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Abstract

In this draft, for the study of the zeros of the Ehrhart polynomials of
reflexive polytoeps, we consider a relation between the Ehrhart polynomials
of reflexive polytopes and orthogonal polynomial systems.

1 Introduction

1.1 Ehrhart polynomials of integral convex polytopes

Let $\mathcal{P}\subset \mathbb{R}^{N}$ be an integral convex polytope, which is a convex polytope all of whose
vertices have integer $co$ordinates, of dimension $n$ . Given a positive integer $x\in \mathbb{Z}_{>0},$

we write
$i(\mathcal{P}, x)=|x\mathcal{P}\cap \mathbb{Z}^{N}|,$

where $x\mathcal{P}=\{x\alpha : \alpha\in \mathcal{P}\}$ and $|\cdot|$ denotes the cardinality. The studies on $i(\mathcal{P}, x)$

originated in the work of Ehrhart ([9]), who proved that the enumerative function
$i(\mathcal{P}, x)$ can be described as a polynomial in $x$ of degree $n$ whose constant term
is 1. We call the polynomial $i(\mathcal{P}, x)$ the Ehrhart polynomial of $P$ . We refer the
reader to [5, Chapter 3] or [12, Part II] for the introduction to the theory of Ehrhart
polynomials.

We also define the integers $\delta_{0},$ $\delta_{1},$

$\ldots$ by the following formula

$\sum_{x=0}^{\infty}i(\mathcal{P}, x)t^{x}=\frac{\sum_{i=0}^{\infty}\delta_{i}t^{i}}{(1-t)^{n+1}}.$

Since $i(\mathcal{P}, x)$ is a polynomial in $x$ of degree $n$ , we know that $\delta_{i}=0$ for every $i>n$

(consult, e.g., [18, Corollary 4.3.1]). The integer sequence $\delta(\mathcal{P})=(\delta_{0}, \delta_{1}, \ldots, \delta_{n})$ is
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called the $\delta$ -vector $($ alternately, $h^{*}-$vector $or$ Ehrhart $h-$vector) of $\mathcal{P}$ . The following
properties on $\delta$-vectors are well known:

$\bullet$ One has $\delta_{0}=1,$ $\delta_{1}=|\mathcal{P}\cap \mathbb{Z}^{N}|-(n+1)$ .

$\bullet$ One has $\delta_{n}=|(\mathcal{P}\backslash \partial \mathcal{P})\cap \mathbb{Z}^{N}|$ . Hence, we also have $\delta_{1}\geq\delta_{n}.$

$\bullet$ Each $\delta_{i}$ is nonnegative ([17]).

$\bullet$ The leading coefficient of $i(\mathcal{P}, x)$ , whi$ch$ equals $\sum_{i=0}^{n}\delta_{i}/n!$ , coincides with the
volume of $\mathcal{P}$ ([18, Corollary 3.20]).

$\bullet$ The Ehrhart polynomial can be described like

$i( \mathcal{P}, x)=\sum_{k=0}^{n}\delta_{k}(\begin{array}{l}x+n-kn\end{array}).$

1.2 Reflexive polytopes

For an integral convex polytope $\mathcal{P}\subset \mathbb{R}^{n}$ of dimension $n$ , we say that $\mathcal{P}$ is a reflexive
polytope if $\mathcal{P}$ contains the origin of $\mathbb{R}^{n}$ as the unique interior integer point and the
dual polytope $\mathcal{P}^{\vee}$ of $\mathcal{P}$ is also integral, where $\mathcal{P}^{\vee}=\{x\in \mathbb{R}^{n}:\langle x,$ $y\rangle\leq 1$ for all $y\in$

$\mathcal{P}\}$ and $\langle,$ $\rangle$ denotes the usual inner product of $\mathbb{R}^{n}.$

Recently, the zeros of the Ehrhart polynomials of integral convex polytopes have
been studied by many researchers $([4, 6, 7, 10, 11, 14, 15])$ . Especially, the distribu-
tion of the real parts of the zeros is of particular interest. In [4, Conjecture 1.4], it
was conjectured that all the zeros $\alpha$ of the Ehrhart polynomial of an integral convex
polytope of dimension $nsatisfy-n\leq\Re(\alpha)\leq n-1$ , where $\Re(\alpha)$ stands for the real
part of $\alpha$ . However, this conjecture has been disproved by [11] and [15].

