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Abstract
Suppressing the effect of decoherence plays a vital role in the theory of quantum information processing.
Despite many skepticisms about its feasibility, the existence of error correction schemes in the quantum do-
main was proved in the last century, giving the birth to the field of quantum error correction. Since then, the
new field has seen remarkably rapid progress in various directions including experimental realizations of
quantum error-correcting codes. While quantum information science draws on many branches of physics,
computer science, and mathematics, combinatorics is rapidly becoming an indispensable mathematical
tool to the study of quantum error correction. In this note, we review some of the latest developments in
quantum error correction where combinatorial design theory and coding theory play the central role.

1 Introduction
Quantum $error-correct\dot{m}g$ codes are mathematical schemes for recovering the original quantum states of
quantum bits, or qubits, that carry the information when the quantum states are transformed by unintended
quantum operations, that is, quantum noise [40]. It is vital to suppress the effect of quantum noise for realiz-
ing large-scale quantum computation and quantum communication because qubits are highly vulnerable
to environmental noise in practical and realistic situations.

While the importance of error correction is apparent in the quantum domain, there had been doubts
about the existence of a feasible scheme in the quantum domain until the discovery of the famous 9-qubit
code [43] and 7-qubit code [44] in the mid $1990’s$ . Research on quantum error correction has seen rapid and
remarkable progress since then. In fact, various types of quantum error-correcting code are now known
such as the celebrated stabilizer codes [20, 7], which encompases the first two quantum error-correcting
codes. Small quantum error-correcting codes have been experimentally realized as well [10, 32, 8, 5, 35, 2,
42, 37, 41, 51, 53, 52, 3].

However, the remarkable progress we have seen does not imply that the theory of quantum error correc-
tion has become as mature as that of classical error correction. For instance, while the stabilizer formalism
developed in [21] has given rise to a wide range of quantum error-correcting codes, the admissible struc-
tures of a code are severely restricted compared to the freedom in designing dassical error-correction codes.
The fact that we do not have many successful general frameworks for quantum error correction also limits
the variety of quantum error-correcting codes.

One effective way to overcome the limitations and difficulties is to develop a new framework for de-
signing quantum error-correcting codes that makes it possible to directly import a wider range of classical
coding theory to the quantum domain. $A$ notable breakthrough in this direction is the entanglement-assisted
stabilizerformalism, where one may fully exploit any binary or quatemary linear code over the binary field
$F_{2}$ or the finite field $\mathbb{F}_{4}$ of order four respectively for correcting errors on qubits, provided that there is an
adequate supply of maximally entangled noiseless qubits, called ebits [6]. Entanglement-assisted quantum
error-correcting codes can be regarded as generalized stabilizer codes in the sense that those codes requir-
ing no ebit are the standard stabilizer codes. In other words, if a given linear code can not be tumed into a
quantum error-correcting code through the standard stabilizer formalism, it may still be fully exploitable if
some ebits can be shared through a noiseless channel to help encode and decode noisy qubits.
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A downside of entanglement assistance is that completely noiseless qubits are extremely difficult to
realize in a practical quantum device. This disadvantage is particularly pronounced in the context of
protecting stored quantum information, where the information source and sink are separate in the time
domain. This characteristic of entanglement-assisted quantum error-correcting codes led to a series of re-
search that tryed to identify excellent linear codes which can be imported by using only a small number of
ebits [25, 47, 24, 12, 11, 15, 48, 49, 26, 34, 18, 23].

Very recently, a framework that significantly reduces this burden of providing noiseless qubits was
proposed, where any binary or quatemary linear codes over $\mathbb{F}_{2}$ or $\mathbb{F}_{4}$ respectively can be fully exploited as
long as one can provide auxiliary qubits that are only subject to a restricted quantum error model [14]. This
framework exploits the fact that while realizing completely noiseless qubits is very difficult, not every kind
of quantum error is equally difficult to suppress through technical advances on hardware. For example, it
is known that one can correct any type of quantum error in the standard error model if two particular types
of error, called a bit error and phase error, can be corrected under the assumption that both may happen
on the same qubit [40]. However, phase errors are expected to be far more likely than bit errors in most
actual quantum devices [28]. Under the newer framework, one may choose an error model where most
qubits suffer from bit errors and phase errors while only phase errors may occur on the auxiliary qubits.
Hence, unlike the entanglement-assisted stabilizer formalism, which requires completely noiseless qubits,
the newer framework only needs more easily achievable”less nois$y’$ ones.

