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Abstract

The critical exponent of a matroid is one of the important parameters in matroid
theory which is related to the critical problem (cf. [6]). $A$ representable matroid over
$GF(q)$ is corresponding to a linear code over $GF(q)$ . In this note, we give a bound on
critical exponents of linear codes and give a construction of linear codes which attain
the equality of the bound.

1 Preliminaries
Let $E$ be a finite set and $\rho$ : $2^{E}arrow \mathbb{Z}^{+}\cup\{0\}$ be a function. $M=(E, \rho)$ is called a matroid
if $M$ has the following properties:

(Rl) If $X\subseteq E$ , then $0\leq\rho(X)\leq|X|.$

(R2) If $X\subseteq Y\subseteq E$, then $\rho(X)\leq\rho(Y)$ .

(R3) If $X$ and $Y$ are subsets of $E$ , then

$\rho(X\cup Y)+\rho(X\cap Y)\leq\rho(X)+\rho(Y)$ .

We refer the reader to [9] and [11] for the basic definitions in matroid theory.
For a matroid $M=(\rho, E)$ , the characteristic polynomial $p(M;\lambda)$ of $M$ is defined by

$p(M; \lambda)=\sum_{X\subseteq E}(-1)^{|X|}\lambda^{\rho(E)-\rho(X)}.$

Let $M$ be a matroid representable over $GF(q)=\mathbb{F}_{q}$ . It is well known that $p(M;q^{k})\geq 0,$

for all $k\in \mathbb{Z}^{+}$ . Then the critical exponent $c(M;q)$ of $M$ is defined by

$c(M;q)=\{\begin{array}{ll}\infty, if M has a loop;\min\{j\in \mathbb{Z}^{+}: p(M;q^{j})>0\}, otherwise.\end{array}$
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Thus if $M$ has no loops, then $p(M;q^{k})>0$ for all $k\geq c(M;q)$ . For a matroid $M$ which is
representable over $\mathbb{F}_{q}$ , one of the critical problems is the problem of determining the critical
exponent $c(M;q)$ (cf. [6, 1]). However, this is difficult in general.

The support and weight of each vector $x=(x_{1}, x_{2}, \ldots, x_{n})\in \mathbb{F}_{q}^{n}$ is given by

$supp(x):=\{i:x_{i}\neq 0\}$ ;
wt $(x):=|supp(x)|.$

Similarly, the support and weight of each subset $B\subseteq \mathbb{F}_{q}^{n}$ are defined as follows:

$Supp(B):=\bigcup_{x\in B}supp(x)$ ;

$wt(B):=|Supp(B)|.$

Let $C$ be an $[n, k]$ code over $\mathbb{F}_{q}$ , that is, a $k$-dimensional subspace of the vector space
$\mathbb{F}_{q}^{n}$ . Let $G$ be a generator matrix of $C$ , that is, a $k\cross n$ matrix over $\mathbb{F}_{q}$ whose rows form a
basis for $C$ . Set $E$ $:=\{1,2, \ldots, n\}$ . For each subset $X\subseteq E$ , the punctured code, denoted
by $C\backslash X$ , is the linear code obtained by deleting the coordinate $X$ from each codeword in
$C$ . It is easy to check that if we define a function $\rho$ by $\rho(X)=\dim C\backslash (E-X)$ , for any
$X\subseteq E$ , then $M_{C}=(E, \rho)$ is a matroid, conversely, if $M$ is a representable matroid over $\mathbb{F}_{q},$

then there exists a linear code $C$ such that $M=M_{C}$ (cf. [11, 9]). Thus, for an $[n, k]$ code
over $\mathbb{F}_{q}$ , the characteristic polynomial $p(C;\lambda)$ of $C$ is defined by

$p(C; \lambda)=\sum_{X\subseteq E}(-1)^{|X|}\lambda^{k-\dim C\backslash X},$

and the critical exponent $c(C;q)$ of $C$ is defined by

$c(C;q)=\{\begin{array}{ll}\infty, if Supp(C)\neq E;\min\{j\in \mathbb{Z}^{+}:p(C;q^{j})>0\}, otherwise.\end{array}$

For any subset $X\subseteq E$ , the shortened code, denoted by $C/X$ , is the linear code obtained
by deleting the (zero) coordinates $X$ from each codewords $x\in C$ with $supp(x)\cap X=\emptyset.$

Crap$0$ and Rota ([4]) prove the following theorem widely known as the Critical Theorem (cf.
Theorem 2 in [1] $)$ .

Lemma 1 (The Critical Theorem) Let $C$ be an $[n, k]$ code over $\mathbb{F}_{q}$ . For any $X\subseteq E$ and
any $m\in \mathbb{Z}^{+}$ , the number of ordered $m$ -tuples $(v_{1}, \ldots, v_{m})$ of codewords $v_{1},$ $\ldots,$ $v_{m}$ in $C$

with $supp(v_{1})\cup\cdots\cup supp(v_{m})=X$ is $p(C/X;q^{m})$ .

