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Abstract

In recent years, the results about atomic abstract elementary class
were summarized and developed by J.T.Baldin. In his $wo$rks, categoric-
ity of atomic $AEC$ is one of the main problems under the assumption
of atomic $\omega$ -stability. $I$ tried the argument around the problem under
some weaker conditions.

1. Stability condition and splitting

We recall some definitions at first. In this note, $I$ define the atomic
$AEC$ briefly for convenience’ sake. Please refer to Baldwin’s book [1] for the
accurate definition.

Definition 1 Let $T$ be a complete theory of a language $L.$

A $class_{1}$ of structures $(K, \prec K)$ is an atomic abstract elementary $clas\mathcal{S}(AEC)$

if $K$ is the class of atomic models of $T$ and $\prec K$ is the first order elementary
submodel.

We assume that $K$ has at least one uncountable atomic model. And the
language $L$ is countable.

Definition 2 Let $T$ be a complete first order theory.
A set $A$ contained in a model $M$ of $T$ is atomic if every finite sequence in

$A$ realizes a principal type over the empty set.
If an atomic set $A$ is a model of $T$ , then we say $A$ is an atomic model.
Let $A$ be an atomic set.
$S_{at}(A)$ is the collection of $p\in S(A)$ such that if $a\in \mathcal{M}$ realizes $p$ , then $Aa$

is atomic where $\mathcal{M}$ is the big $mo$del.
We refer to a $p\in S_{at}(A)$ as an atomic type.

We consider stability conditions for atomic types.

Definition 3 An atomic $AEC$ $K$ is $\lambda$ –stable if for every $M\in K$ of
cardinality $\lambda,$ $|S_{at}(M)|=\lambda.$
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In Baldwin’s book [1], many examples of atomic $AEC$ are shown which
satisfy some stability conditions.

The notion of independence by splitting is available in this context.

Definition 4 Let $T$ be a complete theory of a language L. And let $\triangle_{i}$ be
a set of formulas for $i=1,2.$

$A$ (complete) type $p(x)$ over $B(\Delta_{1}, \Delta_{2})$ -splits over $A\subset B$ if there are
$b,$ $c\in B$ which realize the same $\triangle_{1}$ -type over $A$ and a $\triangle_{2}$ -formula $\phi(x, y)$

such that $\phi(x, b)\in p$ and $\neg\phi(x, c)\in p.$

$A$ (complete) type $p(x)$ over $B$ splits over $A\subset B$ if $p(x)(L, L)$ -splits
over $A.$

We confirm the next lemmas. Their proof are some modifications from
Shelah’s book [12].

Lemma 5 If $K$ is atomic $\omega$ -stable, then for any $M\in K$ and any nonal-
gebraic $p(x)\in S_{at}(M)$ , there is no increasing sequence $\{A_{i}\}_{i<\omega}\subset M$ such
that $prA_{i+1}$ splits over $A_{i}$ for all $i<\omega.$

Thus $p(x)$ does not split over some finite $A\subset M.$

Lemma 6 Let $M$ be a countable atomic model and $\varphi(x, y)$ be a formula.
Suppose that $|S_{at}^{\varphi}(M)|>\aleph_{0}$ and let $\{c_{i} : i<\aleph_{1}\}$ be a set of realizations

of types in $S_{at}^{\varphi}(M)$ .
Then there are $i<\aleph_{1}$ and $\{A_{j} : j<\aleph_{0}\}\subset M$ such that

for any $j<\aleph_{0},$ $|A_{j}|<\aleph_{0}$ and
$tp_{at}^{\varphi}(c_{i}/A_{j+1})(\psi, \varphi)$ -splits over $A_{j}$ for any $j<\aleph_{0}$ where $\psi(y, x)=$

$\varphi(x, y)$ .

2. Atomic $AEC$ without infinite splitting chain

Before I tried to argue about categoricity problem of atomic $AEC$ under
the asssumption that any atomic model $M\in K$ has no infinite splitting chain
for complete types. But shortly afterward, it came out that the condition of
no infinite splitting chain is not weaker than atomic $\omega$ -stability essentially.
Thus we consider some weaker conditions.