This note gives a brief summary of the latest framework and presents a short account on how coding
theory and design theory contribute to quantum information science through this recent idea.

2 Quantum Error Correction with Reliable Auxiliary Qubits
Here we give a brief review of how reliable auxiliary qubits help correct quantum errors in the recent
frameworks. For the basics of quantum information theory and classical coding theory, we refer the reader
to [40, 27].

As usual, by a binary linear $[\mathfrak{n}, k, d]$ code, we mean a $k$-dimensional subspace $\mathcal{C}$ of the $\mathfrak{n}$-dimensional
vector space over $\mathbb{F}_{2}$ in which a nonzero vector with the smallest number of nonzero entries has exactly
$d$ nonzero entries, that is, min$\{wt(c) |c\in \mathcal{C}, c\neq 0\}=d$ . Because we only consider a binary code, we
omit the term binary when referring to linear codes and LDPC codes. $A$ linear $[\mathfrak{n}, k, d]$ code encodes $k$

logical bits into $\mathfrak{n}$ physical bits, where $\mathfrak{n}$ is the length and $k$ is the dimension of the code. The parameter $d$

is the minimum distance of the code and ensures that up to $L\frac{d-1}{2}\rfloor$ errors can be corrected. Analogously, an
$[[\mathfrak{n}, k, d]]$ quantum error-correcting code of length $\mathfrak{n}$, dimension $k$, and distance $d$ encodes $k$-qubit information
into $\mathfrak{n}$ physical qubits and corrects up to errors on $L\frac{d-1}{2}\rfloor$ qubits.

A fundamental fact in the quantum domain is that, through a process called discretization, an error cor-
rection scheme can correct any general quantum error on one qubit if it can correct the effects of the Pauli
operators X, $Z$ and their product $XZ$, where the operator X corresponds to the bit error on one qubit while
$Z$ represents the phase error [40]. Similarly, quantum errors on multiple qubits are correctable if the corre-
sponding transformation by a combination of X, $Z$ and both at the same time on each of the affected qubits is
correctable. The quantum $errorrightarrow correct\dot{m}g$ codes we consider in this note also exploit discretization. Hence,
without loss of generality, we always assume that a quantum channel may introduce on each qubit only a
bit error, a phase error or both at the same time as a quantum error.

The following is the fundamental tool we use to import linear codes.
Theorem 2.1 ([14]) If there exists a linear $[\mathfrak{n}, k, d]$ code, then there exit unitary operations that encode $k$ logical
qubits into $2\mathfrak{n}-k$ physical qubits and correct up to $L\frac{d-1}{2}\rfloor$ quantum errors under the assumption that afixed set of
2(n-k) physical qubits may experience phase errors but no bit errors.

The point of the above theorem is that any linear $[\mathfrak{n}, k, d]$ code, which corrects errors on up to $L\frac{d-1}{2}\rfloor$

bits, can be tumed into a $[[2\mathfrak{n}-k_{\rangle}k]]$ quantum error-correcting code that corrects quantum errors on up
to $L\frac{d-1}{2}\rfloor$ qubits as long as predetermined $2(\mathfrak{n}-k)$ qubits are only subject to phase errors. Note that if the
linear $[\mathfrak{n}, k, d]$ code is of sufficiently high rate so that $k$ is close to $\mathfrak{n}$, the 2(n-k) auxiliary qubits consist of
only a small fraction of the $2\mathfrak{n}-k$ physical qubits.

A useful fact regarding this type of quantum error correction is that we can employ decoding methods
for linear codes based on error syndromes.
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$e_{0}=(e_{0}, \ldots, e_{\mathfrak{n}-k-1}|e_{\mathfrak{n}-k\cdots)}e_{\mathfrak{n}-1})$

$\nearrow Z$

(phase errors) $\backslash X$ (bit errors)

$\wedge \mathfrak{n}-k$

$\iota\iota k\overline{\downarrow}Z$

(phase errors) $/Z$ (phase errors)

$e_{1}=(e_{\acute{0}}, \ldots, e_{\mathfrak{n}-k-1}’|e_{\mathfrak{n}-k}’,\ldots,e_{\mathfrak{n}-1}’)$

Figure 1: Correspondence of types and positions of quantum errors to error vectors. $|$ The white boxes
represent the $2(\mathfrak{n}-k)$ less noisy qubits that may experience only phase errors. The gray boxes are the $k$

noisy qubits that may $suHer$ from bit and/or phase errors. The first $\mathfrak{n}-k$ bits of $e_{0}$ and the first $\mathfrak{n}-k$ bits
of $e_{I}$ correspond to whether phase errors occurred on the $2(\mathfrak{n}-k)$ less noisy qubits. The remaining $k$ bits
of $e_{0}$ indicate whether bit errors occurred on the $k$ noisy qubits while the remaining $k$ bits of $e_{1}$ correspond
to phase errors on these noisy qubits.