On the other hand, for a reflexive polytope $\mathcal{P}$ of dimension $n$ , its Ehrhart poly-
nomial has an extremal property. More precisely, the following functional equation
holds:

$i(\mathcal{P}, x)=(-1)^{n}i(\mathcal{P}, -x-1)$ .

This says that all the zeros of the Ehrhart polynomials of reflexive polytopes are
distributed symmetrically in the complex plane with respect to the vertical line
$\Re(z)=-1/2$ . Note that the line $\Re(z)=-1/2$ is the bisector of the vertical strip
$-n\leq\Re(z)\leq n-1$ . Hence the problem of which reflexive polytope whose Ehrhart
polynomial has the property

all the zeros of the Ehrhart polynomial have the same real part $-1/2\cdots\cdots(\#)$

arises naturally and looks fascinating. This is solved by [6, Proposition 1,9] in the
case of $n\leq 4$ . In order to try this problem for the general case, we employ the idea
of orthogonal polynomials.
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1.3 Orthogonal polynomial and its zeros
We refer the reader to [8] for the introduction to orthogonal polynomial systems. Let
$\{f_{n}(x)\}_{n=0}^{\infty}$ be an orthogonal polynomial system with respect to a positive-definite
moment functional. $(In the rest of this$ draft, $we$ often write $a (positive-$definite)
$OPS$” instead of an orthogonal polynomial system with respect to $a$ (positive-
definite) moment functional.) We say that a polynomial is $a$ (positive-definite)
orthogonal polynomial if it is one polynomial of some (positive-definite) $OPS$ . On
the zeros of an orthogonal polynomial, the following is a well-known fact:

Theorem 1 (cf. [8, Theorem 5.2]) The zeros of $f_{n}(x)$ are all real and simple.

On the other hand, for the Ehrhart polynomial $i(\mathcal{P}, x)$ of some reflexive polytope
$\mathcal{P}$ of dimension $n$ , let $f_{n}(x)=i(\mathcal{P}, \sqrt{-1}x-1/2)$ . If we know that $f_{n}(x)$ is a positive-
definite $OPS$ , then all the zeros of $f_{n}(x)$ are real numbers by Theorem 1. It then
follows from $f_{n}(x)=i(\mathcal{P}, \sqrt{-1}x-1/2)$ that $\mathcal{P}$ has the property $(\#)$ , that is, all the
zeros of $i(\mathcal{P}, x)$ have the same real part $-1/2.$

Such a consideration would naturally lead the author into the temptation to
study the following problem:

Problem 2 Find or characterize reflexive polytopes $\mathcal{P}$ whose Ehrhart polynomial
$i(\mathcal{P}, x)$ satisfies that $i(\mathcal{P}, \sqrt{-1}x-1/2)$ is a $po\mathcal{S}itive$-definite orthogonal polynomial.

A challenge to this problem is significant towards a complete characterization of
reflexive polytopes which have the property $(\#)$ .

1.4 organization

A brief organization of this draft is as follows. In Section 2, we discuss a relation
between the Ehrhart polynomials of reflexive polytopes and $OPS$ . Especially, we
consider a certain three-terms recurrence formula for the Ehrhart polynomials of
reflexive polytopes (Proposition 4). In Section 3, we find four examples of reflexive
polytopes each of whose Ehrhart polynomials $i(\mathcal{P}, x)$ satisfies that $i(\mathcal{P}, \sqrt{-1}x-1/2)$

is a positive-definite orthogonal polynomial (Examples 5, 6, 7 and 8). Finally, in
Section 4, as one small partial answer for Problem 2, we present Theorem 12.

2 Ehrhart polynomials of reflexive polytopes and
the three-terms recurrence formula

In this section, we study a relation between the Ehrhart polynomials of reflexive
polytopes and $OPS.$
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First, we recall the following proposition, which gives a characterization of re-
flexive polytopes in terms of Ehrhart polynomials or $\delta$-vectors.