From Lemma 1, if there exists at least one set of $m$ codewords $V=\{v_{1}, \ldots, v_{m}\}$ in $C$

with $Supp(V)=E$, then $p(C;q^{m})>0$ and so $c(C;q)\leq m$ . For $0\leq r\leq k$ and any $X\subseteq E,$

let $\mathcal{A}_{X}^{(r)}$ be the number of $r$-dimensional subcodes $D$ of $C$ with $Supp(D)=X$ . We note that
the polynomial

$W_{C}^{(r)}(x, y)= \sum_{i=0}^{n}A_{i}^{(r)}x^{n-i}y^{i}$

is the r-th support weight enumerator of $C$ , where $A_{i}^{(r)} \sum_{X\in(\begin{array}{l}E\end{array})}A_{X}^{(r)}$ (cf. [5]).
Then we have the following result:
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Proposition 2 Let $C$ be an $[n, k]$ code over $\mathbb{F}_{q}$ having generator matrix $G$ and set $E=$
$\{1,2, \ldots, n\}$ . The following are equivalent:

(1) $c(C;q)=m.$

(2) $\min\{r : 0\leq r\leq k, A_{E}^{(r)}\neq 0\}=m.$

(3) $m$ is the smallest positive integer such that there exists $a(k-m)$ -dimensional subspace
$U$ of $\mathbb{F}_{q}^{k}$ which does not contain any of the $n$ column vectors of $G.$

2 Bounds on Critical Exponents
Let $G$ be a $k\cross n$ matrix over $\mathbb{F}_{q}$ which contains as columns exactly one multiple of each
nonzero vector in $\mathbb{F}_{q}^{k}$ . Then the $[n=(q^{k}-1)/(q-1), k]$ code $C$ having generator matrix $G$

is a dual Hamming code and $C^{\perp}$ is a $[n, n-k, 3]$ Hamming code. It is also known that, for
any $r,$ $1\leq r\leq k,$

$\sum A_{X}^{(r)}=\{\begin{array}{ll}[Matrix]_{q} i=(q^{k}-q^{k-r})/(q-1) ,0 otherwise,\end{array}$

$X\in(\begin{array}{l}Ei\end{array})$

where $\{\begin{array}{l}kr\end{array}\}$ denotes the Gaussian binomial coefficient (cf. [5]). So we have that $i=n$ if and
only if $r=k.$

Proposition 3 If $C$ is a dual Hamming $[n, k]$ code over $\mathbb{F}_{q}$ , then

$\min\{r : 0\leq r\leq k, A_{E}^{(r)}\neq 0\}=k.$

A maximum distance separable (MDS) code over $\mathbb{F}_{q}$ is an $[n, k]$ code over $\mathbb{F}_{q}$ whose
minimum Hamming weight is $n-k+1$ . According to Theorem 6, p. 321, in [7], the number
$A_{w}$ of codewords of weight $w$ in an MDS $[n, k]$ code over $\mathbb{F}_{q}$ is given by

$A_{w}= (\begin{array}{l}nw\end{array})(q-1)\sum_{j=0}^{w-d}(-1)^{j}(\begin{array}{ll}w -1 j\end{array})q^{w-d-j}$ , (1)

for $d\leq w\leq n$ , where $d=n-k+1.$

Theorem 4 Let $C$ be an $MDS[n, k]$ code over $\mathbb{F}_{q}$ . Then

$c(C;q)\leq 2.$

Remark 5 From Proposition 3, for a $[q+1,2]$ MDS code $C$ over $\mathbb{F}_{q}$ , we have that $c(C;q)=2.$
So the bound is sharp.

It is known that a uniform matroid $U_{n,m}$ representable over $\mathbb{F}_{q}$ is corresponding to a
matroid obtained by an MDS $[n, m]$ code over $\mathbb{F}_{q}$ (cf. [9]). As a corollary of the above
theorem, we have the following.
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Corollary 6
$c(U_{n,m};q)\leq 2.$

In general, we have the following bound on critical exponents for linear codes over finite
fields.

Theorem 7 Let $C$ be an $[n, k]$ code over $\mathbb{F}_{q}$ having generator matrix G. If $d^{\perp}>q$ , then

$c(C;q)\leq k-d^{\perp}+2,$

except when $C$ is a binary codes such that $d^{\perp}=n$ is odd or such that $n=2^{k}-1$ and $d^{\perp}=3$

in which case $c(C;q)=k-d^{\perp}+3$ , where $C^{\perp}$ denotes the minimum Hamming weight of the
dual code $C^{\perp}.$

As a corollary of the above theorem, we have the following $bo$und on critical exponents
for representable matroids over finite fields.