Theorem 2.2 [17l Let $\mathcal{C}$ be a linear $[\mathfrak{n},k, d]$ code. Assume that $2\mathfrak{n}-k$ physical qubits $q_{i},$ $0\leq i\leq 2\mathfrak{n}-k-1,$

are sent through a noisy quantum channel in which the first $2(\mathfrak{n}-k)$ qubits $q_{i},$ $0\leq i\leq 2(\mathfrak{n}-k)-1$ are only
subject to phase errors while the remaining $k$ qubits $q_{i},$ $2(\mathfrak{n}-k)\leq i\leq 2\mathfrak{n}-k-1$ are subject to both bit errors and
phase errors. Define a pair $e_{0}=(e_{0}, \ldots, e_{\mathfrak{n}-1}),$ $e_{1}=(e_{0}’, \ldots, e_{\mathfrak{n}-1})\in \mathbb{F}_{2}^{\mathfrak{n}}$ of $\mathfrak{n}$-dimensional vectors such that for
$0\leq i\leq \mathfrak{n}-k-1,$ $e_{i}=1f$ a phase error occurred on $q_{i}$ and $e_{\mathfrak{i}}=0$ otherwise, such thatfor $\mathfrak{n}-k\leq i\leq \mathfrak{n}-1,$

$e_{i}=1fa$ bit error occurred on $q_{i+\mathfrak{n}-k}$ and $e_{i}=0$ otherwise, and such that for $0\leq i\leq \mathfrak{n}-1$ , $e_{i}’=1$ if a phase
error occurred on $q_{i+\tau\iota-k}$ and $e_{i}’=0$ otherwise. Let $H$ be a parity-check mwtrix of $\mathcal{C}$ in standardform. There exists a
$[[2\mathfrak{n}-k, k]]$ quantum error-correcting code that allows for retrieving classical information about quantum errors in
theform ofa pair $s_{0},$ $s_{1}\in \mathbb{F}_{2}^{\mathfrak{n}-k}$ of $(\mathfrak{n}-k)$ -dimensional vectors such that $s_{0}=He_{0}^{T}$ and $s_{1}=$ He$\dagger.$

Note that the binary vectors $e_{0}$ and $e_{1}$ in the theorem above completely specify what type of quantum
error occurred on which qubit. The correspondence between each bit of the error vectors $e_{0},$ $e_{1}$ and the
type and location of each quantum error is shown in Figure 1.

The most important fact regarding Theorem 2.2 is that because $H$ is a parity-check matrix of a linear
code of minimum distance $d$, we can correctly infer $e_{0}$ and $e_{1}$ from the syndromes $s_{0}$ and $s_{1}$ , which are
$He_{0}^{T}$ and $He_{1}^{T}$ respectively, if the weights of $e_{0}$ and $e_{1}$ are both less than or equal to $L\frac{d-\dagger}{2}\rfloor$ . This implies
that the positions of all bit errors and phase errors can be identified if the number of physical qubits that
suffer bit errors, phase errors or both is at most $L\frac{d-1}{2}\rfloor.$

One restriction on employing Theorem 2.2 is that the parity-check matrix $H$ of a linear $[\mathfrak{n},k, d]$ code for
quantum error correction must be in standard form

$H=[I A]$

for some $(\mathfrak{n}-k)\cross k$ matrix A over $\mathbb{F}_{2}$ , where I is the $(\mathfrak{n}-k)\cross(\mathfrak{n}-k)$ identity matrix. Another restriction
is that the linear code must be of high rate to keep the number $2(\mathfrak{n}-k)$ of less noisy auxiliary qubits small.

3 Application of Combinatorial Designs
As we have seen in the previous section, the framework for designing quantum error-correcting codes
allows us to directly take advantage of any linear codes and any of their decoding methods that infer
errors from syndromes of the form $He^{T}$ , where $e$ is a binary vector specifying the error position and $H$ is
a parity-check matrix. Among the known decoding methods based on syndromes, the one that infers $e$

through iterative decoding such as the sum-product algorithm has been shown to achieve excellent error
correction performance and very low decoding complexity in classical coding theory [36]. In particular,
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linear codes whose parity-check matrices have relatively few nonzero entries tend to perform well when
decoded by the sum-product algorithm. Such linear codes with sparse parity-check matrices suited for
iterative decoding are called low-density parity-check (LDPC) codes. In this section we give a brief summary
of how combinatorial designs have been applied to LDPC codes in the context of quantum error correction
assisted by less noisy qubits.

