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Abstract

The critical exponent of a matroid is one of the important parameters in matroid
theory which is related to the critical problem (cf. [6]). A representable matroid over
GF(q) is corresponding to a linear code over GF(g). In this note, we give a bound on
critical exponents of linear codes and give a construction of linear codes which attain
the equality of the bound.

1 Preliminaries

Let E be a finite set and p : 2F — Z* U {0} be a function. M = (E, p) is called a matroid
if M has the following properties:

(R1) If X C E, then 0 < p(X) < |X].
(R2) If X CY C E, then p(X) < p(Y).
(R3) If X and Y are subsets of E, then

p(XUY)+p(XNY) < p(X)+p(Y).

We refer the reader to [9] and [11] for the basic definitions in matroid theory.
For a matroid M = (p, E), the characteristic polynomial p(M; X) of M is defined by

p(M;)) = Z(_l)lxl)\p(E)—p(X).
XCE

Let M be a matroid representable over GF(q) = F,. It is well known that p(M;q¢*) > 0,
for all k € Z*. Then the critical exponent c(M;q) of M is defined by

o(M: q) = 00, if M has a loop;
)= min{j € Z* : p(M;¢) > 0}, otherwise.



Thus if M has no loops, then p(M;q*) > 0 for all k > ¢(M;q). For a matroid M which is
representable over Fy, one of the critical problems is the problem of determining the critical
exponent c(M;q) (cf. [6, 1]). However, this is difficult in general.

The support and weight of each vector = (z1,Z3,...,2,) € F} is given by

supp(x) :={i : ; # 0};
wt(z) := [supp(x)|.
Similarly, the support and weight of each subset B C I, are defined as follows:

Supp(B) := | J supp(«);

xzEB

wt(B) := | Supp(B)| .

Let C be an [n, k] code over F,, that is, a k-dimensional subspace of the vector space
F,. Let G be a generator matrix of C, that is, a k X n matrix over F, whose rows form a
basis for C. Set E := {1,2,...,n}. For each subset X C E, the punctured code, denoted
by C \ X, is the linear code obtained by deleting the coordinate X from each codeword in
C. It is easy to check that if we define a function p by p(X) = dimC \ (E — X), for any
X C E, then M¢ = (F, p) is a matroid, conversely, if M is a representable matroid over F,,
then there exists a linear code C such that M = Mg (cf. [11, 9]). Thus, for an [n, k] code
over Fy, the characteristic polynomial p(C; A) of C is defined by

p(C; ) = Z (—1)XI\b-dimC\X
XCE

and the critical exponent c(C;q) of C is defined by

o(Ciq) = 00, . if Supp(C) # F;
X min{j € Z* : p(C;q¢’) > 0}, otherwise.
For any subset X C FE, the shortened code, denoted by C/X, is the linear code obtained
by deleting the (zero) coordinates X from each codewords & € C with supp(z) N X = 0.

Crapo and Rota ([4]) prove the following theorem widely known as the Critical Theorem (cf.
Theorem 2 in [1]).

Lemma 1 (The Critical Theorem) Let C be an [n,k] code over F,. For any X C E and
any m € Z*, the number of ordered m-tuples (v,...,vy) of codewords vy,..., v, in C
with supp(v1) U - - - Usupp(vn) = X is p(C/X; q™).

From Lemma 1, if there exists at least one set of m codewords V = {v1,...,v,} in C
with Supp(V') = F, then p(C;q™) > 0 and so ¢(C;q) <m. For 0 <r <k and any X C F,
let Ag;) be the number of r-dimensional subcodes D of C with Supp(D) = X. We note that
the polynomial

W (a,y) =Y A2y
=0

is the r-th support weight enumerator of C, where A" 3" xe(®) AL (cf. [5]).
Then we have the following result:



Proposition 2 Let C' be an [n,k] code over F, having generator matriz G and set E =
{1,2,...,n}. The following are equivalent:

(1) c(C;q) =m.
(2) min{r : 0 <r <k, Ag)#()}:m.

(3) m is the smallest positive integer such that there exists a (k —m)-dimensional subspace
U of Fg which does not contain any of the n column vectors of G.

2 Bounds on Critical Exponents

Let G be a k x n matrix over F, which contains as columns exactly one multiple of each
nonzero vector in IFS. Then the [n = (¢* — 1)/(g — 1), k] code C having generator matrix G
is a dual Hamming code and C* is a [n,n — k, 3] Hamming code. It is also known that, for
any r, 1 <r <k,

> a9 ={ [, i=( =)/~ 1),

Xe(?) 0 otherwise,
where m denotes the Gaussian binomial coefficient (cf. [5]). So we have that i = n if and
only if r = k.
Proposition 3 If C is a dual Hamming [n, k] code over F,, then
min{r : 0 <r <k, Ag)%O}zk.