Definition 7 Let $K$ be an atomic $AEC$ and $M\in K.$

And let $\triangle(x, y)$ be the set of complete formulas such that $\triangle(x, y)=$

{ $\varphi_{i}(x, y)$ : $\varphi_{i}$ is complete and $tp_{at}(y/\emptyset)$ is unique for $i<\omega$ }.
$M$ has no infinite splitting chain if for any formula $\varphi(x, y)$ and $p\in$

$S_{at}^{\varphi}(M)$ , there is no increasing sequence $\{A_{i}\}_{i<\omega}\subset M$ such that $prA_{i+1}$

splits over $A_{i}$ for all $i<\omega$ , and moreover,
for any set of complete formulae $\triangle(x, z)$ as above and for any $q\in S_{at}^{\triangle}(M)$ ,
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there is no increasing sequence $\{A_{i}\}_{i<\omega}\subset M$ such that $qrA_{i+1}$ splits over
$A_{i}$ for all $i<\omega.$

$K$ has no infinite splitting chain if any model $M\in K$ has no infinite
splitting chain.

We can prove the next lemma.

Lemma 8 Let $M$ have no infinite splitting chain.
Then for any $p(x)\in S_{at}(M)$ for some $M\in K$ , if $M\subset B$ and $B$ is atomic,

then there is a unique extension of $p$ to $\hat{p}\in S_{at}(B)$ which does not split over
some countable set $C\subset M.$

Remark 9 There is an example $M$ satisfying; for any formula $\varphi(x, y)$

and $p\in S_{at}^{\varphi}(M),$ $p$ has no infinite splitting chain, and for some atomic
$B\supset M$ and $q\in S_{at}^{\psi}(M),$

$q$ has no atomic extension over $B.$

Lemma 10 Under the assumption that $\mathcal{K}$ has no infinite splitting chain,
almost all forking axioms hold for splitting.
In particular, (restricted) transitivity and symmetry over models.

In this context, we consider Morley sequences constructed by nonsplit-
ting extensions. Thus Morley sequences are indiscernible.

Definition 11 Let $A\subset M\in K$ and $p(x)\in S_{at}(M)$ be nonalgebraic.
A sequence $I=\{a_{i} : i<\lambda\}$ in $M$ is a Morley sequence of $p(x)$ over $A$ if

$p(x)$ does not split over $A$ , and for any $i<\lambda,$ $a_{i}\models pr$ $A$ and $tp_{at}(a_{i}/\{a_{j}$ :
$j<i\}\cup A)$ does not split over $A.$

We characterize Morley sequences in this context.

Lemma 12 If there is $N\in K$ with $|N|>\aleph_{0}$ such that $N$ has no infinite
splitting chain.

Then there are $M\in K$ with $|l|_{i}f|=\aleph_{2}$ and a nonalgebraic type $q(x)\in$

$S_{at}(M)$ such that $M$ has no infinite splitting chain and $q$ has a Morley
sequence I in $M$ with $|I|=\aleph_{2}.$

Lemma 13 Let $N\in Kwith|N|>\aleph_{0}$ such that $N$ has no infinite splitting
chain.

Suppose that there is a nonalgebraic type $p(x)\in S_{at}(N)$ such that $p$ has a
Morley sequence I in $N$ with $|I|>\aleph_{0}.$

Then I is totally indiscernible.

By Morley sequences, we can argue about the definability of atomic
types.
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Lemma 14 Let $M\in K$ with $|M|>\aleph_{0}$ and $M$ has no infinite splitting
chain. And let $p(x)\in S_{at}(M)$ be nonalgebraic.