The Tanner graph of an $m\cross \mathfrak{n}$ parity-check matrix $H$ is the bipartite graph consisting of $\mathfrak{n}$ bit vertices
indexed by bits of the corresponding code and $m$ parity-check vertices indexed by parity-check equations
defined by $H$, where an edge joins a bit vertex to a parity-check vertex if the bit is checked by the corre-
sponding parity-check equation. An $i$-cycle in a graph is a sequence of $i+1$ connected vertices which starts
and ends at the same vertex in the graph and contains no other vertices more than once. In the language
of matrices, a 4-cycle in a Tanner graph is equivalent to a $2\cross 2$ all-one submatrix in a parity-check matrix
while a 6-cycle forms a $3\cross 3$ submatrix in which each row and column has exactly two ones. The girth of
a parity-check matrix is the length of a shortest cycle in the corresponding Tanner graph. Since a Tanner
graph is bipartite, its girth must be an even number. When it is clear from context which parity-check matrix
is considered, we may speak of the ”girth of an LDPC code. $\prime$’It has empirically been shown that very short
cycles tend to increase the probability of decoding failure when the sum-product algorithm is employed. In
particular, 4-cycles have a particularly noticeable negative effect on error correction performance [30]. For
this reason, it is desirable for the girth of a parity-check matrix to be strictly larger than 4. We consider the
kind of combinatorial design that constitutes a rich source of such matrices.

Let $K$ be a set of positive integers. $A$ pairwise balanced design of order $v$ and index 1 with block sizes from
$K$, denoted by $PBD$ $(v, K, 1)$ , is an ordered pair $(V, \mathcal{B})$ , where V is a nonempty finite set of $v$ elements, called
points, and $\mathcal{B}$ is a set of subsets of V, called blocks, that satisfies the following two conditions:

(i) each unordered pair of distinct elements of V appears in exactly one block of $\mathcal{B},$

(ii) for every $B\in \mathcal{B}$ the cardinality $|B|\in K.$

When $K$ is a singleton $\{\mu\}$, the PBD is called a Steiner 2-design of order $v$ and block size $\mu$, and is denoted by
$S(2, \mu,v)$ . $A$ simple counting argument proves that the number of blocks in an $S(2, \mu,v)$ is exactly $\frac{v(v-1)}{\mu(\mu-1)}.$

A PBD of order $v$ is trivial if it has no blocks or consists of only one block of size $v.$

Let cc(K) $=gcd\{\mu-1|\mu\in K\}$ and $\beta(K)=gcd\{\mu(\mu-1)|\mu\in K\}$ . Necessary conditions for the existence
of a $PBD$ $(v, K, 1)$ are $v-1\equiv 0(mod \alpha(K))$ and $v(v-1)\equiv 0(mod \beta(K))[4]$ . These conditions were proved
to be asymptotically sufficient.

Theorem 3.1 (Wilson [50]) There exists a constant $v_{K}$ such thatfor every $v>v_{K}satisfyingv-1\equiv 0(mod \alpha(K))$

and $v(v-1)\equiv 0(mod \beta(K))$ there exists $a$ $PBD$ $(v, K, 1)$ .
An incidence matrix of a $PBD$ $(V, \mathcal{B})$ with $|V|=v$ and $|\mathcal{B}|=b$ is a binary $v\cross b$ matrix $H=(h_{i,j})$ with

rows indexed by points, columns indexed by blocks, and $h_{i,j}=1$ if the ith point is contained in the jth
block, and $h_{i},$

) $=0$ otherwise. It is known that incidence matrices of PBDs of index 1 are generally good
candidates of parity-check matrices of LDPC codes of high rate because of their good error tolerance at
relatively short lengths [46, 1, 31, 33]. In fact, a simple observation shows that incidence matrices of PBDs
of index 1 generally do not contain 4-cycles and form parity-check matrices of girth 6 $[17]$ . Furthermore,
such parity-check matrices are extreme in terms of information rates in the following sense.
Proposition 3.2 $f17l$ Let $H$ be a parity-check matrix in standardform that forms an incidence matrix ofa nontrivial
PBD oforder $\mathfrak{n}-k$ and index 1. Any parity-check matrix of the same size, same column weight distribution, same or
higher girth, and same or higher minimum distance as $H$ is of the same or lower rate as $H.$

Proposition 3.3 $fl7l$. Let $H$ be a parity-check matrix in standardform thatforms an incidence matrix ofa nontrivial
PBD of order $\mathfrak{n}-k$ and index 1. Take a nonzero vector $c\in \mathbb{F}_{2}^{\mathfrak{n}-k}$ ofdimension $\mathfrak{n}-k$ . Adding $c^{T}$ to $H$ as a column
results in a parity-check matrix ofan LDPC code ofminimum distance 2 or girth 4.