Proposition 3 (cf. [3, 13]) Let $\mathcal{P}$ be an integral convex polytope of dimension $n,$

$i(\mathcal{P}, x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+1$ its Ehrhart polynomial and $\delta(\mathcal{P})=(\delta_{0}, \delta_{1}, \ldots, \delta_{n})$

its $\delta$ -vector. Then the following four conditions are equivalent:

(a) $\mathcal{P}$ is unimodularly equivalent to a reflexive polytope;

(b) $\delta(\mathcal{P}_{n})i_{\mathcal{S}}$ symmetric, i. e., $\delta_{j}=\delta_{n-j}$ for every $0\leq j\leq n$ ;

(c) the functional equation $i(\mathcal{P}, x)=(-1)^{n}i(\mathcal{P}, -x-1)$ holds;

(d) $na_{n}=2a_{n-1}.$

Next, we discuss when a sequence of the Ehrhart polynomials of reflexive poly-
topes forms an $OPS.$

Proposition 4 Let $\mathcal{P}_{n},$ $n\geq 0$ , be reflexive polytopes of dimension $n$ and let $f_{n}(x)=$

$i(\mathcal{P}_{n}, x)$ . Then the sequence of the Ehrhart polynomials $\{f_{n}(x)\}_{n=0}^{\infty}$ is an $OPS$ if and
only if $\{f_{n}(x)\}_{n=0}^{\infty}$ satisfies the three-terms recurrence formula

$f_{n}(x)=M_{n}(2x+1)f_{n-1}(x)+(1-M_{n})f_{n-2}(x)$ for $n\geq 2$ , (1)

where each $M_{n}$ is a positive rational number. Moreover, let $g_{n}(x)=f_{n}(\sqrt{-1}x-$

$1/2)/k_{n}$ , where $k_{n}$ is the leading coefficient of the polynomial $f_{n}(\sqrt{-1}x-1/2)$ . Then
$\{g_{n}(x)\}_{n=0}^{\infty}$ is a positive-definite $OPS$ if and only if $\{g_{n}(x)\}_{n=0}^{\infty}$ satisfies the three-
terms recurrence formula

$g_{n}(x)=xg_{n-1}(x)-N_{n}g_{n-2}(x)$ for $n\geq 2,$

where each $N_{n}$ is a rational number with $N_{n}>0$ for $n\geq 2.$

A sketch of proof is as follows. In general, by [8, Theorem 4.1] together with [8,
Theorem 4.4], a sequence $\{h_{n}(x)\}_{n=0}^{\infty}$ of the polynomials $h_{n}(x)$ of degree $n$ is $OPS$

if and only if this satisfies a certain three-terms recurrence formula, which is of the
form

$h_{n}(x)=(A_{n}x+B_{n})h_{n-1}(x)+C_{n}h_{n-2}(x)$ .

Thanks to Proposition 3, we obtain that $A_{n}=2B_{n}$ in the case of the Ehrhart
polynomials of reflexive polytopes. Moreover, since the constant of the Ehrhart
polynomial is always 1, we also obtain $B_{n}+C_{n}=1$ . In addition, it is also known
that $\{h_{n}(x)\}_{n=0}^{\infty}$ is a positive-definite $OPS$ if and only if $C_{n}$ is always negative for
each $n\geq 2.$
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3Examples of reflexive polytopes whose Ehrhart
polynomials satisfy (1)

In this section, we present some examples of reflexive polytopes. The Ehrhart poly-
nomials of such examples satisfy the recurrence (1).

Let $e_{1},$
$\ldots,$

$e_{n}\in \mathbb{R}^{n}$ be the unit vectors of $\mathbb{R}^{n}.$

Example 5 (cross polytope) Let $\mathcal{P}_{n}=$ conv $(\{\pm e_{1}, \ldots, \pm e_{n}\})$ . Then this is called
a cross polytope of dimension $n$ . Let $f_{n}(x)=i(\mathcal{P}_{n}, x)$ be its Ehrhart polynomial and
$\delta(\mathcal{P}_{n})$ its $\delta$-vector. Then it is well known that $\delta(\mathcal{P}_{n})=((\begin{array}{l}n0\end{array}), (\begin{array}{l}nl\end{array}), \ldots, (\begin{array}{l}nn\end{array}))$ , i.e.,

$f_{n}(x)= \sum_{k=0}^{n}(\begin{array}{l}nk\end{array})(\begin{array}{l}x+n-kn\end{array}).$

