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1. INTRODUCTION

In [6], Hrushovski developed connections between amalgamation properties and definable groupoids
for a stable theory: if a stable theory T fails the 3-uniqueness property, then there exists a definable
groupoid. J. Goodrick and A. Kolesnikov constructed such groupoid in [5]. Furthermore J. Goodrick,
B. Kim, and A. Kolesnikov developed homology groups H, associated to a family of amalgamation
functors and computed the group Hy for strong types in stable theories. In particular, they showed
that if 7 has n-CA based on A = acl(A) for n > 3, then H,,_o = 0 for p € S(A), thus H,(p) = 0 holds
for any simple T ’

In this article, we work with amenable families of functors and corresponding homology groups
from [3],[4] to show Hi(p) = 0 holds for a rosy T, where p is a Lascar type and classify all the possible
2-chains with a 1-shell boundary in a nontrivial amenable collection of functors.

This article is only intended to present a summary of the results from [7],(8] and we do not include

all the details of the proofs.
BAsic DEFINITIONS

In this section, we recall the basic definitions and facts which are established in [3],{4]. Throughout,
s denotes some finite set of natural numbers. A subset X < P(s) is called downward closed if whenever
u S ve X, then u e X. Then as an ordered (by inclusion) set, X is a category. Before defining an
amenable family of functors, we introduce some notations. We fix a category C. Given a functor
f:X—>Canducve X, f*:= f(iuw) € More(f(u), f(v)) where ¢y, is the single inclusion map in
Mor(u, v).

Definition 1.1. (1) Let X be a downward closed subset of P(s) and let ¢ € X. The symbol X|;
denotes the set
{fue P(s\t)| tuue X} < X.
(2) For s,t, and X as above, let f : X — C be a functor. Then the localization of f at ¢ is the
functor f|¢ : X|¢ — C such that

fle(w) = f(tvv),
and (fl)% = fuvt, for any u S v € X|;.

(3) Let X < P(s) and Y < P(t) be downward closed subsets, where s and ¢ are finite sets of
natural numbers. Let f: X — C and g : Y — C be functors. We say g is a permutation of f if
there is a bijection (not necessarily order-preserving) o : s — t such that ¥ = {o(u) : ue X}
and forvcweY, g(w) = f(c™!(w)) and (9)¥, = f::ll((,:);. In this case we write g = foo™%.

We say that f and g are isomorphic if there are an order-preserving bijection 7 : s — ¢t
such that Y = {7(u) : ue X} and a family of morphisms {h, : f(u) = g(7(v))| v € X} from
Mor(C) such that for any u S ve X, ‘

hyo f¥ = g:gj)) 0 hy.

For example f and f o c~! are isomorphic when ¢ is order-preserving.
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Remark 1.2. It easily follows that for a downward closed X < P(s) and t € X, we have
Xl = X nP(s\t) iff X = | J{P(u)| t cue X};
and in that case X|; = J{P(u\t)| t € u e X}.

Definition 1.3. Let A be a non-empty collection of functors f : X — C for various non-empty
downward-closed subsets X < P(s) for all finite sets s of natural numbers. We say that A is amenable
if it satisfies all of the following properties:
(1) (Closed under isomorphisms and permutations) If f : X — C is in A, then every functor
g:Y — C which is either a permutation of f or is isomorphic to f is also in A.
(2) (Closed under restrictions and unions) Given a functor f : X — C, f € A if and only if for
every u € X, we have that f | P(u) € A.
(3) (Closed under localizations) Suppose that f : X — Cisin A. Then foranyte X, f|;: X|: = C
is also in A.
(4) (Extensions of localizations are localizations of extensions.) Let f : X — C be in A, and let
t e X < P(s) be such that X|s = X nP(s\t) (see Remark 1.2). Suppose that the localization
flt : X|¢ = C has an extension g : Z — C in A for some (X|; €)Z < P(s\t). Then there is a
functor go : Zo — C in A such that Zo = {uvv:ue Z,v < t}, f < go, and golt = g.

Definition 1.4. Let B € Ob(C) and suppose f(&F) = B. We say that f is over B and we let Ap
denote the set of all functors f € A that are over B.

Let A be a non-empty amenable collection of functors mapping into the category C.

Definition 1.5. Let n > 0 be a natural number. A (regular) n-simplez in C is a functor f : P(s) = C
for some set s C w with |s| = n + 1. The set s is called the support of f, or supp(f).