Roughly speaking, the above propositions state that $H$ in standard form forming an incidence matrix of
a PBD of index 1 achieves the largest possible number of information bits among all parity-check matrices
in standard form with the same number of check equations and the same degree distribution under the
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constraint that the associated LDPC code must be of minimum distance larger than 2 and girth greater than
4.

Recall that Theorem 2.2 has the explicit restriction on the structure of a parity-check matrix $H$ of a linear
$[\mathfrak{n},k, d]$ code, that is, it must be in standard form

$H= [I A]$

for some $(\mathfrak{n}-k)\cross k$ matrix A over $\mathbb{F}_{2}$ , where I is the $(\mathfrak{n}-k)\cross(\mathfrak{n}-k)$ identity matrix. Therefore, if one
wishes to achieve the highest possible information rates for an LDPC code of girth 6 or larger, $H$ as a whole
must form an incidence matrix of a PBD of index 1. The following proposition allows us to only consider
the part A in this regard.

Proposition 3.4 f171 Let $H=$ $[I A]$ be a parity-check matrix of a linear code of length $\mathfrak{n}$ and dimension $k$ in
standardform. $H$ is an incidence matrix of $a$ PBD of index 1 ifand only the $(\mathfrak{n}-k)\cross k$ matrix A is an incidence
matrix of $a$ PBD of index 1 containing no block of size 1.

In view of the above proposition, we would like to find incidence matrices A of PBDs without blocks of
size 1 that do not contain or produce undesirable structures that hamper decoding when combined with the
identity matrices to obtain valid parity-check matrices $H=$ $[I A]$ for Theorem 2.2. Because an LDPC
code is a linear code equipped with a particular decoding algorithm, all else being equal, it is desirable
to have a larger minimum distance. While the sum-product algorithm is generally less sensitive to the
minimum distance than other simple decoding methods, this parameter is especially important to a code
of very high rate because its very large dimension dictates that the minimum distance be small compared
to the length. The following proposition concems with the number of short cycles and minimum distances
of parity-check matrices based on incidence matrices of PBDs together with columns of weight 1.

Proposition 3.5 [171 Let A be an $(\mathfrak{n}-k)\cross k$ incidence matrix of a nontrivial $PBD$ $(\mathfrak{n}- k, K, 1)$ with $1\not\in K$ . Then
the binary matrix $H=$ $[I A]$ is a parity-check matrix ofa linear $[\mathfrak{n}, k, d]$ code in standard form whose girth is 6
and minimum distance $d=1+\dot{m}n\{\mu|\mu\in K\}.$

Because the minimum distance of our code is $1+\dot{r}n\{\mu|\mu\in K\}$, increasing the smallest block size
improves the minimum distance. However, because a block of size $x$ contains $(\begin{array}{l}x2\end{array})$ pairs, a block of larger size
contains more pairs of points. Since avoiding $4rightarrow$cycles while achieving the highest possible information rate
is equivalent to packing as many different pairs of points as possible in a set of blocks while including no
pair of points more than once, generally speaking, increasing block sizes lowers the achievable information
rate. For this reason, we consider the case when the column weights of the matrix A are uniform. This
means that $K$ is a singleton $\{\mu\}$, that is, the corresponding $PBD$ $(\mathfrak{n}-k, K, 1)$ forms a Steiner 2-design $S(2,$ $\mu,\mathfrak{n}-$

k$)$ . As stated earlier, an $S(2, \mu,v)$ contains exactly $\frac{v(\backslash !-1)}{\mu(\mu-1)}$ blocks. Thus, the corresponding code can achieve
quite a large dimension at a moderate length.

Proposition3.6 Let Abe an incidence matrix ofan $S(2, \mu,v)$ and Ia $v\cross v$ identity matrix. $A$ parity-check matrix
$H=$ [ IA] defines an LDPC code of length $\frac{v(v-1)}{\mu(\mu-1)}+v,$ dimension $\frac{v(v-1)}{\mu(\mu-1)},$ girth 6$,$ andminimumdistance $\mu+1.$

As can be seen from the above proposition, the information rates of LDPC codes defined by incidence
matrices of $S(2, \mu,v)s$ become close to 1 very quickly as $v$ goes to infinity. Theorem 2.2 shows that the
corresponding quantum error-correcting codes assisted by less noisy qubits inherit this characteristic.

