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1 3 colored point sets in the plane
Let $R,$ $B$ and $G$ denote disjoint sets of red points, blue points and green
points in the plane, respectively. If no three points of $R\cup B\cup G$ are collinear,
we say that $R,$ $B$ and $G$ are in general position in the plane. We always
assume that given sets of colored points are in general position.

We begin with the following well-known theorem on two colored point sets
in the plane. Notice that a geometric graph is a graph drawn in the plane
whose edges are straight line segments, and every edge of an alternating
matching joins two points with distinct colors.

Theorem 1 ([3]). If $|R|=|B|$ , then there exists an alternating non-crossing
geometric perfect matching on $R\cup B$ ($\mathcal{S}ee$ Figure 1).
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Figure 1: An alternating non-crossing geometric perfect matching on $R\cup B.$

We generalize the above theorem by considering 3 colored point sets.
The standard proof of the following theorem is basically similar to that of
the above Theorem 1, but more difficult.
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Corollary 2 (Kano, Suzuki, Uno [4]). If $|R\cup B\cup G|=2n,$ $|R|\leq n,$ $|B|\leq n$

and $|G|\leq n$ , then there exists an alternating non-crossing geometric perfect
matching on $R\cup B\cup G.$
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Figure 2: An alternating non-crossing geometric perfect matching on $R\cup B\cup$

$G.$

It is known as the discrete version of Ham-Sandwich theorem that if $|R|=$

$2m$ and $|B|=2n$ , then there exists a bisector line $l$ such that $|left(l)\cap R|=m$

and $|left(l)\cap B|=n$ . It is easy to see that there exist configurations of 3
colored points in the plane such that there exists no line $l$ such that a half-
plane determined by $l$ contains the same number of each colored points. Thus
the condition in the next theorem is necessary. For a set $X$ of points in the
plane, we denote the convex hull of $X$ by conv(X).

Theorem 3 (Bereg and Kano [2]). Assume that $|R|=|B|=|G|=n$ , where
$n\geq 2$ . If all the vertices of conv $(R\cup B\cup G)$ are red, then there exists a line $l$

such that $|right(l)\cap R|=|right(l)\cap B|=|right(l)\cap G|=k$ for some integer
$1\leq k\leq n-1$ (see Figure 3).

We give one more result on three colored point sets in the plane, and
explain a sketch of its proof.

Theorem 4 (Berege and etc. [1]). Assume that $n$ red points and $n$ blue
points and $n$ green points lie on a circle in the plane. Then for every integer
$1\leq k\leq n-1$ , there exist two intervals I and $J$ on the circle such that $I\cup J$

contains exactly $k$ red points, $k$ blue ponts and $k$ green points (see Figure 4).

We give a sketch of its proof.

Lemma 5. Let $n\geq 2$ be an integer. Then every integer $1\leq k\leq n-1$ can
be obtained from $n$ by applying the following functions $f$ and $g$ some times.

$f(x)=\lfloor x/2\rfloor$ and $g(x)=n-x$
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Figure 3: All the vertices of conv $(R\cup B\cup G)$ are red; An line $l$ such that
right $(l)$ contains exactly 3 red points, 3 blue points and 3 green points.
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Figure 4: Two disjoint intervals $I$ and $J$ that contains exactly 3 red points,
3 blue points and 3 green points.
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We show only one example, whose generalization gives us its proof. Sup-
pose that $n=30$ and $k=2$ . Then $\lfloor n/2\rfloor=15$ . We construct the following
series of intervals as follows: if an interval $[x,y]$ does not contain 15 and
$y<15$ , then make an interval $[2x, 2y+1]$ . If $[x, y]$ does not contain 15 and
$15<x$ , then make an interval $[30-y, 30-x]$ . If an interval $[x, y]$ contains
15, then stop. Then we can obtain $k=2$ from $\lfloor n/2\rfloor=15$ by applying the
operations $f(x)$ and $g(x)$ as follows.

$k=2arrow[4,5]arrow[8,11]arrow[16,23]arrow[7,14]arrow[14,29]\ni 15$

$2 arrow 5 arrow 11 arrow 23 arrow 7 arrow 15$

The next lemma follows immediately from Lemma 5

Lemma 6. Let $n\geq 2$ be an integer, and let $X$ be a $sub_{\mathcal{S}et}$ of $\{0,1,2, \ldots, n\}.$

Define two functions $f$ and $ga\mathcal{S}$ follows:
$f(x)=\lfloor x/2\rfloor$ and $g(x)=n-x$

If $X$ has the following properties, then $X=\{0,1,2, \ldots, n\}.$

$n\in X$ ; and if $k\in X$ , then $g(k)\in X$ and $f(k)\in X.$

Sketch of the proof of Theorem 4. Let us define

$X=\{1\leq x\leq n$ : there exist two intervals $I$ and $J$ on the circle
such that $I\cup J$ contains exactly $x$ red points,
$x$ blue points and $x$ green points.}

It is easy to see that $n\in X$ , and if $k\in X$ , then the complement $I\cup J$

on the circle contains exactly $n-k$ red points, $n-k$ blue points and $n-k$
green points, which implies $g(k)=n-k\in X$ . Moreover, we can show that
if there exist intervals $I$ and $J$ on the circle such that $I\cup J$ contains exactly
$k$ red points, $k$ blue points and $k$ green points, then there exist intervals $I’$

and $J’$ in $I\cup J$ such that $I’\cup J’$ contains exactly $\lfloor k/2\rfloor$ red points $\lfloor k/2\rfloor$ blue
points and $\lfloor k/2\rfloor$ green points. Hence by Lemma 6, $X=\{0,1,2, \ldots, n\},$

which implies that Theorem 4 holds.
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