Let Sy, (A; B) denote the collection of all regular n-simplices in Ap. Then put S(A; B) := | J,, Sn(4; B)
and S(A) := Upeon(c) S(4; B)-

Let C,(A; B) denote the free abelian group generated by S,(A;B); its elements are called n-
chains in Apg, or n-chains over B. Similarly, we define C(A;B) := |J,, Cn(A; B) and C(A) :=
Useob(c) C(A; B).

If c is an n-chain in the form ), ., <, 7 fi, where the f;’s are distinct n-simplices and the n;’s are
nonzero integers, then we define the length of ¢ as |c| = |ni| + --- + |nx| and the support of c as the
union of the supports of f;’s.

Of course ¢ can be sometimes written as (c+g) —g, but || and the support of ¢ are always uniquely
computed in its standard form.

Weuse a,b,c,...,f,q,h,...,a,B,...todenote simplices and chains. Now we will define the bound-

ary operators and the homology groups.

Definition 1.6. If n > 1 and 0 < i < n, then the i-th boundary operator 3%, : Cr.(A; B) — Cn—1(A; B)
is defined so that if f is a regular n-simplex with domain P(s) with s = {sg < --- < s,}, then
05 (f) = f 1 P(s\{si})
and extended linearly to a group map on all of Cy,(A; B).
Ifn>1and 0 <1 < n, then the boundary map &, : Cp,(A; B) — Cp_1(A; B) is defined by the rule

On(€) = Xo<icn(=1)'01(0)-

We write 0° and @ for 0% and 0y, respectively, if n is clear from context.

Definition 1.7. The kernel of d, is denoted Z,(A; B), and its elements are called (n—)cycles. The
image of d,, 41 in C,(A; B) is denoted B,,(A; B). The elements of B,,(A; B) are called (n—)boundaries.
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Since 0, © On41 = 0, Bp(A; B) € Z,(A; B) and we can define simplicial homology groups relative
to Ag.

Definition 1.8. The nth (simplicial) homology group of A over B is
Hy(A;B) = Zn(A; B)/Bn(A; B).

Remark/Definition 1.9. Let ¢ : N —» N be a bijection. Then ¢ induces an automorphism ¢* :
Cn(A,B) — Cr(A, B) as follows: Let ¢ = Y, n;fi € Cy(A, B), where each n-simplex f; with s; :=
supp(fi) = {si,0 <--- < Sin}. Let 0y := 0 ' s; and let ¢; := 04(s;) = {tg < --- < t,}. We define

o*(c) = Zni(——l)“’”ﬁ oo;!

(see Definition 1.1(3)) with |o;| := |o}| (so = 0 or 1), where o] € Sym(n + 1) such that for j < n,
ai(si,j) = tdi(j)'
Now ¢o* commutes with 9, i.e.,

0(c*(c)) = a*(a(c))-

This can be inductively shown after verifying when ¢ is a transposition.

Next we define the amalgamation properties. Notice that for n = {0,...,n — 1}, we use P~(n) is

P(n)\{n}.
Definition 1.10. Let A be a non-empty amenable family of functors into a category C and let n > 1.
(1) A has n-amalgamation if for any functor f : P~ (n) — C, f € A, there is an (n — 1)-simplex

g 2 f such that g€ A.
(2) A has n-complete amalgamation or n-CA if A has k-amalgamation for every k with 1 < k < n.

(3) A has strong 2-amalgamation if whenever f : P(s) — C, g : P(t) — C are simplices in A and
fIP(snt)=g[P(snt), then f U g can be extended to a simplex h: P(s ut) — C in A.

Definition 1.11. An amenable family of functors A is called non-trivial if it is non-empty and satisfies

the strong 2-amalgamation property.

It easily follows that any non-trivial amenable family of functors contains an n-simplex for each
n 2 1. In the rest of the paper, we shall only work with a non-trivial amenable family A of functors
into C.

Definition 1.12. If n > 1, an n-shell is an n-chain ¢ of the form

+ Z (_1)1f17
0<i<n+l
where fo,. .., fat1 are n-simplices such that whenever 0 <4 < j < n + 1, we have 9'f; = &7~ f;.

Remark/Definition 1.13. The boundary of an (n+1)-simplex is an n-shell, and the boundary of any
n-shell is 0. Note that A has (n + 2)-amalgamation iff any n-shell is a boundary of an (n + 1)-simplex.
For an (n + 1)-chain ¢ having an n-shell boundary, |c| is always an odd integer.