Theorem 3.7 Let A be an incidence matrix ofan $S(2, \mu,v)$ and I a $v\cross v$ identity matrix. There exits a $[[ \frac{v(v-1)}{\mu(\mu-1)}+$

$2v,$ $\frac{v(v-1)}{\mu(\mu-1)}]]$ quantum error-correcting code that identifies the types and locations of quantum errors through the
LDPC code defined by the parity-check matrix $H=$ $[I A]$ under the assumption that a fixed set of $2(\mathfrak{n}-k)$

physical qubits may experience phase errors but no bit errors.

A good strategy to improve the error correction performance under the sum-product algorithm is to
decrease the number of smctUres that are responsible for dominating errors. While joining the identity
matrix and the incidence matrix A of a Steiner 2-design of block size $\mu$ necessarily results in an LDPC code
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of minimum distance $\mu+1$ , it is desirable for the linear code defined by A to have a larger minimum distance
because it eliminates dominating sources of errors to an extent.

It is trivial that the minimum distance of a linear code whose parity-check matrix is an incidence matrix
of an $S(2, \mu,v)$ is lower bounded by $\mu+1$ . To investigate the minimum distances of linear codes based on
Steiner 2-designs further, we define some combinatorial notions.

A configuration $\mathcal{C}$ in an $S(2, \mu, k),$ $(_{\rangle}\mathcal{B})$ , is a subset $\mathcal{C}\subseteq \mathcal{B}$ of the block set. The set of points appearing
in at least one block of a configuration $\mathcal{C}$ is denoted by $V(\mathcal{C})$ . Two configurations $\mathcal{C}$ and $\mathcal{C}’$ are isomorphic if
there exists a bijection $\phi$ : $V(\mathcal{C})arrow V(\mathcal{C}’)$ such that for each block $B\in \mathcal{C}$, the image $\phi(B)$ is a block in $\mathcal{C}’$

When $|\mathcal{C}|=i$, a configuration $\mathcal{C}$ is called an $i$-configuration. $A$ configuration $\mathcal{C}$ is even if for every point $a$

appearing in $\mathcal{C}$ the number $|\{B|a\in B\in \mathcal{C}\}|$ of blocks contaiming $a$ is even. An $S(2, \mu,v)$ is r-even-free if for
every integer $i$ satisfying $1\leq i\leq r$ it contains no even $i$-configurations. Because the minimum distance
of a linear code is the size of a smallest linearly dependent set of columns in its parity-check matrix, the
minimum distance of a linear code based on an incidence matrix A of a Steiner 2-design is determined by
its even-freeness.

Proposition3.8 The minimum distance of a linear code whose parity-check matrix forms an incidence matrix of a
Steiner 2-design is $d$ if and only if the corresponding Steiner 2-design is $(d-1)$ -even-free but not d-even-fYee.

By definition every r-even-free $S(2, \mu,v),$ $r\geq 2$, is also (r–l)-even-free. If $\mu$ is odd, a simple double
counting argument proves that an r-even-free $S(2, \mu,v)$ with $r$ even is also $(\uparrow+1)$ -even-free. Because a
Steiner 2-design is a linear space, every $S(2, \mu,v)$ is $\mu$-even-free.

A nontrivial $S(2, \mu,v)$ may or may not be $(\mu+1)$-even-free. For each $\mu\geq 2$, an even $(\mu+1)$ -configuration
that may be in $S(2, \mu,v)s$ is unique up to isomorphism; they are the dual of the complete graph on $\mu+1$

vertices. For instance, for the case when $\mu=3$ , up to isomorphism, there exists only one possible even
4-configuration, called the Pasch configuration, which can be written by six points and four blocks:

$\{\{a,b, c\},\{a, d, e\},\{f,b, d\},\{f, c, e\}\}.$

The unique possible even $(\mu+1)$ -configurations for $\mu\geq 4$ are sometimes called the generalized Pasch config-
urations in the coding theory literature. Since they are the smallest and unique, an $S(2, \mu,v)$ is $(\mu+1)$ -even-
free if and only if it contains no Pasch configurations for $\mu=3$ and no generalized Pasch configurations for
$\mu\geq 4.$

The following is the tightest known bounds on the maximum even-freeness of an $S(2,3,v)$ stated in
terms of minimum distance.

