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Abstract

Let $S$ be a finite set of $q$ symbols and $C\subseteq S^{n}.$ $C(i)$ is the set of $S$ consisting
of the elements appear in the i-th coordinate of $C,$ $C(i)=\{c_{i}|(c_{1}.c_{2}, \ldots, c_{n})\in C\}.$

The decedent set of $C,$ $desc(C)$ , is the set of all possible $n$-tuples of $S^{n}$ such that the
elements at the i-th coordinate of desc $(C)$ are from $C(i)$ .

desc$(C)=C(1)\cross C(2)\cross\cdots\cross C(n)$

The $n$-tuples of $C$ are called parents. There are several codes defined by using descen-
dant sets. Here we consider a code called $t$ -separable code. It is a set of $n$-tuples $\mathfrak{C}\subset S^{n}$

satisfying desc$(C)\neq desc(D)$ for any $C,$ $D\subseteq \mathfrak{C}$ such that $C\neq D$ and $|C|,$ $|D|\leq t.$

In the case $|S|=2$ and $t=2$ , we discuss a way to represent descendant sets, basic
properties of descendant sets and constructions of $t$-separable codes, etc.

1 Introduction

Let $S$ be a finite set of $q$ symbols and $C\subset S^{n}.$ $C(i)$ is the set of $S$ consisting of the
elements appear in the i-th coordinate of $C.$

$C(i)=\{c_{i}|(c_{1}.c_{2}, \ldots, c_{n})\in C\}$

The decedent set of $C$ denoted by desc$(C)$ is the set of all possible $n$-tuples of $S^{n}$ such that
the elements at the i-th coordinate of desc$(C)$ are from $C(i)$ .

desc$(C)=C(1)\cross C(2)\cross\cdots\cross C(n)$

The $n$-tuples of $C$ are called parents.

Example 1.1 Let $S=\{0,1\},$ $C=\{(1,0,1,0), (1,1,0,0)\}$ , then desc$(C)=\{1\}\cross\{0,1\}\cross$

$\{0,1\}\cross\{0\}=$ { $(1,0,0,0)$ , $(1,0,1,0)$ , $(1,1,0,0)$ , $(1,1,1,0)$ }
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There are several codes defined by descendant sets which are used in digital finger-
printing. $t$-Frameproof code and $t$-secure frameproof code were defined by D. Boneh and
J. Shaw (1998) [2], $t$-identifying parent property code by H. D. L. Hollmann, J. H. van
Lint, J-P. Linnartz and L. M. G. M. Tolhuizen (1998) [12], $t$-traceability code by B. Chor,
A. Fiat and M. Noor [7], $t$-expanded separable code by M. Cheng et. al., etc. We call
these generally fingerprinting codes. The underlying problems of the fingerprinting code
can be seen in [2], [8], [11], [16] Combinatorial approaches to analysis and construction
of fingerprinting codes are seen in [1], [15].

Here we consider a code called $t$ -separable code. It is a set of $n$-tuples $\mathfrak{C}\subset S^{n}$ satisfying
desc$(C)\neq desc(D)$ for any $C,$ $D\subset \mathfrak{C}$ such that $C\neq D$ and $|C|,$ $|D|\leq t$ . We denote it
$t-SC(n, M, |S|)$ , where $M=|\mathfrak{C}|$ is the number of code words.

The code is defined by M. Cheng and Y. Miao (2012) [5], and it is the most basic code
because every other codes mentioned above have to satisfy the condition of $t$-separable
code[13], which means these fingerprinting codes are all subsets of $t$-separable codes.

M. Cheng and Y. Miao [5] have shown an upper bound on the size of 2-separable codes:
If there exists a $2-SC(n, M, q)$ then

$M\leq q^{n-1}+q(q-1)/2.$

Note that F. Gao and G. Ge [10] recently made better bound:

$M \leq\frac{3}{2}q^{2\lceil\frac{n}{3}\rceil}-\frac{1}{2}q^{\lceil\frac{n}{3}\rceil}.$

We disscuss here the simplest case of $t$-separable codes, that is, the case of $|S|=2$ and
$t=2.$

2 Descendant Vector

Constructions of the codes defined by descendant sets are very difficult problems. The
main reason of the difficulty is caused by a set theoretical definition of descendant sets.
Here we represent a descendant set by a vector over an algebra.

