and $f_{12} - f_{02} = \partial^0(c) - \partial^1(c)$.

Then let us take a chain-walk γ from f_{01} to $-f_{02}$ in α_2 terminating with c. By repeatedly applying the CR-operations to γ (while c unchanged), we obtain a desired $\alpha' \sim \alpha_2$ centered at 0 forming a chain-walk from f_{01} to $-f_{02}$. Then we reorder the representation of the chain-walk α' if necessary. \Box

The following theorem is proved using the notions of directed graph theory which are not covered in this note.

Theorem 3.8. Let α be a minimal 2-chain having the 1-shell boundary $f_{12} - f_{02} + f_{01}$. Then α is equivalent to a 2-chain which is a chain-walk from f_{01} to $-f_{02}$ such that $\operatorname{supp}(\alpha') = \{0, 1, 2\}$.

In the next section, we explore some of the consequences of this theorem.

4. Application : matrix expression

In this section, we introduce the notion of a matrix expression, which determines whether a given minimal 2-chain having a 1-shell boundary is of RN-type.

For the rest, we fix a minimal 2-chain α of length 2n + 1 with the 1-shell boundary $f_{12} - f_{02} + f_{01}$, and $\operatorname{supp}(\alpha) = \{0, 1, 2\}$. For $\{0, 1, 2\} = \{i, j, k\}$, f'_i denotes f_{jk} (j < k). Fix $I = \{0, 1, 2\}$ and $J = \{0, \ldots, n\}$. Also, we write $\epsilon a \in \alpha$ to denote that a 2-simplex term ϵa is in α .

Definition 4.1. Let $\sum_{j=0}^{2n} (-1)^j a_j$ be a representation of the given α which is a chain-walk from f'_2 to $-f'_1$. By a matrix expression of (the representation of) α , we mean a function $M: I \times J \to J$ such that

- (1) for each $i \in I$, $M \upharpoonright \{i\} \times J : (\{i\} \times) J \to J$ is a permutation of J;
- (2) for each $i \in I$, M(i, 0) is an index such that $f'_i = \partial^i a_{2M(i,0)}$;
- (3) for each $i \in I$, $j \in J \setminus \{0\}$, M(i, j) is an index such that $\partial^i a_{2j-1} = \partial^i a_{2M(i,j)}$.

Interpret M(i, j) as an entry m_{ij} of a matrix in the (i + 1)th row and the (j + 1)th column, then $M = (m_{ij})_{I,J}$ is a $3 \times (n + 1)$ matrix.

Notice that matrix expressions are determined according to the *choices* of pairs of terms which cancel out each other.

Theorem 4.2. The following conditions are equivalent:

- (1) α is of RN-type.
- (2) There is a matrix expression M for a representation $\alpha = \sum_{j=0}^{2n} (-1)^j a_j$ such that for some $0 \leq i_0 < i_1 \leq 2$, and non-empty $J_0 \subseteq \{1, \ldots, n\}$, $M(\{i_0\} \times J_0) = M(\{i_1\} \times J_0)$ as image set under the function M.

SUNYOUNG KIM

Proof. (\Rightarrow) Let α_1 be a subchain of $\alpha = \sum_{j=0}^{2n} (-1)^j a_j$ such that $\partial^i \alpha_1 = 0$ for $i \in I \setminus \{i_*\}$ and $|\alpha_1| = 2m$, where $i_* \in \{0, 1, 2\}$ is a vanishing support. Let $a_{2M(i,j)} \in \alpha_1$ for each $i \in I \setminus \{i_*\}$ and $j \in J_0 := \{j \in J \mid -a_{2j-1} \in \alpha_1\}$. Then here M satisfies Definition 4.1 and $M(\{i_0\} \times J_0) = M(\{i_1\} \times J_0)$, where $\{i_0, i_1, i_*\} = I$, as desired.

(\Leftarrow) Suppose that $M(\{i_0\} \times J_0) = M(\{i_1\} \times J_0)$, say J_1 , where $J_0 \subseteq \{1, \ldots, n\}$ and $0 \le i_0 < i_1 \le 2$. Let $\alpha_1 := \sum_{j \in J_1} a_{2j} + \sum_{j \in J_0} -a_{2j-1}$, a subsummand of α . Then we have $\partial^{i_0} \alpha_1 = \partial^{i_1} \alpha_1 = 0$, so α_1 has a vanishing support i_* , where $\{i_0, i_1, i_*\} = I$.

We end this note by stating some consequences of Theorem 4.2 which can be proved by using permutations induced from matrix expressions.

For a matrix expression $M: I \times J \to J$, there is a triple $(\sigma_{01}, \sigma_{12}, \sigma_{02})$ of permutations of J such that σ_{ik} is a map sending the (i + 1)th row to the (k + 1)th row, i.e., $\sigma_{ik}(m_{ij}) = m_{kj}$ for $j \in J$, and $0 \leq i < k \leq 2$. Notice that $\sigma_{02} = \sigma_{12} \circ \sigma_{01}$.

Theorem 4.3. If n is odd, then α is always of RN-type.

Theorem 4.4. Suppose that for α as in Definition 4.1, one of the following holds:

- (1) $\partial^{\ell} a_{2j_0-1} = \partial^{\ell} a_{2j_1-1}$ for some $0 < j_0 < j_1 \leq n$ and $0 \leq \ell \leq 2$;
- (2) $\partial^{\ell} a_{2j_0} = \partial^{\ell} a_{2j_1}$ for some $0 \leq j_0 < j_1 \leq n$ and $0 \leq \ell \leq 2$.

Then α is of RN-type.

References

- 1. H. Adler, Explanations of independence, Ph.D. thesis, University of Freiburg, 2005.
- 2. C. Ealy and A. Onshuus, Characterizing rosy theories, Journal of Symbolic Logic 72 (2007), 919-940.
- 3. J. Goodrick, B. Kim, and A. Kolesnikov, Amalgamation functors and homology groups in model theory, Preprint.
- 4. _____, Homology groups of types in model theory and the computation of $H_2(p)$, Journal of Symbolic Logic 78 (2013), 1086-1114.
- 5. J. Goodrick and A. Kolesnikov, Groupoids, covers, and 3-uniqueness in stable theories, Journal of Symbolic Logic 75 (2010), no. 3, 905-929.
- 6. E. Hrushovski, Groupoids, imaginaries and internal covers, Preprint, 2009.
- 7. B. Kim, S. Kim, and J. Lee, A classification of 2-chains having 1-shell boundaries in rosy theories, Preprint.
- 8. S. Kim and J. Lee, More on classification of 2-chains having 1-shell boundaries in rosy theories, Preprint.