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Abstract

Let S be a finite set of ¢ symbols and C C S”. C(¢) is the set of S consisting
of the elements appear in the i-th coordinate of C, C(i) = {¢; | (¢1.c2,...,cn) € C}.
The decedent set of C, desc(C), is the set of all possible n-tuples of S™ such that the
elements at the i-th coordinate of desc(C) are from C(z).

desc(C) =C(1) x C(2) x --- x C(n)

The n-tuples of C are called parents. There are several codes defined by using descen-
dant sets. Here we consider a code called t—separable code. It is a set of n-tuples € C S™
satisfying desc(C) # desc(D) for any C,D C € such that C # D and [C|,|D| < t.
In the case |S| = 2 and ¢t = 2, we discuss a way to represent descendant sets, basic
properties of descendant sets and constructions of t-separable codes, etc.

1 Introduction

Let S be a finite set of ¢ symbols and C C S™. C(i) is the set of S consisting of the
elements appear in the i-th coordinate of C.

C@i) =A{ci | (c1.c2y...,¢n) € C}

The decedent set of C denoted by desc(C) is the set of all possible n-tuples of S™ such that
the elements at the i-th coordinate of desc(C) are from C(%).

desc(C) = C(1) x C(2) x --- x C(n)
The n-tuples of C are called parents.

,1,0,0)}, then desc(C) = {1} x {0,1} x

Example 1.1 Let S = {0,1},C = {(1,0,1,0),(1,1,0
)(1717 ) )}

{0,1} x {0} = {(1,0,0,0),(1,0,1,0),(1,1,0,

)
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There are several codes defined by descendant sets which are used in digital finger-
printing. t-Frameproof code and t-secure frameproof code were defined by D. Boneh and
J. Shaw (1998) (2], t-identifying parent property code by H. D. L. Hollmann, J. H. van
Lint, J-P. Linnartz and L. M. G. M. Tolhuizen (1998) [12], t-traceability code by B. Chor,
A. Fiat and M. Noor [7], t-expanded separable code by M. Cheng et. al., etc. We call
these generally fingerprinting codes. The underlying problems of the fingerprinting code
can be seen in [2] , [8], [11], [16] . Combinatorial approaches to analysis and construction
of fingerprinting codes are seen in [1], [15].

Here we consider a code called t—separable code . 1t is a set of n-tuples € C S™ satisfying
desc(C) # desc(D) for any C,D C € such that C # D and |C|,|D| < t. We denote it
t—SC(n,M,|S|), where M = |€]| is the number of code words.

The code is defined by M. Cheng and Y. Miao (2012) (5], and it is the most basic code
because every other codes mentioned above have to satisfy the condition of t-separable
code[13], which means these fingerprinting codes are all subsets of t-separable codes.

M. Cheng and Y. Miao [5] have shown an upper bound on the size of 2-separable codes:
If there exists a 2 — SC(n, M, q) then

M < ¢ +g(g-1)/2.
Note that F. Gao and G. Ge [10] recently made better bound:

M< ng%] _ %qm
We disscuss here the simplest case of t-separable codes, that is, the case of |S| = 2 and
t=2.

2 Descendant Vector

Constructions of the codes defined by descendant sets are very difficult problems. The
main reason of the difficulty is caused by a set theoretical definition of descendant sets.

Here we represent a descendant set by a vector over an algebra.
Let S = {0,1}. The set of n-tuples of S deals with the set of n-dimensional vectors

over the finite field of order 2, Fp™ .
Definition 2.1 For any x,y € F»",
dv(x,y) :=x*y +alf(x +y),

where x,+ are multiplication and addition over F3, respectively. alf(0) = 0,alf(1) = a
and a is an indeterminate. Apply the operations for each coordinate of Fp™.



Example 2.2 x = (1,0,1,0),y = (1,1,0,0),
desc(x,y) = {1} x {0,1} x {0,1} x {0},
dv(x,y) = (1,a,a,0)

If the set of symbols of S which appears in the i-th coordinate C(i) is {0,1}, then
the i-th position of descendant vector turns out a. For the descendant vector of parents
C C F," such that |C| > 3, we need to define an algebra over the set A = {0,1,a,a+ 1}.