Let $S=\{0,1\}$ . The set of $n$-tuples of $S$ deals with the set of $n$-dimensional vectors
over the finite field of order 2, $F_{2^{n}}$

Definition 2.1 For any x, y $\in F_{2^{n}},$

$dv$ (x, y):$=x*y+alf(x+y)$ ,

where $*,$ $+are$ multiplication and addition over $F_{2}$ , respectively. $alf(O)=0,$ $alf(1)=\alpha$

and $\alpha$ is an indete$\ovalbox{\tt\small REJECT}$ inate. Apply the operations for each coordinate of $F_{2}^{n}.$
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Example 2.2 $x=(1,0,1,0),$ $y=(1,1,0,0)$ ,

desc$(x, y)=\{1\}x\{0,1\}\cross\{0,1\}\cross\{0\},$

$dv(x, y)=(1, \alpha, \alpha, 0)$

If the set of symbols of $S$ which appears in the i-th coordinate $C(i)$ is $\{0,1\}$ , then
the i-th position of descendant vector turns out $\alpha$ . For the descendant vector of parents
$C\subseteq F_{2}^{n}$ such that $|C|\geq 3$ , we need to define an algebra over the set $\mathcal{A}=\{0,1, \alpha, \alpha+1\}.$

Definition 2.3
$1*\alpha=\alpha*1=1$ and $\alpha*\alpha=\alpha$

From the definition, we have the following multiplication table:

The addition on $\mathcal{A}$ is naturally computed as polynomials over $F_{2}$ . In deed, the algebra
with the multiplication and addition on $\mathcal{A}$ is isomorphic to the ring $F_{2}\cross F_{2}$ with the
correspondence $0=(0,0),$ $1=(0,1),$ $\alpha=(1,1),$ $\alpha+1=(1,0)$ .

Now we define the descendant vector for parents of general size.

Definition 2.4 Suppose $dv(C)$ is defined for a subset $C$ of $F_{2^{n}}$ . Let $x\in F_{2}^{n}\backslash C,$

$dv(C\cup\{x\}) :=dv(C)*x+alf(dv(C)+x)$ ,

where
$alf(z)=\{\begin{array}{l}\alpha if z=1z otherwise\end{array}$

for any $z\in A$

Lemma 2.5 For any $d\in\{0,1, \alpha\}$ and $x\in\{0,1\},$ $d*x+alf(d+x)\in\{0,1, \alpha\}.$

Proof When $d=0$ or 1, it is obvious. We consider the case $d=\alpha$ and $x\in\{0,1\}$ . If
$d=\alpha$ and $x=0$ , then $\alpha*0+alf(\alpha+0)=0+\alpha=\alpha$ . If $d=\alpha$ and $x=1$ , then
$\alpha*1+alf(\alpha+1)=1+(\alpha+1)=\alpha$ $\square$

23



From this lemma, descendant vector does not contain $\alpha+1$ , that is $dv(C)\in\{0,1, \alpha\}^{n}$

for any $C\subseteq F_{2}^{n}.$

Lemma 2.6
$dv(\{x, y\}U\{z\})=dv(\{x, z\}U\{y\})$

Consider possible combinations of i-th coordinate of x, y, z. The possible combinations
of $0,1$ are only 8. It is not difficult check all 8 cases. The lemma implies the definition of
descendant vector is well-defined.

