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ABSTRACT. We show that designs on real Grassmannian manifolds
can be obtained from a sequence of antipodal spherical designs.
Our method is based on a study of relations among designs on
compact homogeneous spaces.

1. DESIGNS ON REAL GRASSMANNIAN MANlFOLDS FROM
SEQUENCES OF SPHERICAL DESIGNS

Let us denote by
$\mathcal{G}_{m,n}^{\mathbb{R}}$ $:=$ { $m$-dimensional subspaces of real vector space $\mathbb{R}^{n}$ },

$S^{d}:=$ {Unit vectors in $\mathbb{R}^{d+1}$ }.
The purpose of this paper is to show that $t$-designs on a real Grass-
mannian manifold $\mathcal{G}_{m,n}^{\mathbb{R}}$ can be obtained from a sequence of antipodal
spherical $tarrow$designs $Y_{1},$

$\ldots,$
$Y_{n-1}$ where $Y_{i}$ is an antipodal spherical t-

design on $S^{i}.$

The concept of spherical designs on $S^{d}$ were introduced by Delsarte-
Goethals-Seidel [4] in 1977 as follows: For a fixed $t\in \mathbb{N}$ , a finite subset
$X$ of $S^{d}$ is called a spherical $t$ -design on $S^{d}$ if

(1.1) $\frac{1}{|X|}\sum_{x\in X}f(x)=\frac{1}{|S^{d}|}\int_{S^{d}}fd\mu_{S^{d}}$

for any polynomial $f$ of degree at most $t$ . Note that the left hand side
and the right hand side in (1.1) are the averaging values of $f$ on $X$

and that on $S^{d}$ , respectively. $A$ spherical $t$-design $X$ on $S^{d}$ is called
antipodal if for any $x\in X$ , the vector -$x$ is also in $X.$

We also remark that any $(t+1)$-design on $S^{d}$ is also a $t$-design on
$S^{d}$ . The development of spherical designs until 2009 can be found in
Bannai-Bannai [2]. We remark that if we define designs on rank one
compact symmetric spaces in a similar way to that on sphere, then the
theory of designs on rank one compact symmetric spaces are parallel to
the theory of spherical designs (see $Bannaarrow$Hoggar [$3]$ more details).
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The concept of designs on real Grassmannian manifolds were intro-
duced by $Bachoc-Coulangeon-Nebe[1]$ in 2002. To state the definition
of $t$-designs on $\mathcal{G}_{m,n}^{\mathbb{R}}$ , we only need to explain what is our interested
functional space on $\mathcal{G}_{m,n}^{\mathbb{R}}.$

Let us denote by $SO$ $(n)$ the special orthogonal group of size $n$ , then
the real Grassmannian space $\mathcal{G}_{m,n}^{\mathbb{R}}$ can be regarded as a compact sym-
metric space $SO$ $(n)/S(O(m)\cross O(n-m))$ . By Peter-Weyl’s theorem,
the irreducible decomposition of the $L^{2}$-functional space $\mathcal{L}^{2}(\mathcal{G}_{m,n}^{\mathbb{R}})$ on
$\mathcal{G}_{m,n}^{\mathbb{R}}$ can be written by

$\mathcal{L}^{2}(\mathcal{G}_{m,n}^{\mathbb{R}})=\overline{\oplus}H_{m,n}^{\nu}$

where $v$ (which describes the highest weight of $H_{m,n}^{\nu}$ as an irreducible
$SO$ $(n)$ -representation) runs all sequences $v=(\nu_{1}, v_{2}, \ldots , \nu_{m})$ consists
of non-negative even integers with $v_{1}\geq\cdots\geq v_{m}\geq 0$ (see [1] for more
details).

In [1], the definition of $t$-design on $\mathcal{G}_{m,n}^{\mathbb{R}}$ as follows: a finite subset $X$

of $\mathcal{G}_{m,n}^{\mathbb{R}}$ is called a $t$ -design on $\mathcal{G}_{m,n}^{\mathbb{R}}$ if

(1.2) $\frac{1}{|X|}\sum_{x\in X}f(x)=\frac{1}{|\mathcal{G}_{m,n}^{\mathbb{R}}|}\int_{\mathcal{G}_{m,n}^{\mathbb{R}}}fd\mu_{\mathcal{G}_{m,n}^{R}}$

for any function $f$ in $\oplus_{\Sigma\nu_{i}}{}_{\leq t}H_{m,n}^{\nu}.$

In this paper, our concern is in constructions of $t$-designs on $\mathcal{G}_{m,n}^{\mathbb{R}}$ . Let
us fix an antipodal spherical $t$-design $Y_{i}$ on $S^{i}$ for each $i=1,$ $\ldots,$ $n-1.$
We give an algorithm to construct $t$-designs on $\mathcal{G}_{m,n}^{\mathbb{R}}$ by $Y_{1},$

$\ldots,$
$Y_{n-1}$ as

follows.
(i) We identify $S^{1}$ with $SO$ (2). Then $Y_{1}$ is a finite subset of $SO$ (2).