Definition 2.3
lxa=axl=land axa=a«a

From the definition, we have the following multiplication table:

[« Jo[1] o [a+l]
0 010 0 0
1 011 1 0
a 01 Q a+1
a+1ll 00 |a+l|a+1

The addition on A is naturally computed as polynomials over Fy. In deed, the algebra
with the multiplication and addition on A is isomorphic to the ring Fy x F, with the
correspondence 0 = (0,0),1 = (0,1),a = (1,1),a+ 1 = (1,0).

Now we define the descendant vector for parents of general size.

Definition 2.4 Suppose dv(C) is defined for a subset C of Fo™. Let x € Fy™ \ C,
dv(C U {x}) := dv(C) * x + al f(dv(C) + x),

where
a ifz=1

alf(z) = { z otherwise

foranyze€ A
Lemma 2.5 For anyd € {0,1,a} and z € {0,1}, d*xz + alf(d+ z) € {0,1,a}.

Proof When d = 0 or 1, it is obvious. We consider the case d = o and = € {0,1}. If
d=aand z =0, then ax0+alf(a +0) =0+ a =a. Ifd= aand z = 1, then
axltalf(a+1l)=1+4+(a+1)=a d
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From this lemma, descendant vector does not contain o + 1, that is dv(C) € {0,1,a}"
for any C' C Fp™.

Lemma 2.6
dv({x,y} U {z}) = dv({x,2} U {y})

Consider possible combinations of i-th coordinate of x,y, z. The possible combinations
of 0,1 are only 8. It is not difficult check all 8 cases. The lemma implies the definition of
descendant vector is well-defined.

Example 2.7

dv(x,y) = (1, a a 0
z = (0, 1, 0, 0
dv(x,y) * z = (0, 1, 0, 0)
alf(dv(x,y)+2z) = (o, a+1, «a 0)
dv(x,y,2) = (¢, @ a 0)

C(t) is the set of symbols which appear in i-th coordinate of each x € C, for any
C c iK™ C(i) is {0},{1}, or {0,1}. Each coordinate of a descendant vector has an
element 0,1 or a which corresponds to {0}, {1}, or {0,1} of C(2), respectively. Therefore,
we have the following theorem:

Theorem 2.8 For any subsets C,D C Fy", desc(C) = desc(D) if and only if dv(C) =
dv(D).

3 Basic Properties

The theorem 2.8 means that any descendant set is represented by a vector on the algebra A.
Therefore, the set theoretical operations on descendant sets can be replaced by algebraic
operations on A. We see basic properties of the correspondences. Those may be useful for
constructions of fingerprinting codes.

Lemma 3.1 For any C,D C Fp", desc(C) Ndesc(D) = ¢ if and only if there exists an
element 1 of S as a coodinate in the vector dv(C) + dv(D).
The proof is seen in [9].

Example 3.2

dv(C) = (1, 0, o a a 0)
dv(D) = @10 1, 0 a 1)
dv(C) + dv(D) 0, 0, a+1, o, 0, 1)



Lemma 3.3 For any x € F;" and C C Fy", the followings are equivalent:

1. x € desc(C), |

2. there exists no element 1 in dv(C) + x,

3. dv(C) = dv(C U {x}).

The proof is seen in [9].
Lemma 3.4 For any x € F;™ and C C Fy", if x € desc(C) then dv(C) * x = x.
The proof is seen in [9]. I

Lemma 3.5 For any C,D C Fy"*, C # D, desc(C) C desc(D) if and only if the following
conditions are satisfied:

e dv(C) xdv(D) = dv(C) and
e dv(C) + dv(D) contains no element 1.

The proof is seen in [9].
Let x = (z1,%2,...,%n) be a (0,1)-vector. The function supp(x) is offen used as the

following definition:
supp(x) = {i | z; = 1,1 <i < n}.

Then, x * y = x implies supp(x) C supp(y). Here we denote the relation x < y if xxy = x
for any x,y € A"

Lemma 3.6 For any C,D C Fy", when CN D # ¢, then the following holds:
dv(C N D) < dv(C) * dv(D).
The proof is seen in [9]. Proof

Example 3.7

C = {(1,0’ 17070), (17070,1’0)}
D = {(1,0,1,0,0),(1,0,1,1,1)}
dv(C) = (1,0,a,0,0)
dv(D) = (1,0,1,a,a)
dv(C) *dv(D) = (1,0,1,a,0)
dv(C N D) = (1,0,1,0,0)

Lemma 3.8 Let C C Fy" and x,,y € Fp™.

dv(CU{x,y}) = dv(C)=*dv(x,y) + alf(dv(C) + dv(x.y))
= dv(CU{z})*dv(y) + alf(dv(C U {x}) + dv(y))
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The proof of the lemma can be done by verifying all possible case. Let z; and y; be i-th
coordinates of x and y, respectively. The all possible elements are C(¢) = {0}, {1} or {0,1}
and z; =0 or 1, y; =0 or 1. Totally only 12 cases.