Example 2.7
$dv(x, y) = (1, \alpha, \alpha, 0)$
$z$ $= (0, 1, 0, 0)$
$dv(x, y)*z = (0, 1, 0, 0)$
$alf(dv(x, y)+z) = (\alpha, \alpha+1, \alpha, 0)$

$dv(x, y, z) = (\alpha, \alpha, \alpha, 0)$

$C(i)$ is the set of symbols which appear in i-th coordinate of each $x\in C$ , for any
$C\subset F_{2}^{n}.$ $C(i)$ is $\{0\},$ $\{1\}$ , or $\{0,1\}$ . Each coordinate of a descendant vector has an
element $0,1$ or $\alpha$ which corresponds to $\{0\},$ $\{1\}$ , or $\{0,1\}$ of $C(i)$ , respectively. Therefore,
we have the following theorem:

Theorem 2.8 For any subsets $C,$ $D\subseteq F_{2}^{n},$ $desc(C)=desc(D)$ if and only if $dv(C)=$
$dv(D)$ .

3 Basic Properties

The theorem 2.8 means that any descendant set is represented by a vector on the algebra $A.$

Therefore, the set theoretical operations on descendant sets can be replaced by algebraic
operations on $A$ . We see basic properties of the correspondences. Those may be useful for
constructions of fingerprinting codes.

Lemma 3.1 For any $C,$ $D\subseteq F_{2}^{n},$ $desc(C)\cap desc(D)=\phi$ if and only if there exists an
element 1 of $S$ as a coodinate in the vector $dv(C)+dv(D)$ .

The proof is seen in [9].

Example 3.2

$dv(C) = (1, 0, \alpha, \alpha, \alpha, 0)$

$dv(D) = (1, 0, 1, 0, \alpha, 1)$
$dv(C)+dv(D) = (0, 0, \alpha+1, \alpha, 0, 1)$
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Lemma 3.3 For any $x\in F_{2}^{n}$ and $C\subset F_{2}^{n}$ , the followings are equivalent:

1. $x\in desc(C)$ ,

2. there exists no element 1 in $dv(C)+x,$

3. $dv(C)=dv(C\cup\{x\})$ .

The proof is seen in [9].

Lemma 3.4 For any $x\in F_{2}^{n}$ and $C\subset F_{2}^{n}$ , if $x\in desc(C)$ then $dv(C)*x=x.$

The proof is seen in [9]. $I$

Lemma 3.5 For any $C,$ $D\subset F_{2^{n}},$ $C\neq D,$ $desc(C)\subset desc(D)$ if and only if the following
conditions are satisfied:. $dv(C)*dv(D)=dv(C)$ and. $dv(C)+dv(D)$ contains no element 1.

The proof is seen in [9].
Let $x=(x_{1}, x_{2}, \ldots, x_{n})$ be $a(0,1)$ -vector. The function supp$(x)$ is offen used as the

following definition:
supp$(x)=\{i|x_{i}=1,1\leq i\leq n\}.$

Then, $x*y=x$ implies supp$(x)\subseteq supp(y)$ . Here we denote the relation $x\preceq y$ if $x*y=x$
for any x, y $\in \mathcal{A}^{n}$

Lemma 3.6 For any $C,$ $D\subset F_{2}^{n}$ , when $C\cap D\neq\phi$ , then the following holds:

$dv(C\cap D)\preceq dv(C)*dv(D)$ .

The proof is seen in [9]. Proof

Example 3.7
$C$ $=$ { $(1,0,1,0,0)$ , $(1,0,0,1,0)$ }
$D$ $=$ { $(1,0,1,0,0)$ , $(1,0,1,1,1)$ }
$dv(C) = (1, 0, \alpha, \alpha, 0)$

$dv(D) = (1, 0,1, \alpha, \alpha)$

$dv(C)*dv(D) = (1, 0,1, \alpha, 0)$

$dv(C\cap D) = (1,0,1,0,0)$

Lemma 3.8 Let $C\subseteq F_{2}^{n}$ and x, , y $\in F_{2}^{n}.$

$dv(C\cup\{x, y\})= dv(C)*dv(x, y)+alf(dv(C)+dv(x.y))$

$= dv(C\cup\{x\})*dv(y)+alf(dv(C\cup\{x\})+dv(y))$
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The proof of the lemma can be done by verifying all possible case. Let $x_{i}$
. and $y_{i}$ be i-th

coordinates of $x$ and $y$ , respectively. The all possible elements are $C(i)=\{0\},$ $\{1\}$ or $\{0,1\}$

and $x_{i}=0$ or 1, $y_{i}=0$ or 1. Totally only 12 cases.

