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1 Introduction

It is known that several theories have model companions. For example, the
field axioms, the linear order axioms and the graph axioms, all have a model
companion.

On the other hand, several theories have no model companion :

Theorem 1. [Kikyo and Shelah, 2002|[3] If T" is a model complete theory
with the strict order property, then the theory of the models of 7" with an
automorphism has no model companion.

Theorem 2. [Kikyo, 1997] Axioms of graph containing an automorphism
have no model companion.

In this paper, we focus on theories in the graph language, and present two
examples, both have no model companion. These two examples are derived
from a discussion with A. Tsuboi.

2 Notations and Preliminaries

Before starting, I remark some elementary facts.

Definition 3. Let R be a binary relation. An R-structure G will be called
a directed graph (or a digraph in short), if R is irreflexive. A digraph G is
called a graph, if it is also symmetric.

We are interested those theories 7" such that :
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1 T is V3-axiomatizable ;
2 T dose not have a model companion.

It is known that such a theory T exist [1]. Here, we will construct an R-theory
T extending (di)graph axioms.

Definition 4. Let M be a model of T. M will be called an existentially
closed model (EC model in short) of T if, for any N = T extending M, the
following statement holds:

NE (@), ae M = M = 3z¢(Z) (¢: L-formula)
We use the following fact :

Fact 5. Suppose that an V3-theory T" has a model companion S. Then S is
characterized by the following property :

MES & M : an EC models of T.

3 Two examples without a model companion

An example of digraph. Let T be the following set of R-sentences :

1 R gives a digraph structure, i.e., Vz—R(z, )
(It is irreflective.)

2 Vz3yD(z,y) AVz3yD(y,z), where D(z,y) = R(z,y) A —~R(y, z).
(Every z has a successor and a predecessor.)

3 Vzyz[D(z,y) A D(z,2) = y = 2|, Yzyz[D(y,z) A D(z,2) = y = 2]

4 VzVy[D(z,y) — Yz(E(z,z) < E(y,z))], where E(z,y) = R(z,y) A
R(y,z).

Axioms 1,2 and 3 express that D(z,y) defines a 1-1 function and that an
D-orbit of a point forms an infinite line or a cycle. Of course, there is a
possibility that the line is a cycle. We can consider that a cycle is a line
as extending cyclically. We call those lines D-path. The relation E is a
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symmetric relation between z and y. If we take z and y on D-path, and x
and z have a relation F/, then y and z have a relation F.

Cleary T is a consistent V3-theory. For example, let M = Z and define
R(a,b) < b=a+ 1. Then (M, R) is a model of T'.

Proposition 6. T does not have a model companion.

Proof. Suppose otherwise and let S be a model companion of 7. We
consider the following set:
[(z,y) = {-D"(z,y), -D"(y,z) : n € w}
U{Vz(E(z,2) < E(y,2))},
where D™(z,y) =321 - zo(D(x,21) A - A D(2n,9)).

Claim A. I'(z,y) is inconsistent with S.

If this set is consistent with S, there would be a model M = S and
a,b € M realizing I". Let N = M UZ (disjoint union) and let

RY = RMU{(c,c+1):ceZ)}
{(a’,c),(c,a’) : @’ and a are connected by a D-path ; c € Z}.

Then N =T and N = E(a,c) A —=E(b,c). Since M is an EC model of T,
there must be ¢ € M with M = E(a,c’) A —E(b,c'). This contradicts the
choice of a,b. Thus I' is inconsistent. (End of proof of claim A)

So there is n such that

N\ (=Di(z,y) A=D'(y,z)) = J2(E(z,2) A=E(y, 2)).

i<n
We can choose d,e € M such that D""1(d, e) and ~D(d, e) (i < n), because

NEDOLA---ADn+1,n+2)
=3d,ag, - ,an,e € M, M | D(d,ap) N+ A D(an,e).

Then (d,e) gives a counterexample to the condition 4. Thus, T" dose not
have a model companion. [J

An example of graph. Let T be the following set of R-sentences :

1 Graph axioms;
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2 There is no cycle i.e.

—3zy - - Ty (/\#j z; # z; A\ R(xo, 21) /\---/\R(xn,xo)>
(n=1,2, --+)

Proposition 7. T does not have a model companion.

Proof. Suppose otherwise and let S be a model companion of T'. We consider
the following set:

[(z,y) = {-R"(z,y) : n€w}

Claim A. T'(z,y) is consistent with .S.
If this set is inconsistent, so there is n such that
S E Vzy(R(z,y) V-V R*(z,y)).

Let M be a Ny-saturated model of S, M UZ be the same one as in the proof
of Proposition 6. We can choose d,e € M such that R™(d, e), where m(> n)
is big enough, because M is an EC model of 7. On the other hand, we can
find a path of length at most n connecting d and e. This means M has a
cycle. A contradiction to condition 2. (End of proof of claim A)

Thus there is a,b € M such that M |=T'(a,b). Let N = M U {c} (disjoint

union) and let
RN = RM U {(a,c), (c,a), (b,c), (c,b)}
Then N | T and, since M is an EC model of T', there is a ¢’ such that
M & R(a,c) A R(b, ).

This contradicts the choice of a, b. Thus, T dose not have a model companion.
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