A mazimum distance separable (MDS) code over F, is an [n, k] code over F, whose
minimum Hamming weight is n — k4 1. According to Theorem 6, p. 321, in [7], the number
Ay of codewords of weight w in an MDS [n, k] code over F, is given by

au=(")a-1) S (1 ("7 1), 1)
w pord J
ford <w <n,whered=n—-k+1.
Theorem 4 Let C be an MDS [n,k] code over F,. Then
c(C;q) < 2.

Remark 5 From Proposition 3, for a [¢+1, 2] MDS code C over F,, we have that ¢(C; q) = 2.
So the bound is sharp.

It is known that a uniform matroid U,,, representable over F, is corresponding to a
matroid obtained by an MDS [n,m} code over F, (cf. [9]). As a corollary of the above
theorem, we have the following.
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Corollary 6
c(Unmiq) < 2.

In general, we have the following bound on critical exponents for linear codes over finite
fields.
Theorem 7 Let C be an [n, k| code over F, having generator matriz G. If dt > q, then

c(C;q) <k—d* +2,

except when C is a binary codes such that d* = n is odd or such thatn = 2F —1 and d* =3
in which case ¢(C;q) = k — d* + 3, where C* denotes the minimum Hamming weight of the

dual code C*.

As a corollary of the above theorem, we have the following bound on critical exponents
for representable matroids over finite fields.

Corollary 8 Let M be a rank k representable simple matroid over Fy with girth g. If g > g,
then

co(M;q) <k—-g+2,
except when M is a binary matroid isomorphic to Uyi or PG(k - 1,2) in which case
c(M;q)=k—-g+3.

Example 9 Let C be the ternary [11, 5] code having generator matrix

[
10000122210
01000012221

G=|10010021220T12
000610110111
00001222101

Then the dual code C* is an [11, 6, 5] quadratic residue code. By a Magma calculation, we
have that

AP =0, AD =330, AP =825, AY =110, 4D =1,
where E = {1,2,...,11}. If Mc is the vector matroid obtained from G, then ¢(Mc; 3) =
2(= 5 — 5+ 2) and so M¢ holds the equality in Theorem 7.

3 A construction of tangential blocks

As defined in [3, 6], for 1 < r < k — 1, a set M of points of the projective geometry
PG(k — 1,q) is an r-block over F, if every (k — r)-dimensional subspace in PG(k — 1,9)
contains at least one point in M. If X is a flat in M, a tangent of X is a (k —r)-dimensional
subspace U in PG(k — 1, q) such that

MnU=X.

An r-block M is called to be minimal if every point in M has a tangent, and to be tangential
if every proper nonempty flat in M of rank not exceeding k — r has a tangent.
Alternatively, a matroid M is a tangential r-block over F, if the following conditions hold:
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(i) M is simple and representable over F,,.
(i) p(M;q") = 0.
(iii) p(M/F;q") > 0 whenever F is a proper nonempty flat of M.

Proposition 10 For any positive integer k, set K := {1,2,...,k}. Foranm (1 < m <
k), we take an m elements subset T € (g) and a family V of (m — 1) distinct points
V1,2, ..., U1 € PG(k —1,q) with supp(v;) NT =0, i=1,2,...,m — 1. Define

XT = {x € PG(k—1,q) : supp(x)NT = 0},
Y = {x € PG(k—1,q) : |supp(x) NT|=1}\{vi+Xe; : v; €V, A€ F, - {0}, j € T},
ZT .= {x € PG(k—1,q) : supp(x) € (Z)}

Then M := XTUYI U Z7 is a (k — m)-block over F,.
Then we can give a construction of tangential blocks as follows:

Theorem 11 Let M be the set of points in PG(k — 1,q) defined in Proposition 10. If
m—1< g™, then M is a tangential (k — m)-block over GF(q).

From the definition, M is a minimal r-block over Fy if and only if ¢(C; q) = r + 1 for the
linear code having generator matrix G whose column vectors are all points in M (cf. p. 168
in [3]).

Corollary 12 Let M be the set of points defined in Proposition 10. If m = 2, then the linear
code C over F, whose generator matriz obtained from M attains the bound in Theorem 7.

Proof. From the definition of M, it finds that d* = 3, since there exist three column
vectors in G which are linearly dependent. Thus we have that

k—2+1=k—-1=¢(C;q)<k—-3+2=k—1.

Example 13 Let C be the binary [22, 5] code over F, having generator matrix

100000111111 1000011000
0601000111011 00110011110
G=|10010011010011001111110
000100000101 0101010101
0000100000101 01O0101011

From Theorem 11, G forms a binary tangential 3-block. Moreover, we have that
p(Mc; A) = A° — 22X* + 175X% — 610A% + 9 — 4\ — 448
=A=-1DA=-2)A=-49HN=7)(A-38).

If Mc is the vector matroid obtained from G, then ¢(M¢;2) = 4(= 5 — 3 + 2) and so M¢
holds the equality in Theorem 7.
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