Suppose that $p(x)$ has a Morley sequence $I=\{a_{i}:i<\aleph_{0}\}$ in $M.$

Then for any $\phi(x, y)$ , there is $n_{\phi}<\aleph_{0}$ such that for any $b\in M,$

$|\{a_{i}:\lambda I\models\phi(a_{i}, b), i<\aleph_{0}\}|<n_{\phi}$

or $|\{a_{i}:M\models\neg\emptyset(a_{i}, b), i<\aleph_{0}\}|<n_{\phi}.$

Lemma 15 Let $M\in K$ and $M$ has no infinite splitting chain. And let
$p(x)\in S_{at}(M)$ be nonalgebraic and $p$ have a Morley sequence $I=\{a_{i}$ : $i<$

$\aleph_{0}\}$ in $M$ over some countable set $D\subset M.$

Then $p(x)$ is definable over $D\cup I$ , that is,

for any formula $\phi(x, y)\in L$ , there is $n_{\phi}<\omega$ such that for any $b\in M,$

$\phi(x, b)\in p$

if and only if
$\models _{w\subset\{0,1,\cdots,2n_{\phi}\},|w|=n_{\phi}+1}\bigwedge_{i\in w}\phi(a_{i}, b)$ .

Lemma 16 Let $M\in K$ with $|M|>\aleph_{0}.$

Suppose that there is a nonalgebraic $p(x)\in S_{at}(M)$ such that;
$p(x)$ does not split over $D$ for some countable set $D\subset M$ , and
$p(x)$ has a Morley sequence I of $p(x)$ over $D$ in $M$ with $|I|\geq\aleph_{0}.$

Then $p(x)|D$ is stationary with respect to nonsplitting extension.

By the previous lemmas, we can characterize atomic $\omega$ -stability.

Lemma 17 Let $K$ be an atomic $AEC.$

Then $K$ is atomic $\omega$ -stable
if and only if
for any $M\in K$ and any nonalgebraic $p(x)\in S_{at}(M)$ , there is no increasing

sequence $\{A_{i}\}_{i<\omega}\subset AI$ such that $prA_{i+1}$ splits over $A_{i}$ for all $i<\omega.$

3. Existence of pregeometry

In [1], categoricity of atomic $AEC$ is proved by means of the fact that
every model is prime and minimal over a basis of some pregeometry given
by a quasi-minimal set. Thus we try to define pregeometry in the present
context.

We recall the definition of pregeometry.

Definition 18 Let $X$ be an infinite set and cl a function from $\mathcal{P}(X)$ to
$\mathcal{P}(X)$ where $\mathcal{P}(X)$ denotes the set of all subsets of $X$ . If the function cl
satisfies the following properties, we say ( $X$ , cl) is pregeometry.
(I) $A\subset B\Rightarrow A\subset c1(A)\subset c1(B)$ ,
(II) cl(cl $(A)$ ) $=$ cl $(A)$ ,
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(III) (Finite character) $b\in$ cl $(A)\Rightarrow b\in c1(A_{0})$ for some finite $A_{0}\subset A,$

(IV) (Exchange axiom)
$b\in c1(A\cup\{c\})-c1(A)\Rightarrow c\in c1(A\cup\{b\})$ .

We define a big type which is $a$ (modified) notion in [1].

Definition 19 Let $a\in M$ and $A\subset M\in K.$

A nonalgebraic atomic type $tp_{at}(a/A)$ is big if there is an atomic model
$N\in K$ such that $A\subset N$ and $tp_{at}(a/A)$ has a nonalgebraic atomic extension
over $N.$

Next we show the existence of types with rank one, i.e. quasi-minimal
types.

Lemma 20 Let $K$ have no infinite splitting chain and $M\in Kwith|M|>$
$\aleph_{0}$ . And let $p(x)\in S_{at}(M)$ be nonalgebraic and $p(x)$ does not split over $B$

for some countable set $B\subset M.$

Then there are an atomic model $N$ with $|N|=\aleph_{2}$ and an extension
$q(x)\in S_{at}(N)$ of$p|B$ such that for some countable set $C$ with $B\subset C\subset M,$

$q(C is big, but any$ splitting extension of $q|C over N is not big, and q(x)$

has a Morley sequence I over $C$ in $N$ with $|I|=\aleph_{2}.$

We define some closure operator.