Note that the leading coefficient of $f_{n}(x)$ is equal to $\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})/n!=2^{n}/n!.$

Now one can check by a direct computation that $f_{n}(x)$ satisfies (1) with $M_{n}=$

$1/n$ , that is,

$f_{n}(x)= \frac{1}{n}(2x+1)f_{n-1}(x)+\frac{n-1}{n}f_{n-2}(x)$ for $n\geq 2$ . (2)

Let
$\tilde{f_{n}}(x)=\frac{n!\cdot f_{n}(\sqrt{-1}x-\frac{1}{2})}{\sqrt{-1}2^{n}}.$

Then $\tilde{f_{n}}(x)$ is a monic polynomial in $x$ . From (2), one sees that $\tilde{f_{n}}(x)$ satisfies the
recurrence

$\tilde{f_{n}}(x)=x\overline{f_{n-1}}(x)-\frac{(n-1)^{2}}{4}\overline{f_{n-2}}(x)$ for $n\geq 2.$

Since $(n-1)^{2}/4>0$ for $n\geq 2$ , this says that $\{\tilde{f_{n}}(x)\}_{n=0}^{\infty}$ is a positive-definite $OPS$

by Proposition 4. Hence $\tilde{f_{n}}(x)$ has the zeros which are all real and simple.
Therefore, $we^{t}$ conclude that each cross polytope has the property $(\#)$ .

Example 6 (dual of Stasheff polytope) Let $\mathcal{P}_{n}=$ conv $(\{\pm e_{1}, \ldots, \pm e_{n}\}\cup\{e_{i}+$

. . . $+e_{j}$ : $1\leq i<j\leq n\})$ . Note that this is a convex hull of the almost positive
roots of type A Weyl group and this is a dual polytope of so-called the Stash-

eff polytope of dimension $n$ . Then it is known by Athanasiadis [2] that $\delta(\mathcal{P}_{n})=$

$( \frac{1}{n+1}(\begin{array}{l}n+10\end{array})(\begin{array}{l}n+11\end{array}), \frac{1}{n+1}(\begin{array}{l}n+l1\end{array})(\begin{array}{l}n+12\end{array}), \ldots, \frac{1}{n+1}(\begin{array}{l}n+1n\end{array})(_{n}^{n}I_{1}^{1}))$ , i.e.,

$f_{n}(x)= \sum_{k=0}^{n}\frac{1}{n+1}(\begin{array}{ll}n +1 k\end{array})(_{k}^{n}:_{1}^{1}) (\begin{array}{l}x+n-kn\end{array}).$
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Here we note that each $\frac{1}{n+1}(\begin{array}{l}n+lk\end{array})(_{k}^{n}\ddagger_{1}^{1})$ is known as the Narayana number. We notice
that the leading coefficient of $f_{n}(x)$ is equal to $\sum_{k=0}^{n}\frac{1}{n+1}(\begin{array}{l}n+1k\end{array})(\begin{array}{l}n+1k+1\end{array})/n!=C_{n+1}/n!,$

where $C_{n}$ is the Catalan number.
Now one can check that $f_{n}(x)$ satisfies (1) with $M_{n}=(2n+1)/n(n+2)$ , that is,

$f_{n}(x)= \frac{2n+1}{n(n+2)}(2x+1)f_{n-1}(x)+\frac{(n+1)(n-1)}{n(n+2)}f_{n-2}(x)$ for $n\geq 2.$

Let
$\tilde{f_{n}}(x)=\frac{n!\cdot f_{n}(\sqrt{-1}x-\frac{1}{2})}{\sqrt{-1}C_{n+1}}.$

Then $\tilde{f_{n}}(x)$ is a monic polynomial in $x$ and one sees that $\tilde{f_{n}}(x)$ satisfies the recurrence

$\tilde{f_{n}}(x)=x\overline{f_{n-1}}(x)-\frac{(n^{2}-1)^{2}}{4(4n^{2}-1)}\overline{f_{n-2}}(x)$ for $n\geq 2.$

Since $(n^{2}-1)^{2}/4(4n^{2}-1)>0$ for $n\geq 2$ , this says that $\{\tilde{f_{n}}(x)\}_{n=0}^{\infty}$ is a positive-
definite $OPS$ . Hence $\tilde{f_{n}}(x)$ has the zeros which are all real and simple.