Corollary 8 Let $M$ be a rank $k$ representable simple matroid over $\mathbb{F}_{q}$ with girth $g$ . If $g>q,$

then
$c(M;q)\leq k-g+2,$

except when $M$ is a binary matroid isomorphic to $U_{2l+1,2l}$ or $PG(k-1,2)$ in which case
$c(M;q)=k-g+3.$

Example 9 Let $C$ be the ternary [11, 5] code having generator matrix

$G=(00001000010000100001000012201122111 20222 02211 02111 20111)$

Then the dual code $C^{\perp}$ is an [11, 6, 5] quadratic residue code. By a Magma calculation, we
have that

$A_{E}^{(1)}=0, A_{E}^{(2)}=330, A_{E}^{(3)}=825, A_{E}^{(4)}=110, A_{E}^{(5)}=1,$

where $E=\{1,2, \ldots, 11\}$ . If $M_{C}$ is the vector matroid obtained from $G$ , then $c(M_{C};3)=$

$2(=5-5+2)$ and so $M_{C}$ holds the equality in Theorem 7.

3 $A$ construction of tangential blocks

As defined in [3, 6], for $1\leq r\leq k-1$ , a set $M$ of points of the projective geometry
$PG(k-1, q)$ is an $r$-block over $\mathbb{F}_{q}$ if every $(k-r)$-dimensional subspace in $PG(k-1, q)$
contains at least one point in $M$ . If $X$ is a flat in $M$ , a tangent of $X$ is $a(k-r)$-dimensional
subspace $U$ in $PG(k-1, q)$ such that

$M\cap U=X.$

An $r$-block $M$ is called to be minimal if every point in $M$ has a tangent, and to be tangential
if every proper nonempty flat in $M$ of rank not exceeding $k-r$ has a tangent.

Alternatively, a matroid $M$ is a tangential $r$ -block over $\mathbb{F}_{q}$ if the following conditions hold:
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(i) $M$ is simple and representable over $\mathbb{F}_{q}.$

(ii) $p(M;q^{r})=0.$

(iii) $p(M/F;q^{r})>0$ whenever $F$ is a proper nonempty flat of $M.$

Proposition 10 For any positive integer $k$ , set $K$ $:=\{1,2, \ldots, k\}$ . For an $m(1\leq m\leq$

$k)$ , we take an $m$ elements subset $T\in(\begin{array}{l}Km\end{array})$ and a family $\mathcal{V}$ of $(m-1)$ distinct points
$v_{1},$ $v_{2},$

$\ldots,$ $v_{m-1}\in PG(k-1, q)$ with $supp(v_{i})\cap T=\emptyset,$ $i=1,2,$ $\ldots,$ $m-1$ . Define
$X^{T}$ $:=\{x\in PG(k-1, q) : supp(x)\cap T=\emptyset\},$

$Y_{\nu}^{T}$ $:=\{x\in PG(k-1, q) : |supp(x)\cap T|=1\}\backslash \{v_{i}+\lambda e_{j} : v_{i}\in \mathcal{V}, \lambda\in \mathbb{F}_{q}-\{0\}, j\in T\},$

$Z^{T}:=\{x\in PG(k-1, q):supp(x)\in(\begin{array}{l}T2\end{array})\}.$

Then $M:=X^{T}\cup Y_{\nu}^{T}\cup Z^{T}$ is $a(k-m)$ -block over $\mathbb{F}_{q}.$

Then we can give a construction of tangential blocks as follows:

Theorem 11 Let $M$ be the set of points in $PG(k-1, q)$ defined in Proposition 10. If
$m-1\leq q^{k-m-1_{l}}$ then $M$ is a tangential $(k-m)$ -block over $GF(q)$ .

From the definition, $M$ is a minimal $r$-block over $\mathbb{F}_{q}$ if and only if $c(C;q)=r+1$ for the
linear code having generator matrix $G$ whose column vectors are all points in $M$ (cf. p. 168
in [3] $)$ .

Corollary 12 Let $M$ be the set ofpoints defined in Proposition 10. If $m=2$ , then the linear
code $C$ over $\mathbb{F}_{q}$ whose generator matrix obtained from $M$ attains the bound in Theorem 7.

Proof. From the definition of $M$ , it finds that $d^{\perp}=3$ , since there exist three column
vectors in $G$ which are linearly dependent. Thus we have that

$k-2+1=k-1=c(C;q)\leq k-3+2=k-1.$
$\square$

Example 13 Let $C$ be the binary [22, 5] code over $\mathbb{F}_{q}$ having generator matrix

$G=(00001 00001 0000100001 00001 0001100111 00011 00011 00111 00111 00111 00111 00011 00011 00011 00101 01111 01111 00111 00111 00011)$

From Theorem 11, $G$ forms a binary tangentia13-block. Moreover, we have that

$p(M_{C};\lambda)=\lambda^{5}-22\lambda^{4}+175\lambda^{3}-610\lambda^{2}+9-4\lambda-448$

$=(\lambda-1)(\lambda-2)(\lambda-4)(\lambda-7)(\lambda-8)$ .

If $M_{C}$ is the vector matroid obtained from $G$ , then $c(M_{C};2)=4(=5-3+2)$ and so $M_{C}$

holds the equality in Theorem 7.
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