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1 Introduction
It is known that several theories have model companions. For example, the
field axioms, the linear order axioms and the graph axioms, all have a model
companion.
On the other hand, several theories have no model companion:

Theorem 1. [Kikyo and Shelah, 2002][3] If $T$ is a model complete theory
with the strict order property, then the theory of the models of $T$ with an
automorphism has no model companion.

Theorem 2. [Kikyo, 1997] Axioms of graph containing an automorphism
have no $mo$del companion.

In this paper, we focus on theories in the graph language, and present two
examples, both have no model companion. These two examples are derived
from a discussion with A. Tsuboi.

2 Notations and Preliminaries
Before starting, $I$ remark some elementary facts.

Definition 3. Let $R$ be a binary relation. An $R$-structure $G$ will be called
a directed graph (or a digraph in short), if $R$ is irreflexive. $A$ digraph $G$ is
called a graph, if it is also symmetric.

We are interested those theories $T$ such that :
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1 $T$ is $\forall\exists$-axiomatizable;

2 $T$ dose not have a model companion.

It is known that such a theory $T$ exist [1]. Here, we will construct an $R$-theory
$T$ extending (di)graph axioms.

Definition 4. Let $M$ be a model of $T.$ $M$ will be called an existentially
closed model ($EC$ model in short) of $T$ if, for any $N\models T$ extending $M$ , the
following statement holds:

$N\models\varphi(\overline{a}),\overline{a}\in M\Rightarrow M\models\exists\overline{x}\varphi(\overline{x})$ ( $\varphi$ : $L$-formula)

We use the following fact :

Fact 5. Suppose that an $\forall\exists$-theory $T$ has a model companion $S$ . Then $S$ is
characterized by the following property:

$M\models S\Leftrightarrow M$ : an $EC$ models of $T.$

3 Two examples without a model companion
An example of digraph. Let $T$ be the following set of $R$-sentences :

1 $R$ gives a digraph structure, i.e., $\forall x\neg R(x, x)$

(It is irreflective.)

2 $\forall x\exists yD(x, y)\wedge\forall x\exists yD(y, x)$ , where $D(x, y)=R(x, y)\wedge\neg R(y, x)$ .
(Every $x$ has a successor and a predecessor.)

3 $\forall xyz[D(x, y)\wedge D(x, z)arrow y=z],$ $\forall xyz[D(y, x)\wedge D(z, x)arrow y=z]$

4 $\forall x\forall y[D(x, y)arrow\forall z(E(x, z)rightarrow E(y, z))]$ , where $E(x, y)=R(x, y)\wedge$

$R(y, x)$ .

Axioms 1,2 and 3 express that $D(x, y)$ defines a 1-1 function and that an
$D$-orbit of a point forms an infinite line or a cycle. Of course, there is a
possibility that the line is a cycle. We can consider that a cycle is a line
as extending cyclically. We call those lines $D$-path. The relation $E$ is a
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symmetric relation between $x$ and $y$ . If we take $x$ and $y$ on $D$-path, and $x$

and $z$ have a relation $E$ , then $y$ and $z$ have a relation $E.$

Cleary $T$ is a consistent $\forall\exists$-theory. For example, let $M=\mathbb{Z}$ and define
$R(a, b)\Leftrightarrow b=a+1$ . Then $(M, R)$ is a model of $T.$

Proposition 6. $T$ does not have a model companion.

Proof. Suppose otherwise and let $S$ be a model companion of $T$ . We
consider the following set:

$\Gamma(x, y)= \{\neg D^{n}(x, y), \neg D^{n}(y, x):n\in\omega\}$

$\cup\{\forall z(E(x, z)rightarrow E(y, z))\},$

where $D^{n}(x, y)=\exists z_{1}\cdots z_{n}(D(x, z_{1})\wedge\cdots\wedge D(z_{n}, y))$ .

Claim A. $\Gamma(x, y)$ is inconsistent with $S.$

If this set is consistent with $S$ , there would be a model $M\models S$ and
$a,$ $b\in M$ realizing $\Gamma$ . Let $N=Muz$ (disjoint union) and let

$R^{N}=R^{M}\cup\{(c, c+1):c\in \mathbb{Z}\}$

{ $(a’, c),$ $(c, a’)$ : $a’$ and $a$ are connected by a $D$-path ; $c\in \mathbb{Z}$ }.

Then $N\models T$ and $N\models E(a, c)\wedge\neg E(b, c)$ . Since $M$ is an $EC$ model of $T,$

there must be $c’\in M$ with $M\models E(a, c’)\wedge\neg E(b, c’)$ . This contradicts the
choice of $a,$ $b$ . Thus $\Gamma$ is inconsistent. (End of proof of claim A)

So there is $n$ such that

$\bigwedge_{i\leq n}(\neg D^{i}(x, y)\wedge\neg D^{i}(y, x))arrow\exists z(E(x,z)\wedge\neg E(y, z))$
.

We can choose $d,$ $e\in M$ such that $D^{n+1}(d, e)$ and $\neg D^{i}(d, e)(i\leq n)$ , because

$N\models D(0,1)\wedge\cdots\Lambda D(n+1, n+2)$

$\Rightarrow\exists d, a_{0}, \cdots, a_{n}, e\in M, M\models D(d, a_{0})\wedge\cdots\wedge D(a_{n}, e)$ .

Then $(d, e)$ gives a counterexample to the condition 4. Thus, $T$ dose not
have a $mo$del companion. a
An example of graph. Let $T$ be the following set of $R$-sentences :

1 Graph axioms;
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2 There is no cycle i.e.

$\neg\exists x_{0}\cdots x_{n}(\bigwedge_{\iota\neq j}x_{i}\neq x_{j}\wedge R(x_{0}, x_{1})\wedge\cdots\wedge R(x_{n}, x_{0}))$

$(n=1,2, \cdots)$

Proposition 7. $T$ does not have a model companion.

Proof. Suppose otherwise and let $S$ be a model companion of $T$ . We consider
the following set:

$\Gamma(x, y)=\{\neg R^{n}(x, y):n\in\omega\}$

Claim A. $\Gamma(x, y)$ is consistent with $S.$

If this set is inconsistent, so there is $n$ such that
$S\models\forall xy(R(x, y)\vee\cdots\vee R^{n}(x, y))$ .

Let $M$ be a $\aleph_{0}$-saturated model of $S,$ $M\sqcup \mathbb{Z}$ be the same one as in the proof
of Proposition 6. We can choose $d,$ $e\in M$ such that $R^{m}(d, e)$ , where $m(>n)$

is big enough, because $M$ is an $EC$ model of $T$ . On the other hand, we can
find a path of length at most $n$ connecting $d$ and $e$ . This means $M$ has a
cycle. $A$ contradiction to condition 2. (End of proof of claim A)

Thus there is $a,$ $b\in M$ such that $M\models\Gamma(a, b)$ . Let $N=M\sqcup\{c\}$ (disjoint
union) and let

$R^{N}=R^{M}\cup\{(a, c), (c, a), (b, c), (c, b)\}$

Then $N\models T$ and, since $M$ is an $EC$ model of $T$ , there is a $c’$ such that
$M\models R(a, c’)\wedge R(b, c’)$ .

This contradicts the choice of $a,$
$b$ . Thus, $T$ dose not have a model companion.

$\square$
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