Therefore, we conclude that each dual polytope of the Stasheff polytope has the
property $(\#)$ .

Example 7 (root polytope of type A) Let $\mathcal{P}_{n}=$ conv $(\{\pm e_{1}, \ldots, \pm e_{n}\}\cup\{\pm(e_{i}+$

$+e_{j})$ : $1\leq i<j\leq n\})$ . Note that this is a convex hull of the positive roots of
type A Weyl group and this is the root polytope of type $A$ of dimension $n$ . Then it
is known by [1] that $\delta(\mathcal{P}_{n})=((\begin{array}{l}n0\end{array}), (\begin{array}{l}n1\end{array}), \ldots, (\begin{array}{l}nn\end{array}))$ , i.e.,

$f_{n}(x)= \sum_{k=0}^{n}(\begin{array}{l}nk\end{array})(\begin{array}{l}x+n-kn\end{array}).$

Note that the leading coefficient of $f_{n}(x)$ is equal to $\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})/n!=(\begin{array}{l}2nn\end{array})/n!.$

Now one can check that $f_{n}(x)$ satisfies (1) with $M_{n}=(2n-1)/n^{2}$ , that is,

$f_{n}(x)= \frac{2n-1}{n^{2}}(2x+1)f_{n-1}(x)+\frac{(n-1)^{2}}{n^{2}}f_{n-2}(x)$ for $n\geq 2.$

Let
$\tilde{f_{n}}(x)=\frac{n!\cdot f_{n}(\sqrt{-1}x-\frac{1}{2})}{\sqrt{-1}^{n}(\begin{array}{l}2nn\end{array})}.$

Then $\tilde{f_{n}}(x)$ is a monic polynomial in $x$ and one sees that $\tilde{f_{n}}(x)$ satisfies the recurrence

$\tilde{f_{n}}(x)=x\overline{f_{n-1}}(x)-\frac{(n-1)^{4}}{4(2n-1)(2n-3)}\overline{f_{n-2}}(x)$ for $n\geq 2.$

Since $(n-1)^{4}/4(2n-1)(2n-3)>0$ for $n\geq 2$ , this says that $\{\tilde{f_{n}}(x)\}_{n=0}^{\infty}$ is a
positive-definite $OPS$ . Hence $\tilde{f_{n}}(x)$ has the zeros which are all real and simple.

Therefore, we conclude that each root polytope of type A has the property $(\#)$ .
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Example 8 (root polytope of type C) Let $\mathcal{P}_{n}=$ conv $(\{\pm(e_{i}+\cdots+e_{j-1})$ : $1\leq$

$i<j\leq n\}\cup\{\pm(2(e_{i}+\cdots+e_{n-1})+e_{n}) : 1\leq i\leq n-1\})$ . Note that this is a convex
hull of the positive roots of type C Weyl group and this is the root polytope of type
$C$ of dimension $n$ . Then it is als $0$ known by [1] that $\delta(\mathcal{P}_{n})=((\begin{array}{l}2n0\end{array}), (\begin{array}{l}2n2\end{array}), \ldots, (\begin{array}{l}2n2n\end{array}))$ ,
i. e.,

$f_{n}(x)= \sum_{k=0}^{n}(\begin{array}{l}2n2k\end{array})(\begin{array}{l}x+n-kn\end{array}).$

Note that the leading coefficient of $f_{n}(x)$ is equal to $\sum_{k=0}^{n}(\begin{array}{l}2n2k\end{array})/n!=2^{2n-1}/n!.$

Now one can check that $f_{n}(x)$ satisfies (1) with $M_{n}=2/n$ , that is,

$f_{n}(x)= \frac{2}{n}(2x+1)f_{n-1}(x)+\frac{n-2}{n}f_{n-2}(x)$ for $n\geq 2.$

Let
$\tilde{f_{n}}(x)=\frac{n!\cdot f_{n}(\sqrt{-1}x-\frac{1}{2})}{\sqrt{-1}2^{2n-1}}.$

Then $\tilde{f_{n}}(x)$ is a monic polynomial in $x$ and one sees that $\tilde{f_{n}}(x)$ satisfies the recurrence