Theorem3.9 ([16]) The minimum distance $d$ of a linear code whose parity-check matrix forms an incidence matrix
of a nontrivial $S(2,3,v)$ satisfies the inequalities $4\leq d\leq 8.$

The problem of avoiding Pasch configurations has long been investigated in various contexts in design
theory. The spectrum of those orders $v$ for which a 5-even-free $S(2,3,v)$ exits was completely determined
in 2000 [22].

Theorem 3.10 ([22]) There exists a 5-even-free $S(2,3,v)$ ifand only $fv\equiv 1,3(mod 6)$ except $v=7,13.$

While it is enough to attain $(\mu+1)$-even-freeness in the right portion A of our parity-check matrix
$H=$ $[I A]$ for achieve the goal of reducing the number of codewords of the smallest weight, if one
would like even higher even-freeness, it is required to construct an $S(2,3,v)$ that simultaneously avoids
Pasch and two more even configurations, namely the grids

$\{\{a_{\rangle}b, c\},\{d, e, f\},\{g,h,i\},\{a, d, g\},\{b, e,h\},\{c,f,i\}\}$

and double triangles
$\{\{a,b, c\},\{a, d, e\},\{b_{\rangle}f, g\},\{c, h, e\},\{d, g,i\},\{f, h,i\}\}.$

Unfortunately, while there exist infinitely many $S(2,3,v)s$ avoiding both Pasch and double triangle config-
urations [9], at the time of writing, no nontrivial examples avoiding grids, let alone $6rightarrow even$-free $S(2,3,v)s,$
are known [19]. If a nontrivial $S(2,3,v)$ that simultaneously avoids the three even configurations exists, it
is automatically 7-even-free and hence attains the upper bound given in Theorem 3.9.
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It is tempting to look for similar theorems on the even-freeness of $S(2, \mu,v)s$ for all $\mu\geq 4$ . Unfortunately,
it appears very difficult to obtain equally tight bounds and/or complete existence results for relatively high
even-freeness for general block size $\mu$ . In fact, no nontrivial upper bounds are known on the even-freeness
of $S(2, \mu,v)s$ with large $\mu$ in general. To the best of the author’s knowledge, the following is the only fairly
general bound on the even-freeness of $S(2, \mu,v)s.$

Theorem 3.11 ([13]) If an abdian group acts transitively on the points of a nontrivial $r-even-f\gamma eeS(2, \mu,v)$ with
$v>\mu(\mu-1)+1$ , then $r\leq 2\mu-1.$

The above bound is best possible in the sense that there are infinitely many $(2\mu-1)$-even-free $S(2, \mu,v)s.$

To give such infinite series, we use the points and lines of finite geometries.
The affine geometry $AG$(m, q) of dimension $m$ over $\mathbb{F}_{q}$ is defined as a finite geometry in which the points

are the vectors in $\mathbb{F}_{q}^{m}$ and the $i$-dimensional affine subspaces are the $i$-dimensional vector subspaces of $\mathbb{F}_{q}^{m}$ and
their cosets. The points and 1-dimensional affine subspaces of $AG$ (m, q) form the points and blocks of an
$S(2, q, q^{m})[4].$

Theorem3.12 ([381) For any odd prime power $q$ and positive integer $m\geq 2$ the points and 1-dimensional affine
subspaces of $AG$ (m, q) form $a$ $(2q-1)$ -even-fiee $S(2, q, qm)$ which is not 2q-even-fiee.

Affine geometries are not the only known nontrivial $S(2, \mu,v)s$ that attain the upper bound given in The-
orem 3.11. The projective geometry $PG$ (m, q) of dimension $m$ over $\mathbb{F}_{q}$ is a finite geometry whose points and
$i$-dimensional subspaces are the 1-dimensional vector subspaces and the $(i+1)$ -dimensional vector subspaces
of $\mathbb{F}_{q}^{m+1}$ respectively. The points and 1-dimensional subspaces of $PG$ (m, q) form the points and blocks of
an $S(2, q+1, \frac{q^{\mathfrak{n}\iota+1}-1}{q-1})$ .