Definition 21 Let $M\in K$ and $p(x)\in S_{at}^{1}(M)$ . And let $p$ does not split
over some countable parameter $A\subset M$ and $pr$ $A$ is stationary.
The operator $cl_{p}$ is defined for any $X\subset(p|A)(M)$ by;
$cl_{p}^{0}(X)=X$ and $cl_{p}^{n+1}(X)=\{a\in(p[A)(M)|a\not\in(prcl_{p}^{n}(X)\cup A)(M)\},$

and $cl_{p}(X)= \bigcup_{n<\omega}cl_{p}^{n}(X)$ .

We can prove the next fact.

Theorem 22 Let $M\in K$ with $|M|>\aleph_{0}$ and $M$ has no infinite $\mathcal{S}plitting$

chain.
Then there are an uncountable model $N$ and $p(x)\in S_{at}^{1}(N)$ such that $p(x)$

does not split over some countable set $D\subset N$ and $((p|D)(N), cl_{p})$ is
pregeometry.

4. Constructible sequence of atomic types

On the proof of categoricity o$f^{*}$ -excellent atomic $AECK$ , the existence
of prime model plays a crucial role. In this section, we show the existence of
some constructible model under the assumption that $K$ has no infinite split-
ting chain and has some additional conditions. After that we replace prime
$mo$dels by these constructible models in the argument of local categoricity.

At first we define some isolation of atomic types.
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Definition 23 Let $a\in M\in K$ and $A\subset M.$

A type $tp_{at}(a/A)$ is finitely isolated if there is $\overline{b}\in M$ such that $tp_{at}(a/\overline{b})\vdash$

$tp_{at}(a/A)$ .
A sequence $\{c_{i}:i<\alpha\}\subset M$ is finitely constructible over $A$ if, for any

$\beta<\alpha,$ $tp_{at}(c_{\beta}/A\cup\{c_{i}:i<\beta\})$ is finitely isolated.
$M$ is finitely constructible over$A$ if $M\backslash A$ can be written as a finitely

constructible sequence.
An atomic set $C$ with $A\subset C\subset M$ is quasi -atomic over $A$ if for any

$\overline{c}\in C,$ $tp_{at}(\overline{c}/A)$ is finitely isolated.

We confirm the next lemma.

Lemma 24 Let $N\in K$ and $A\subset C\subset N.$

If $C_{\beta}=\{c_{\alpha} : \alpha<\beta\}$ is finitely constructible over $A$ , then $C_{\beta}\cup A$ is
quasi-atomic over $A.$

So far, we argue under the assumption that $K$ has no infinite splitting
chain. But additional condition is necessary to show the existence of finitely
constructible $mo$dels.

Definition 25 Let $K$ be an atomic $AEC$ and $M\in K.$

Let $\triangle(x, y)$ be a set of complete formulas such that $\triangle(x, y)=\{\varphi_{i}(x, y)$ : $\varphi_{i}$

is complete and $tp_{at}(y/\emptyset)$ is unique for $i\in I$ }.
Let $A\subset B\subset M$ such that $B$ is quasi-atomic over $A$ and $A$ is totally

indiscernible (over $\emptyset$ ), for these sets, let $tp_{at}(B, A)=\Phi(Y, Z)$ , and
let $\Gamma(x, Y, Z)$ be a set of complete formulas for a quasi-atomic parameter

over a totally indiscernible sequence such that $\Gamma(x, Y, Z)=\{\psi_{i}(x, \overline{y}_{i}, \overline{z}_{i})$ :
$\psi_{i}(x, \overline{y}_{i}, \overline{z}_{i})$ is complete and $\overline{y}_{i}$ is some enumeration of $\{y_{i_{j}} : j<k\}\subset Y=$