$\tilde{f_{n}}(x)=x\overline{f_{n-1}}(x)-\frac{(n-1)(n-2)}{16}\overline{f_{n-2}}(x)$ for $n\geq 2.$

Since $(n-1)(n-2)/16$ is $0$ if $n=2$ , this is not an $OPS.$

We notice that since $f_{2}(x)=(2x+1)^{2},$ $f_{n}(x)$ is divisible by $(2x+1)$ for $n\geq 1$

by the above recurrence. Thus, when we let $g_{n}(x)=f_{n+1}(x)/(2x+1)$ for $n\geq 1$ and
$g_{0}(x)=1$ , it is easy to see that

$g_{n}(x)= \frac{1}{n}(2x+1)g_{n-1}(x)+\frac{n-1}{n}g_{n-2}(x)$ for $n\geq 2.$

This is nothing but the recurrence in Example 5. Therefore, we conclude that each
root polytope of type $C$ has the property $(\#)$ .

Remark 9 In the above four examples, each of the Ehrhart polynomials satisfies
the recurrence (1) with some certain $M_{n}$ . Then each $M_{n}$ is actually a nonincreasing
rational function on $n$ with $0<M_{n}\leq 1$ for $n\geq 2$ . We also notice that the above
$M_{n}$ ’s take four distinct values 1/2, 5/8, 3/4 and 1 when $n=2.$

Remark 10 Some of the above examples can be written as a hypergeometric func-
tion. For example,

$\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})(\begin{array}{l}x+n-kn\end{array})={}_{2}F_{1}(-n, -x;1;2)$ ,

$\sum_{k=0}^{n}(\begin{array}{l}nk\end{array})(\begin{array}{l}x+n-kn\end{array})={}_{3}F_{2}(-n, n+1, -x;1,1;1)$ .
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These are related to the Hahn polynomial, which is a hypergeometric orthogonal
polynomial. Consult, e.g., [8, Chapter V-3].

4 Result
Finally, we discuss the existence of the other examples except for the four examples
appearing in the previous section.

We consider $M_{n}$ appearing in the recurrence (1). In particular, we notice the
case of $n=2$ , i.e., $M_{2}.$

Here we recall the following well-known result.

Proposition 11 (cf. [16, Section 5]) There are 16 reflexive polytopes of dimen-
sion 2 up to unimodular equivalence. In particular, there are 7 Ehrhart polynomials
of reflexive polytopes of dimension 2, which are

$ax^{2}+ax+1, a= \frac{3}{2},2, \frac{5}{2},3, \frac{7}{2},4, \frac{9}{2}.$

Fkom this proposition, $M_{n}$ appearing in (1) must be equal to one of

$\frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{8}{8}, \frac{9}{8}$

when $n=2.$

On the one hand, as mentioned in Remark 9, we know the examples of reflexive
polytopes in the case where $M_{2}$ is equal to 4/8, 5/8, 6/8 or 8/8.

On the other hand, when $M_{2}=9/8$ , the corresponding Ehrhart polynomial of
reflexive polytope of dimension 2 is $9/2x^{2}+9/2x+1=(3x+1)(3x+2)/2$ . Obviously,
the zeros of this polynomial do not have the same real part $-1/2.$

Hence it is natural to think of the case where $M_{2}$ is equal to 3/8 or 7/8. The
following is the main theorem of this draft, which gives one small partial answer for
Problem 2.

Theorem 12 (a) There exists a sequence of the Ehrhart polynomials of reflex-
ive polytopes $\{i(\mathcal{P}_{n}, x)\}_{n=0}^{\infty}$ satisfying the three-terms recurrence (1) with certain
$\{M_{n}\}_{n=2}^{\infty}$ , where $M_{2}$ is one of {4/8, 5/8, 6/8, 8/8}.
(b) On the $contrary_{f}$ there exists no sequence of the Ehrhart polynomials of reflexive
polytopes $\{i(\mathcal{P}_{n}, x)\}_{n=0}^{\infty}$ satisfying the three-terms recurrence (1) if we assume that
$M_{n}$ \’is a monotone decreasing rational function on $n$ and $M_{2}$ is one of {3/8, 7/8}.
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