Now we introduce a weaker notion than 3-amalgamation: A has weak 3-amalgamation over B if
any l-shell over B is the boundary of a 2-chain over B of length < 3.

The details of the following fact and corollaries can be found in [3],[4].

Fact 1.14. If A has (n + 1)-CA for some n > 1, then
H,(A; B) = {[c] : ¢ is an n-shell over B with support n + 2}.

Since A already has 2-amalgamation, we have that H;(A; B) is trivial iff any 1-shell over B is the
boundary of some 2-chain over B.
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Corollary 1.15. Assume that T has n-CA over A = acl(A) for some n > 3. Then H,_5(p) = 0 for
pe S(A).

Corollary 1.16. If T is simple, then H;(p) = 0 for any complete type p in T.

From now on, we work with a large saturated model M = M®? whose theory T is rosy. Recall that
T is rosy if there is a ternary independence relation L on the small sets of M satisfying the basic
independence properties [1],[2]. We take L here as thorn-independence.

Now fix an algebraically closed set B = acl(B), and let Cg denote the category of all small subsets
of M containing B and morphisms are elementary maps over B (i.e., fixing B pointwise). For a
functor f : X — Cp and u € v € X, we write f¥(u) := f*(f(uv)) € f(v). We now fix p(z) € S(B)
where the tuple z may possibly have an infinite arity.

Definition 1.17. A closed independent functor in p is a functor f : X — Cp such that:

(1) X is a downward-closed subset of P(s) for some finite s € w; f(&) 2 B; and for i € s, f({i})
is of the form acl(Cb), where b(l= p) is independent with C = f{%(g) over B.

(2) For all non-empty u € X, we have

fu) = ac(Bu | £ ()
i€u
and { ,{f}({z})| i € u} is independent over f2(g).
Let .A(p) denote all closed independent functors in p.

Fact 1.18. A(p) is a non-trivial amenable family of functors.

2. MAIN RESULT : H;(p) = 0 IN ROSY THEORIES

We have H;(p) = 0 for any Lascar strong type which follows from the fact that Lascar distances
are finite in rosy theories. Meanwhile the same holds for a simple T' due to 3-amalgamation and
Fact 1.14. For given f : X — Cp in A(p)p (so f(&) = B), and u = {igp < -+ < ix} € X, we
write f(u) = [ao,...,ax], where a; = p, f(u) = acl(B,ao...ax), and acl(a;B) = iii}({ij}). Thus
{ag,...,ar} is independent over B.

Theorem 2.1. If B = M is a model, then A(p) has weak 3-amalgamation over M. Therefore
H1 (p) = 0.

Definition 2.2. Let a set B and tuples a, b be such that a =g b. By the Lascar distance over B
of a and b, denoted by dg(a,b), we mean the smallest natural number n such that there are tuples
a = ag,...,a, = b, where for each a;a;+1(¢ < n) begins some B-indiscernible sequence.

Theorem 2.3. Suppose that the strong type p is the Lascar (strong) type. Then Hy(p) = 0.

Proof. For notational simplicity we may assume B to be ¢J. Given a 1-shell f = a1 —ag2 + ap, where
each a;; : P({i,j}) — Cp is a 1-simplex in S1(A(p)), we want to find a 2-chain g such that dg = f.
Again there is no harm to assume that ag1({1}) = [b] = a12({1}) and ap2({2}) = [c] = a12({2}),
and ag; ({0}) := [d], ap2({0}) := [d']. By the extension axiom, we can assume that {b,c,d,d'} is
independent. Let d,d’ = p such that d(d,d’) = n. So we have d = do, . ..,dn = d’, where d;d;1(i < n)
begins an indiscernible sequence. Assume that bc Ly didn_y1 sobeL dy - dn.

Claim. There are e; = p (i <n) such that d;d;;1 Le; and e;d; = e;d; 4.

Proof of Claim. Let I = {d;d;4; -- ) be an indiscernible sequence having a sufficiently large length.
Due to the extension axiom, we can choose e, = d; with e} L I. Since there are only boundedly many
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types over e;, one can find d;,d; (j < j') with e[dj = e/d;,. Due to the indiscernibility of I, there is a
map f that maps d;d; 1 to d;jd;. Then e; := f(e}) satisfies e;d; = e;d; 1 as desired. —

Again by extension we suppose bc ‘L‘dldiﬂ e;, so that each {b,d;,e;},{b,di+1,€;} is independent.
Also each {b,c,en—1},{c,dn,€n—1} is independent ().

