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1 3 colored point sets in the plane

Let R, B and G denote disjoint sets of red points, blue points and green
points in the plane, respectively. If no three points of RUBUG are collinear,
we say that R, B and G are in general position in the plane. We always
assume that given sets of colored points are in general position.

We begin with the following well-known theorem on two colored point sets
in the plane. Notice that a geometric graph is a graph drawn in the plane
whose edges are straight line segments, and every edge of an alternating
matching joins two points with distinct colors.

Theorem 1 ([3]). If |R| = |B|, then there exists an alternating non-crossing
geometric perfect matching on RU B (see Figure 1).

!
e o ° —> *—0o
.Ooo .\OQ/O

® redpoints O blue points

Figure 1: An alternating non-crossing geometric perfect matching on RU B.

We generalize the above theorem by considering 3 colored point sets.
The standard proof of the following theorem is basically similar to that of
the above Theorem 1, but more difficult.
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Corollary 2 (Kano, Suzuki, Uno [4]). If [ RUBUG|=2n, |R|<n, |B|<n
and |G| < n, then there ezists an alternating non-crossing geometric perfect
matching on RUBUG.
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Figure 2: An alternating non-crossing geometric perfect matching on RUBU

G.

It is known as the discrete version of Ham-Sandwich theorem that if |[R| =
2m and | B| = 2n, then there exists a bisector line  such that |lef¢({)NR| = m
and |left(l) N B| = n. It is easy to see that there exist configurations of 3
colored points in the plane such that there exists no line  such that a half-
plane determined by ! contains the same number of each colored points. Thus
the condition in the next theorem is necessary. For a set X of points in the
plane, we denote the conver hull of X by conv(X).

Theorem 3 (Bereg and Kano [2]). Assume that |R| = |B| = |G| = n, where
n > 2. If all the vertices of conu(RUBUG) are red, then there exists a line |
such that |right(l) N\ R| = |right() N B| = |right(l) NG| = k for some integer
1<k<n-—1 (see Figure 3).

We give one more result on three colored point sets in the plane, and
explain a sketch of its proof.

Theorem 4 (Berege and etc. [1]). Assume that n red points and n blue
points and n green points lie on a circle in the plane. Then for every integer
1 < k < n—1, there ezist two intervals I and J on the circle such that IUJ
contains ezactly k red points, k blue ponts and k green points (see Figure 4).

We give a sketch of its proof.

Lemma 5. Let n > 2 be an integer. Then every integer 1 < k <n—1 can
be obtained from n by applying the following functions f and g some times.

f(z) = |z/2] and g(z)=n-—-zx
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® red points O blue points @ green points

Figure 3: All the vertices of conv(R U B U G) are red; An line [ such that
right(l) contains exactly 3 red points, 3 blue points and 3 green points.
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Figure 4: Two disjoint intervals I and J that contains exactly 3 red points,
3 blue points and 3 green points.
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We show only one example, whose generalization gives us its proof. Sup-
pose that n = 30 and k = 2. Then |[n/2| = 15. We construct the following
series of intervals as follows: if an interval [z,y] does not contain 15 and
y < 15, then make an interval [2z,2y + 1]. If [z, y] does not contain 15 and
15 < z, then make an interval [30 — y, 30 — z]. If an interval [z, y] contains
15, then stop. Then we can obtain k = 2 from |n/2| = 15 by applying the
operations f(z) and g(z) as follows.

k=2 4,5 — [8,11] — [16,23] — [7,14] — [14,29] 5 15

2 « 5 « 11 « 23 +« 7 +«+ 15

The next lemma follows immediately from Lemma 5

Lemma 6. Let n > 2 be an integer, and let X be a subset of {0,1,2,...,n}.
Define two functions f and g as follows:

fl@)=|z/2] and gl&)=n-z
If X has the following properties, then X = {0,1,2,...,n}.
neX; andif ke X, then gk)eX and f(k)e X.
Sketch of the proof of Theorem 4. Let us define

X = {1 <z <n : there exist two intervals I and J on the circle
such that I U J contains exactly x red points,
z blue points and z green points.}

It is easy to see that n € X, and if £ € X, then the complement I U J
on the circle contains exactly n — k red points, n — k blue points and n — &
green points, which implies g(k) = n — k € X. Moreover, we can show that
if there exist intervals I and J on the circle such that I U J contains exactly
k red points, k blue points and k green points, then there exist intervals I’
and J' in U J such that I' UJ’ contains exactly |k/2] red points |k/2] blue
points and |k/2| green points. Hence by Lemma 6, X = {0,1,2,...,n},
which implies that Theorem 4 holds.
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