Lemma 3.9 For any $C,$ $D\subset F_{2^{n}},$

$dv(C\cup D)=dv(C)*dv(D)+alf(dv(C)+dv(D))$

The proof is seen in [9].

4 Geometrical Constructions of 2-separable codes

Consider that each vector of $F_{2}^{n}$ except the zero vector is a point of finite projective
geometry $PG$ $(n-1,2)$ . Then for any distinct points x, y $\in F_{2^{n}}\backslash \{0\}$ , the set of three
points $\{x, y, x+y\}$ is a line of $PG(n-1,2)$ .

Lemma 4.1 For any four distinct points of $PG(n-1,2),$ $C_{0}=\{x_{0}, y_{0}\},$ $C_{1}=\{x_{1}, y_{1}\},$

$dv(C_{0})=dv(C_{1})$ if and only if $x_{0}*y_{0}=x_{1}*y_{1}$ and $x_{0}+y_{0}=x_{1}+x_{1}.$

The proof is seen in [9].

Theorem 4.2 For any four points $x_{0},$ $y_{0},$ $x_{1},$ $y_{1}$ of $PG(n-1,2)$ such that $\{x_{0}, y_{0}\}\neq$

$\{x_{1}, y_{1}\},$ $dv(x_{0}, y_{0})=dv(x_{1}, y_{1})$ if and only if the followings are satisfied:
(i) $x_{0}+y_{0}=x_{1}+y_{1}=h$ (which implies $x_{0}+x_{1}=y_{0}+y_{1}=d$ ) and

(ii) $d*h=d$ $(i.e. d\preceq h)$

Proof If $x_{0}+y_{0}\neq x_{1}+y_{1}$ , clearly $dv(x_{0}, y_{0})\neq dv(x_{1}, y_{1})$ . Therefore, we consider the
case $x_{0}+y_{0}=x_{1}+y_{1}$ . Then, from Lemma 4.1,

$x_{0}*y_{0}=x_{1}*y_{1}$ if and only if $dv(x_{0}, y_{0})=dv(x_{1}, y_{1})$

Since $x_{1}=x_{0}+d$ and $y_{1}=y_{0}+d,$

$x_{1}*y_{1} = (x_{0}+d)*(y_{0}+d)$

$= x_{0}*y_{0}+x_{0}*d+y_{0}*d+d$
$= x_{0}*y_{0}+d*(x_{0}+y_{0}+d’)$ ,

where $d’$ is a vector such that $d*d’=d.$ $\mathbb{R}om$ the equation, $x_{1}*y_{1}=x_{0}*y_{0}$ if and only
if $d*(x_{0}+y_{0}+d’)=0.$

The necessary and sufficient condition for $d*(x_{0}+y_{0}+d’)=0$ is $x_{0}+y_{0}=d’$ or
$d*(x_{0}+y_{0})=d*h=d$ (including the case $d=x_{0}+y_{0}$ ).
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Figure 1:

In the case $d=x_{0}+y_{0}$ :

$x_{1}=x_{0}+d=x_{0}+x_{0}+y_{0}=y_{0}$

$y_{1}=y0+d=y0+x0+y0=x0$

This contradicts $\{x_{0}, y_{0}\}\neq\{x_{1}, y_{1}\}$

In the case $x_{0}+y_{0}=d’$ :

$d*(x_{0}+y_{0})=d*d’=d.$

Therefore, (i) and (ii) are the necessary and sufficient conditions for $dv(x_{0}, y_{0})=$

$dv(x_{1}, y_{1})$ $\square$

A set of four points on a plane, no three of which are collinear, is called a quadrangle.
Let $Q$ ba a quadrangle in a plane of order 2. Then there is exactly one line in the plane
which is not incident with any point of $Q$ . The line is called a external line to $Q$ . Theorem
4.2 says that if $Q=\{x_{0}, y_{0}, x_{1}, y_{1}\}$ is a quadrangle and the external line to $Q$ contains two
points d, h such that $d\preceq h$ , then the four points $Q$ can not be contained in a 2- $SC$ (n, $M$ ,2).