There is go := g5 — go', where g, g are 2-simplices with support u := {0, 1,3} such that g (u) =
[do, b, e0] and g (u) = [d1, b, e0]; Pgf = gy ; 0'gf = d*gy (this follows from the above Claim); and
gg extends ag; (ie., 0?97 = ag1). Hence dgo = ag, — 0%gg

Similarly, we can find g; := g;" —g; (0 < i < n—1), where each g;' ,9; is a 2-simplex with support u
such that g (u) = [d;, b, &;] and g; (u) = [di+1,b,€;]; g+ = g~; d'g* = d*g™; and d%g] = &g, ;.
Therefore we have

A(go + -+ + gn—2) = ao1 — 0°g5_,.
Put gn—1 := g/, — aoes + ai23, where ajo3 is a 2-simplex with support {j,2,3} extending aj,
such that ap23({0,2,3}) = [dn,c,en-1],0123({1,2,3}) = [b,c,en—1]. Also g} ; is a 2-simplex with
97_1({0,1,3}) = [dn-1,b, en_1] extending 02g,,_,. Moreover again by (*), we have d'g;}_ | = dagos.
Thus it follows
Ogn—1 = 0°g_1 — agz + a12 = 3%g;_, — aoz + a12.

Therefore g := gg + - -+ + gn_1 satisfies dg = f as desired. a

3. CLASSIFICATION

In this section, we classify 2-chains having 1-shell boundaries using two operations, the crossing

operation and the renaming support operation.

Remark/Definition 3.1. Suppose that an n-chain ¢ = },, n;f; is given where each f; is an n-simplex.
Assume that j € supp(c)\supp(d(c)). In this case we say ¢ has a vanishing support (in its boundary).
Given k ¢ s := supp(c), we let o be a map sending j to k while fixing numbers in s\{j}. Now as in

1.9, 8(c*(c)) = oc*(d(c)) = d(c).

Definition 3.2. (1) The crossing operation (or CR-operation): Let a and 8 be 2-simplices with
supp(a) = {do, 41,92}, supp(B) = {é1,92,93} (o # i3) such that o | P({i1,i2}) = B I
P({i1,42}) := ~. Suppose that d(a + ¢B) (¢ = 1 or —1) has no term v (i.e., v is cancelled
out). Now by strong 2-amalgamation there is a 3-simplex § with supp(8) = {ig, 41,12, 43} such
that & [ P({é0,91,42}) = a and & [ P({i1,42,23}) = B. We take o’ := § | P({io,%2,93}) and
B' =061 P({i1,%2,13}). Then it follows d(a + ¢8) = 9(ca/ + ¢B’). Replacing a + €8 by o/ + €8’
is called the crossing operation. Hence from a 2-chain c, if we obtain ¢’ by the CR-operation
(applied to two terms in ¢) then d(c) = d(c') and |¢/| < |c|.

(2) The renaming support operation (or RS-operation): This is basically what is described in 3.1
with n = 2. Solet ¢ = D, n;fi (fi 2-simplices) be a 2-chain having a vanishing support, say
j € supp(c)\supp(d(c)). Let k ¢ supp(c). Then as in Remark/Definition 3.1, we can change
the support j to k and replace ¢ by some ¢’ := o*(c) so that ¢ and ¢’ have the same boundary.
This replacement of ¢ by ¢ is called the RS-operation. In general, if d’ is the result of d by
applying the RS-operation to a subsummand of d, then d(d) = é(d’) and |d'| < |d|.

Remark/Definition 3.3. (1) In general, the CR-operation is not symmetric. For example sup-
pose that ¢ = fo — fi + f2 is given where f; is a 2-simplex with supp(f;) = {0,1,2, 3}\{¢}
such that f; [ P({k,3}) = f; | P({k,3}) ({3,7,k} = {0,1,2}). Now assume that by the CR-
operation, fo — fi is replaced by fs — fo where supp(fs) = {0,1,2} and 0f4 = dc so that c is
replaced by (fs — f2) + fo = f4. But ¢ is not obtained from f; using the CR-operation (unless
f4 is redundantly written as fq — f2 + f2).