Theorem 3.13 ([15]) For any odd prime power $q$ and positive integer $m\geq 3$ the points and 1-dimensional subspaces

of $PG$ (m, q) form $a$ $(2q+1)$-even-free $S(2, q+1, \frac{q^{\prime \mathfrak{n}+1}-1}{q-1})$ which is not $(2q+2)$ -even-free.
Recently, the author gave a combinatorial construction for $(\mu+1)$ -even-free $S(2, \mu,v)s[13]$ . The construc-

tion technique recursively combines $a$ $(\mu+1)$ -even-free $S(2, \mu,v)$ and another $(\mu+1)$-even-free $S(2, \mu,w)$

with a particular algebraic property by using a specially designed combinatorial matrix to generate a larger
$(\mu+1)$ -even-free $S(2, \mu,vw)$ . As far as the author is aware, no constructions for $S(2, \mu,v)s$ with even-freeness
higher than or equal to $\mu+1$ are known except the finite geometric and recursive ones.

From the viewpoint of quantum error correction assisted by less noisy qubits, the highly even-free
$S(2, \mu,v)s$ based on affine and projective geometries have an additional appealing property. As described
in the previous section, our auxiliary qubits are assumed to be engineered more reliably than the rest so
that only phase errors can occur. Hence, it would be natural to assume that those phase errors that may
still occur on these qubits manifest less frequently than bit errors and phase errors on the other qubits. This
slightly more optimistic assumption translates into the premise that the probability that an error occurs on
a fixed check bit, which corresponds to a column of the $(\mathfrak{n}-k)\cross(\mathfrak{n}-k)$ identity matrix I in $H=[i A],$
is smaller than that on a fixed information bit corresponding to a column of $A$ (see [17]). The following
theorem shows that highly even-free $S(2, \mu,v)s$ from finite geometries can effectively take advantage of this
additional assumption.

Theorem 3.14 ([38, 45]) Let $q$ be an odd prime power and $m\geq 2$ an integer greater than or equal to 2. Define $(V, \mathcal{B})$

to be the $(2q-1)$ -even-free $S(2, q, q^{m})$ formed by the points and 1-dimensional affine subspaces of $AG$ (m, q) . $Por$

any nonempty configuration $\mathcal{C}\subset \mathcal{B}$ of $size|\mathcal{C}|\leq 2q-1$ , it holds that

$|\mathcal{C}|+$ odd $(\mathcal{C})\geq 2q,$

where odd $(\mathcal{C})$ is the number ofpoints $v\in V$ contained in an exactly odd number ofblocks in $\mathcal{C}.$

Theorem 3.15 ([45]) Let $q$ be an odd prime power and $m\geq 2$ an integer greater than or equal to 3. Define $(V, \mathcal{B})$ to
be the $(2 q+1)-even-fieeS(2, q+1, \frac{q^{m+\iota_{-1}}}{q-1})$ formed by the points and 1-dimensional subspaces of $PG$ (m, q). For
any nonempty configuration $C\subset \mathcal{B}$ ofsize $|\mathcal{C}|\leq 2q+1$ , it holds that

$|\mathcal{C}|+$ odd$(\mathcal{C})\geq 2q+2.$
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The point of the above two theorems is that a linear code of minimum distance $\mu+1$ defined by a
parity-check matrix $H=$ $[I A]$ with A being an incidence matrix of a finite geometric $S(2, \mu,v)$ would
perform better if check bits suffer from errors much less likely than information bits. This is because the
code is almost of minimum distance $2\mu$ in the sense that there is only one type of the smallest weight
codeword, which is the one that consists of one information bit and the corresponding $\mu$ check bits. An
error of this type would be unlikely to occur under the additional assumption that the more reliable qubits
have a sufficiently smaller error probability.

4 Concluding Remarks
We have seen one example case where design theory and coding theory play the central role in quantum
error correction. Because there are an abundance of results on PBDs in combinatorics, the framework we
reviewed can import various theoretical results directly from design theory and coding theory.

One notable result we did not mention is that, as expected from the theoretical analysis presented in
this note, quantum LDPC codes from combinatorial designs were shown to have good error performance
through simulations [17]. It is also worth noting that the effect of almost doubled minimum distances of
finite geometric codes would very likely be favorable across many different decoding methods and algo-
rithms. For instance, in the case of iterative decoding, a nonempty set of bit vertices in a Tanner graph that
are not correct after 1 iterations for all $1\geq 1_{c}$ for some absolute constant $1_{c}$ is called a trapping set [39]. To im-
prove the error floor and slope of the block error rate curve, it is desirable for a parity-check matrix to avoid
small trapping sets [29]. While the set of small trapping sets generally varies from algorithm to algorithm
and notoriously difficult to identify, codewords of very small weight are surely among them. We hope that
design theory and coding theory will find more and more applications and keep playing important roles in
quantum information science.
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