The lines in $PG$ (n-1,2) contains two points d, h such that $d\preceq h$ play an important role
for construction of 2- $SC$ (n, $M$ ,2). We call here such a line an $i$-line. When a line containing
the points d, h is an $i$-line $(i.e. d\preceq h)$ , the third point $p=d+h$ on the line and $d$ has
the relation $p*d=0$ , which means supp$(p)\cap supp(d)=\phi.$

Lemma 4.3 Let $\mathfrak{C}\subset F_{2}^{n}$ be a 2-$SC$$(n,M,2)$ not including the zero vector $0.$ $\mathfrak{C}\cup\{0\}$ is a
2-$SC$$(n,M+l,2)$ if and only if $\mathfrak{C}$ contains no three points on any $i$-line.
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The proof is seen in [9].
In the case of $n=3$ , the vectors of $F_{2^{3}}$ except $0$ correspond to the points of $PG$ $(2,2)$

called Fano plane. In the Fano plane, the line $l=\{(0,1,1), (1,1,0), (1,0,1)\}$ is only the
non $i$-line. All the others are $i$-lines. $D=\{((1,0,0),$ $(0,1,0),$ $(0,0,1),$ $(1,1,1)\}$ is the unique
quadrangle not meet the line $l$ . Therefore, $D\cup\{0\}$ or $D\cup p$ , where $p$ is a point on the
line $l$ , are 2- $SC$ $(3,5,2)$ , which contain the maximal number of code words.

Consider $PG$ (n-1,2), $n\geq 4$ . From Theorem 4.2, we have the following theorem:

Theorem 4.4 Let $\mathfrak{C}$ be a set of points in $PG(n-l,2)$ . $\mathfrak{C}$ is a 2-separable code if and only
if, for each plane $\mathcal{P}$ in $PG(n-l,2)$ , the points of $\mathfrak{C}\cap \mathcal{P}$ contains. no quadrangle or

$\bullet$ a quadrangle $Q$ but the external line to $Q$ is a non $i$ -line.

Corollary 4.5 Let $l,$ $m$ be lines of $PG(3,2)$ which are not concurrent. Then the 6 points, $\mathfrak{C},$

on the lines are 2- $SC$$(4,6,2)$ . If those two lines are non $i$ -lines then $\mathfrak{C}\cup\{0\}$ is 2-$SC(4,7,2)$ .

Let $\mathcal{F}$ be a set of points in $PG$ (n-1,2). For any two points of $\mathcal{F}$ , if the line passing
through the two points is contained in $\mathcal{F}$, then $\mathcal{F}$ is called a flat. $A$ d-flat is a flat generated
from $d+1$ independent vectors. If a d-flat contains no $i$-line, then it is said to be $i$ -line
free d-flat.

Theorem 4.6 Let $\mathcal{F}$ be an $i$ -line free d-flat of $PG(n-l,2)$ , and $\mathcal{W}$ be $a(d+l)$-flat including
$\mathcal{F}$ . Then the the set of points of $\mathcal{A}=\mathcal{W}\backslash \mathcal{F}$ is a $2-SC(n, 2^{d+1},2)$ . Further, $\mathcal{A}\cup\{0\}$ is a
$2-SC(n, 2^{d+1}+1,2)$ .

The proof is seen in [9].

5 $i$-line free flats

Theorem 4.6 says if there is a large $i$-line free d-flat, there exists a 2-separable code with a
large number of code words. So it is important to find an $i$-line free d-flat, and $d$ as large
as possible.

In order to find an $i$-line free d-flats, let’s count the number of $i$-lines.