71
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(2) Now we say a 2-chain c is proper if for any ¢’ obtained from c¢ by finitely many applications
of the CR or RS-operation (to subsummands), we have |c| = [¢/|. Among proper 2-chains,
now the CR and RS-operations are symmetric. Moreover clearly any 2-chain is reduced to a
proper 2-chain by finitely many applications of the two operations.

We call proper 2-chains ¢ and ¢’ are equivalent (written ¢ ~ ¢') if ¢’ is obtained from ¢ by
finitely many applications of the CR or RS-operation to some subsummands. Hence if proper
c and ¢ are equivalent then d(c) = d(c’) and |c| = |/|.

Now we are ready to define the notions of two different types of 2-chain having a 1-shell boundary.

Definition 3.4. Let a be a 2-chain having a 1-shell boundary.

(1) We call o renameable type (or RN-type) if a subsummand of o has a vanishing support. If
is not an RN-type 2-chain (so |supp(a)| = 3) we call a non-renameable (NR-)type.

(2) « is said to be minimal if it is proper, and for any proper o’ equivalent to « there does not
exist a subsummand S of o’ such that 9(8) =

For the notational simplicity, given a simplex f; with u = {jo, ..., jx} S supp(f;), we write fg°""’jk
to denote f; [ P(u). Also given a chain ¢ = Y,; n;fi (in its unique form), we write c7o7* to denote
Zie] nifi’ where J := {7’ el l Supp(fz) = {j(]v s »jk}}'

For the rest of this section, we fix a 1-shell boundary fi2 — fo2 + fo1 with supp(fjx) = {7 < k}.

Definition 3.5. Let o be a 2-chain having the boundary fi2 — fo2 + fo1. A subchain 8 = Y, €b; (b;
i=0
2-simplex) of « is called a chain-walk in o from fo1 to — foo if

(1) there are non-zero numbers kg, . . ., km+1 (not necessarily distinct) such that kg = 1, kppy1 = 2,
and for ¢ < m, supp(b;) = {ki, ki+1,0};
(2) each €; € {1,—1}; (Feobo)®t = fo1, (O€mbm)®? = — fo2; and
(3) for 0 € i <m,
(Oesbi) Okt + (Beiprbipr) VPt = 0.

Notice that such a representation is sensitive to its order, and a chain-walk can have distinct repre-
sentations. Unless said otherwise a chain-walk is written in a form of a representation. A subchain

’
m

of the chain-walk B of a form B’ := 3, €;b; for some 0 < j < m’ < m is called a section of 8. A
: !

chain-walk 8 in « is called mazimal (in @) if it has the maximal possible length. We say « is centered

at 0 if a (so every) maximal chain-walk in a from fo; to —fo2 is, as a chain, equal to a.

Now a chain-walk in o from — fg2 to f12, and that « is centered at 2, and so on are similarly defined.

Lemma 3.6. Let o be a 2-chain with the 1-shell boundary fi2 — fo2 + fo1. Let 8 = ;an e;b; be
i=0
ml
a chain-walk in o, say from — foo to f12. Assume there is a section 8’ = Y, €;b; of 8 such that for
i=j
supp(b;) = {2, ki, ki+1}, either k; # k41 forallie {j,...,m'}; ork; # kj foralli e {j+1,...,m'+1}.
Then by finitely many applications of the CR-operation to §’, we obtain a 2-simplex ¢ with supp(c) =

j—1 m
{2,kj, km/4+1} and € = 1 or —1 so that " := 3} e;b; + ec+ 3, b, is still a chain-walk from — fop to
=0 i>m/'

f12-

Theorem 3.7. Let a be a minimal 2-chain with the boundary fi2 — fo2 + fo1-
(1) Assume a is of NR-type. Then |a] =1 or |a] = 5. If || = 5 then any chain-walk in a from

fo1 to —fo2 is of the form Z( 1)%a; which is as a chain equal to a such that fi; = az; for
=0
somel<ji<n—1
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(2) « is of RN-type iff o is equivalent to a 2-chain
2n—1
o =ag+ Z €:a; + agn
im1
(n > 1) which is a chain-walk from fo; to — fog such that supp(as,) = {0, 1,2} and as, = fi2,
(azn) = — foz.