Lemma 3.9 For any C,D C F»",

dv(C U D) = dv(C) * dv(D) + al f(dv(C) + dv(D))

The proof is seen in [9].

4 Geometrical Constructions of 2-separable codes

Consider that each vector of F,™ except the zero vector is a point of finite projective
geometry PG(n — 1,2). Then for any distinct points x,y € Fy™ \ {0}, the set of three
points {x, y, x+y} is a line of PG(n — 1,2).

Lemma 4.1 For any four distinct points of PG(n —1,2), Cy = {x9,¥y0},C1 = {X1,¥1},
dv(Cy) = dv(C) if and only if Xo * yo = X1 *y1 and Xo + Yo = X1 + X1.

The proof is seen in [9)].

Theorem 4.2 For any four points Xo,¥o,X1,y1 of PG(n — 1,2) such that {Xo,yo0} #
{x1,y1}, dv(x0,¥0) = dv(x1,y1) if and only if the followings are satisfied:

(i) xp+ Yo =X1 +y1 = h (which implies Xo + X1 =yo+y1 = d) and
(i) d«h=d (i.e. d X h)

Proof If xg +yg # X1 + y1, clearly dv(Xg,yo) # dv(x1,y1). Therefore, we consider the
case Xg + yo = X1 + y1. Then, from Lemma 4.1,

Xo * Yo = X1 *y1 if and only if dv(xo,yo) = dv(x1,¥y1)
Since x; = X9 +d and y; = yo + d,

x1*y1 = (xo+d)*(yo+d)
= Xo*Yyo+Xo*xd+yoxd+d
= Xoxyp+d=x(xo+yo+d),

where d’ is a vector such that d xd’ = d. From the equation, X; * y1 = Xg *yo if and only
if d* (xo+yo+d)=0.

The necessary and sufficient condition for d x (xo + yo + d’) = 0 is X0 + yo = d or
d* (xo+yo) =d*h=d (including the case d = xp + yo ).



h=xo+y,=x,+y, d=x+x,=y,+y,

Figure 1:

In the case d = xg + yo:

x1 =Xo+d=x0+ X0+ Yo =Yo
Yi=Yo+d=yo+ X0+ yo=Xp

This contradicts {xg,yo} # {x1,y1} -
In the case xp +yo = d’:

dx(xg+yo)=dxd =d.

Therefore, (i) and (i) are the necessary and sufficient conditions for dv(xg,yo) =
dv(xl,y1) O

A set of four points on a plane, no three of which are collinear, is called a quadrangle.
Let @ ba a quadrangle in a plane of order 2. Then there is exactly one line in the plane
which is not incident with any point of Q. The line is called a external line to Q. Theorem
4.2 says that if @ = {x0, y0,X1,y1} is a quadrangle and the external line to Q contains two
points d, h such that d < h, then the four points @ can not be contained in a 2-SC(n,M,2).

The lines in PG(n-1,2) contains two points d, h such that d < h play an important role
for construction of 2-SC(n,M,2). We call here such a line an i-line. When a line containing
the points d, h is an ¢-line (i.e. d < h), the third point p = d + h on the line and d has
the relation p * d = 0, which means supp(p) N supp(d) = ¢.

Lemma 4.3 Let € C F;" be a 2-SC(n,M,2) not including the zero vector 0. €U {0} is a
2-SC(n,M+1,2) if and only if € contains no three points on any i-line.
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The proof is seen in [9].

In the case of n = 3, the vectors of Fp® except 0 correspond to the points of PG(2,2)
called Fano plane. In the Fano plane, the line [ = {(0,1,1),(1,1,0),(1,0,1)} is only the
non i-line. All the others are -lines. D = {((1,0,0), (0,1,0),(0,0,1),(1,1,1)} is the unique
quadrangle not meet the line l. Therefore, DU {0} or D Up , where p is a point on the
line /, are 2-SC(3,5,2), which contain the maximal number of code words.