Lemma 5.1 Le $P$ be a point of $PG(n-l,2)$ . The number of $i$-lines incident with $P$ is

$2^{n-w}+2^{w-1}-2,$

where $w$ is Hamming weight of $P.$

The proof is seen in [9].
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Lemma 5.2 The number of $i$-lines in $PG(n-l,2)$ is

$\frac{1}{3}\sum_{w=1}^{n}(\begin{array}{l}nw\end{array})(2^{n-w}+2^{w-1}-2)$

$=(3^{n}-2^{n+1}+1)/2.$

The proof is seen in [9].
The number of lines in $PG$ (n-1,2) is $(2^{n}-1)(2^{n-1}-1)/3$ . The ratio of $i$-lines to the all

lines in $PG$ (n-1,2) is

$\frac{3^{n+1}-3(2^{n+1})+3}{(2^{n}-2)(2^{n}-1)}$

This reduces exponentially. The ratios are, for examples, 0.85 when $n=3,0.58$ when $n=5,$

0.16 when $n=10$ and 0.0095 when $n=20$ . The trend of ratios suggests there may exist large
$i$-line free flat. We are interested in how large the flats in $PG$ (n-1,2) are.

Here is the $i$-line free l-flat in $PG$ $(2,2)$ which is the largest:

$(1,1,0), (1,0,1), (0,1,1)$

An $i$-line free 2-flat is the following, which appears in $PG$ $(5,2)$ .

$(1,1,0,0,1,1)$
$(0,0,1,1,1,1)$
$(1,1,1, 1,0,0)$
$(1,0,0,1,1,0)$
$(0,1,1,0, 1,0)$
$(1,0,1,0,0,1)$
$(0,1,0,1,0,1)$

$\mathbb{R}om$ my experiments, there is no $i$-line free plane in $PG$ $(3,2)$ , $PG$ $(4,2)$ .
If there exist an $i$-line free hyperplane in $PG$ (n-1,2), then we can have a 2- $SC$ $(n,$ $2^{n-1}+$

$1,2)$ which attains the Cheng-Miao Bound. Unfortunately, we have the following result:

Lemma 5.3 (A. Munemasa [14]) There is no $i$ -line free hyperp lane of $PG(n-1,2)$ for
$n\geq 4.$

The proof is seen in [9].

Lemma 5.4 Let $\mathcal{F}$ be a linear subspace in $F_{2}^{n}$ excluding $0$ . If, for any two vectors x, y $\in$

$\mathcal{F},$ $|supp(x)\cap supp(y)|\geq 1$ , then $\mathcal{F}$ is $i$ -line free.
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The proof is seen in [9].
Let V be a finite set with $v$ element and $\mathcal{B}$ a collection of $k$-subsets of $V$ . If $v=$

$4d-1,$ $k=2d$ and $|B\cap B’|=d$ for any $B,$ $B’\in \mathcal{B}$ , then the pair $(V, \mathcal{B})$ is called an
Hadamard design.

Lemma 5.5 The incidence matrix of an Hadamard design which is linear on $F_{2}^{n}$ is an
$i$ -line flat.

A simplex code is the dual code of the Hamming code of length $2^{m}-1,$ $m\geq 2$ . It is
well known that a simplex code excluding $0$ is an Hadamard design with the parameters
$v=2^{m}-1,$ $k=2^{m-1},$ $d=2^{m-2}$ and it is a d-flat in the $PG$ $(2^{m}-2,2)$ .

Example 5.6 An simplex code $(i- line free 2- flat in PG(6,2)$ )

$(0, 1,1,0,0,1, 1)$
$(0,0,0,1,1,1,1)$
$(0,1,1,1,1,0,0)$
$(1,1,0,0,1,1,0)$
$(1,0,1,1,0,1,0)$
$(1,1,0,1,0,0,1)$
$(1,0,1,0,1,0,1)$

Theorem 5.7 There exists $i$ -line free $(2^{m-2})$ -flat in $PG(2^{m}-2,2)$ for any integer $m\geq 2.$

Let $H$ be an incidence matrix of a Hadamard design with the parameters $v=2^{m}-1,$ $k=$

$2^{m-1},$ $d=2^{m-2}$ . An array $H’$ obtained by punctuating at most $d-1$ coordinates of $H$ is
also $i$-line free flat.

Conjecture 5.8 (A. Munemasa [14]) If $\mathcal{F}$ is an $i$ -line free flat, then $\mathcal{F}$ is obtained from
either of
(1) an simplex code or its subspace,

(2) punctuating some coordinates from (1).
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