Proof. (1) This is easy to check.
(2) Here we give a brief sketch of the left to right.
(=) Note that |a| > 3.
Claim 1. There is a; ~ o centered at 2 such that |supp(ai)| > 3.

Claim 2. There is a 2-chain ap ~ a3 such that ap has a 1-simplex term ¢ (with the coefficient 1)
such that supp(c) = {0,1,2}, and f12 — foo = °(c) — 9*(c).

Then let us take a chain-walk v from fo; to — fo2 in a2 terminating with ¢. By repeatedly applying
the CR-operations to vy (while ¢ unchanged), we obtain a desired o/ ~ a3 centered at 0 forming a
chain-walk from f4; to — fo2. Then we reorder the representation of the chain-walk o if necessary. [

The following theorem is proved using the notions of directed graph theory which are not covered

in this note.

Theorem 3.8. Let o be a minimal 2-chain having the 1-shell boundary fis — fo2 + fo1. Then « is
equivalent to a 2-chain which is a chain-walk from fo; to — fo2 such that supp(e’) = {0, 1, 2}.

In the next section, we explore some of the consequences of this theorem.

4. APPLICATION : MATRIX EXPRESSION

In this section, we introduce the notion of a matrix expression, which determines whether a given
minimal 2-chain having a 1-shell boundary is of RN-type.

For the rest, we fix a minimal 2-chain « of length 2n + 1 with the 1-shell boundary fi2 — fo2 + fo1,
and supp(a) = {0,1,2}. For {0,1,2} = {i,j,k}, f/ denotes fjx (j < k). Fix I = {0,1,2} and
J ={0,...,n}. Also, we write ca € o to denote that a 2-simplex term ¢a is in a.

2n .

Definition 4.1. Let }; (—1)7a; be a representation of the given o which is a chain-walk from f} to
j=0

—fi. By a matriz ezpression of (the representation of) «, we mean a function M : I x J — J such

that

(1) foreachie I, M | {i} x J: ({i}x) J — J is a permutation of J;

(2) for each i € I, M(4,0) is an index such that f] = S asn(;,0);

(3) for each i € I, j € J\{0}, M(4,j) is an index such that dazj_1 = I azpn(i,j)-
Interpret M(i,7) as an entry m;; of a matrix in the (i + 1)th row and the (j + 1)th column, then
M = (my;)7,7 is a 3 x (n + 1) matrix.

Notice that matrix expressions are determined according to the choices of pairs of terms which
cancel out each other.

Theorem 4.2. The following conditions are equivalent:

(1) « is of RN-type.

(2) There is a matrix expression M for a representation a = %(—l)jaj such that for some
0 <49 <41 < 2, and non-empty Jy < {1,...,n}, M({ig} x Jg)=0= M({i1} x Jo) as image set

under the function M.
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2n ) )
Proof. (=) Let a; be a subchain of & = }; (—1)’a; such that &*a; = 0 for i € I\{ix} and |a;| = 2m,
j=0
where i, € {0,1,2} is a vanishing support. Let asps(; ;) € a1 for each i € I\{ix} and j e Jo := {j €
J | —agj—1 € aq}. Then here M satisfies Definition 4.1 and M ({io} x Jo) = M({i1} x Jg), where
{i0,%1,1x} = I, as desired.
(<) Suppose that M ({ip} x Jo) = M ({i1} x Jo), say J1, where Jo < {1,...,n} and 0 < ip < ¢; < 2.

Let a1 := Y} a; + Y, —ag;—1, a subsummand of a. Then we have §"q; = 0" a; = 0, so a; has a
Jj€N1 Jj€Jo
vanishing support i,, where {ig,%1,%4} = I. a

We end this note by stating some consequences of Theorem 4.2 which can be proved by using
permutations induced from matrix expressions.

For a matrix expression M : I x J — J, there is a triple (01,012, 002) of permutations of J such
that o;x is a map sending the (i 4+ 1)th row to the (k + 1)th row, i.e., ou(mi;) = my, for j € J, and
0 <i < k < 2. Notice that g9y = 012 0 09;1.-

Theorem 4.3. If n is odd, then « is always of RN-type.

Theorem 4.4. Suppose that for a as in Definition 4.1, one of the following holds:
(1) 8ea2j0_1 = E;wagjl_l for some 0 < jog < j; <nand 0 < ¢ <2
(2) dayj, = 0%ay;, for some 0 < jo <ji <nand 0<£<2.

Then « is of RN-type.
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