$(y_{i})_{i<\lambda}$ , and $\overline{z}_{i}$ is some enumeration of $\{z_{i_{j}} : j<l\}\subset Z=(z_{i})_{i<\mu}\}.$

$M$ has no infinite splitting chain for quasi –atomic parameters (
over totally indiscernible sequences) if for any set of complete formulas
$\triangle(x, y)$ and for any nonalgebraic $p\in S_{at}^{\Delta}(M)$ , there is no increasing sequence
$\{A_{i}\}_{i<\omega}\subset M$ such that $prA_{i+1}$ splits over $A_{i}$ for all $i<\omega$ , and,

for any set of complete formulas $\Gamma(x, Y, Z)$ for quasi-atomic parameters
over totally indiscernible sequences and for any nonalgebraic $q\in S_{at}^{\Gamma}(M)$ ,
there is no increasing sequence $\{A_{i}\}_{i<\omega}\subset M$ such that $qrA_{i+1}$ splits over
$A_{i}$ for all $i<\omega.$

$K$ has no infinite splitting chain for quasi- atomic parameters if any
model $M\in K$ has no infinite splitting chain for quasi-atomic parameters.

We show the next lemma.

Lemma 26 ($K$ has no infinite splitting chain.)
Let $M\in K$ and $\triangle(x)=\{\phi_{i}(x, y_{i}):i\in I\}$ for some set I. And let $A\subset$

$B\subset M$ and $a$ be such that $tp_{at}^{\triangle}(a/B)$ does not split over $A$ and $tp_{at}^{\triangle}(a/A)$ is
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stationary.
Then the following are equivalent;
(i) $tp_{at}^{\triangle}(a/A)\vdash tp_{at}^{\triangle}(a/B)$

(ii) For any $a’$ with $tp_{at}^{\triangle}(a’/A)=tp_{at}^{\triangle}(a/A)$ , if $tp^{\triangle}(a’/B)i_{\mathcal{S}}$ atomic, then
$tp_{at}^{\triangle}(a’/B)$ does not split over $A.$

We prove the existence of some constructible model over totally indis-
cernible sequences under the assumption that $K$ has no infinite splitting
chain for quasi-atomic parameters. But we does not assume that the type
of element in indiscernible sequences has rank one.

Proposition 27 Let $N\in K$ with $|N|>\aleph_{0}$ and $N$ has no infinite splitting
chain for quasi-atomic parameters. And let $I\subset A\subset N$ , and $I=\{c_{j} : i<\lambda\}$

be a totally indiscernible sequence (over $\emptyset$ ) and $A$ be a quasi-atomic set over
I.

$Suppo\mathcal{S}e$ that $\phi(x, b)$ be a $L(A)$ -formula.
Then there is $p(x)\in S_{at}(A)$ such that $\phi(x, b)\in p$ and $p$ is finitely isolated.

Proposition 28 Let $N\in K$ with $|N|>\aleph_{0}$ and $N$ has no infinite splitting
chain for quasi-atomic parameters. And let $I\subset N$ be a totally indiscernible
sequence (over $\emptyset$ ).

Then there is $M\prec N\in K$ such that $I\subset M$ and $M$ is finitely constructible
over $I.$

Theorem 29 Let $N\in K$ with $|N|>\aleph_{0}$ and $N$ has no infinite splitting
chain for quasi-atomic parameters. And let $I\subset N$ be a totally indiscernible
sequence and $M\prec N\in K$ be finitely constructible over $I.$

Then for any $M’\prec N$ with $I\subset M’,$ $M$ is elementarily embedded in $M’$

over $I.$

Even if there are two finitely constructible models over some set $A\subset$

$M\in K$ , we can not prove the isomorphism of them instantly. Another
condition is need to prove the isomorphism. On the proof of categoricity of
$*$ -excellent atomic $AECK$ , they set the condition that $K$ has no Vaughtian
triple. Thus we must set this condition to prove the isomorphism of finitely
constructible models over a basis of pregeometry.
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