Consider PG(n-1,2) , n > 4. From Theorem 4.2, we have the following theorem:

Theorem 4.4 Let € be a set of points in PG(n-1,2). € is a 2-separable code if and only
if , for each plane P in PG(n-1,2), the points of €NP contains

e no quadrangle or

e a quadrangle QQ but the external line to Q) is a non i-line.

Corollary 4.5 Letl,m be lines of PG(8,2) which are not concurrent. Then the 6 points, €,
on the lines are 2-SC(4,6,2). If those two lines are non i-lines then €U {0} is 2-SC(4,7,2).

Let F be a set of points in PG(n-1,2). For any two points of F, if the line passing
through the two points is contained in F, then F is called a flat. A d-flat is a flat generated
from d + 1 independent vectors. If a d-flat contains no ¢-line, then it is said to be i-line

free d-flat.

Theorem 4.6 Let F be an i-line free d-flat of PG(n-1,2), and W be a (d+1)-flat including
F. Then the the set of points of A=W\ F is a 2— SC(n,2%%1,2). Further, AU{0} is a
2 — SC(n,29%1 4+ 1,2).

The proof is seen in [9].

5 i-line free flats

Theorem 4.6 says if there is a large i-line free d-flat, there exists a 2-separable code with a
large number of code words. So it is important to find an ¢-line free d-flat, and d as large

as possible.
In order to find an i-line free d-flats, let’s count the number of i-lines.

Lemma 5.1 Le P be a point of PG(n-1,2). The number of i-lines incident with P is
on—w + 2w—1 -9
where w is Hamming weight of P.

The proof is seen in [9].
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Lemma 5.2 The number of i-lines in PG(n-1,2) is

1™
§ Z (Z) (2n—w + qw—1 _ 2)
w=1

= (3" -2 1+ 1)/2.

The proof is seen in [9].

The number of lines in PG(n-1,2) is (2" —1)(2""! —1)/3. The ratio of i-lines to the all
lines in PG(n-1,2) is

3n+1 _ 3(2n+1) +3
(2r-2)(2n -1)

This reduces exponentially. The ratios are, for examples, 0.85 when n=3, 0.58 when n=>s,
0.16 when n=10 and 0.0095 when n=20. The trend of ratios suggests there may exist large
i-line free flat. We are interested in how large the flats in PG(n-1,2) are.

Here is the i-line free 1-flat in PG(2,2) which is the largest:

(1,1,0),(1,0,1),(0,1,1)

An i-line free 2-flat is the following, which appears in PG(5,2).

From my experiments, there is no i-line free plane in PG(3,2), PG(4,2).
If there exist an i-line free hyperplane in PG(n-1,2), then we can have a 2-SC(n, 2"~ 1 +
1,2) which attains the Cheng-Miao Bound. Unfortunately, we have the following result:

Lemma 5.3 (A. Munemasa, [14]) There is no i-line free hyperplane of PG(n — 1, 2) for
n > 4. ,

The proof is seen in [9].

Lemma 5.4 Let F be a linear subspace in Fy™ excluding 0. If, for any two vectors X,y €
F, |supp(x) N supp(y)| > 1, then F is i-line free.
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The proof is seen in [9].

Let V be a finite set with v element and B a collection of k-subsets of V. If v =
4d — 1,k = 2d and |[B N B'| = d for any B, B’ € B, then the pair (V,B) is called an
Hadamard design.

Lemma 5.5 The incidence matriz of an Hadamard design which is linear on Fy" is an
i-line flat.

A simplex code is the dual code of the Hamming code of length 2™ — 1,m > 2. It is
well known that a simplex code excluding 0 is an Hadamard design with the parameters
v=2M—1k=2m"1d=2""2and it is a d-flat in the PG(2™ — 2,2).

Example 5.6 An simplez code (i-line free 2-flat in PG(6,2) )

Theorem 5.7 There exists i-line free (2™~2)-flat in PG(2™ — 2,2) for any integer m > 2.

Let H be an incidence matrix of a Hadamard design with the parameters v = 2™ -1,k =
om=1 d = 9m=2 An array H’' obtained by punctuating at most d — 1 coordinates of H is
also ¢-line free flat.

Conjecture 5.8 (A. Munemasa [14]) If F is an i-line free flat, then F is obtained from
either of

(1) an simplex code or its subspace,

(2) punctuating some coordinates from (1).
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