Let us put $X_{2}$ $:=Y_{1}$ as a finite subset of $SO$ (2).
(ii) Let us fix an isomorphism $SO$ (3) $/SO(2)\simeq S^{2}$ Then we ob-

tain the fiber bundle $SO$ (3) $arrow S^{2}$ The base space and fiber
space of this map are $S^{2}$ and $SO$ (2), respectively. We take a
“product” $X_{3}$ of $Y_{2}$ and $X_{2}$ in $SO$ (3).

(iii) Repeat the previus step. That is, for finite subsets $Y_{i}$ of $S^{i}$ and
$X_{i}$ of $SO$ (i), respectively, we take a product $X_{i+1}$ in $SO$ $(i+1)$

through a fiber bundle $SO$ $(i+1)arrow S^{i}$ (Note that such “a
product” is not unique since the fiber bundle is not unique).

(iv) We get a finite subset $X_{n}$ in $SO$ $(n)$ . We can find an isomor-
phism $SO$ $(n)/S(O(m)\cross O(n-m))\simeq \mathcal{G}_{m,n}^{\mathbb{R}}$ such that the in-
duced surjection $SO$ $(n)arrow \mathcal{G}_{m,n}^{\mathbb{R}}$ is 2: 1 on $X_{n}$ . Then the image
of $X_{n}$ in $\mathcal{G}_{m,n}^{\mathbb{R}}$ is a $t$-design.

Our method is based on the following two theorems:
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$\bullet$ As a product of designs on $S^{d}$ and $SO$ $(d)$ , we have a design on
$SO (d+1)$ .

$\bullet$ For a center-invariant design on $SO$ $(n)$ , we can find a nice
projection $SO$ $(n)arrow \mathcal{G}_{m,n}^{\mathbb{R}}$ such that the image of the design
is a design on $\mathcal{G}_{m,n}^{\mathbb{R}}$ , where we say that a finite subset $X$ of
$SO$ $(n)$ is center-invariant $if-X$ is also in $SO$ $(n)$ for even $n$ . If
$n$ is odd, any finite subset of $SO$ $(n)$ is center-invariant because
$SO$ $(n)$ is center-free.

To state our idea, we have to define designs on the special orthogonal
group $SO$ $(d)$ . We give a definition of designs on compact Lie groups
and its homogeneous spaces. Our constructions above is also stated for
more general cases.

In this paper, we will state our general results but omit the details
of our construction of designs on $\mathcal{G}_{m,n}^{\mathbb{R}}$ . The full detail will be reported
elsewhere.

2. RELATION AMONG DESIGNS ON COMPACT HOMOGENEOUS
SPACES

2.1. Definitions of designs on compact homogeneous spaces.
Let $G$ be a compact Lie group and $K$ a closed subgroup of $G$ . We
write $G/K$ for the quotient space of $G$ by $K$ . In this subsection, for a
finite-dimensional representation $(\rho, V)$ of $G$ , we introduce the concept
of $\rho$-designs on $G/K.$

It is well known that the closed subgroup $K$ of $G$ is also a compact
Lie group and the quotient space $G/K$ has the unique $C^{\infty}$-manifold
structure such that the quotient map $Garrow G/K$ is a $C^{\infty}$-submersion.
The $C^{\infty}$-manifold $G/K$ is called a homogeneous space of $G$ by $K$ . Let
us denote by $\mu_{G/K}$ the left $G$-invariant Haar measure on $G/K$ with
$\mu_{G/K}(G/K)=1$ . For simplicity, let us put $\Omega$ $:=G/K$ and $\mu$ $:=\mu_{G/K}.$

Let us put $C^{0}(\Omega)$ to the space of $\mathbb{C}$-valued continuous functions on
$\Omega=G/K$ . Note that any continuous function on $\Omega$ is $L^{1}$ -integrable
since $\Omega$ is compact. For a finite-dimensional complex representation
$(\rho, V)$ of $G$ , we shall define subspace $\mathcal{H}_{\Omega}^{\rho}$ of $C^{0}(\Omega)$ as follows (cf. [7,
Chapter I, \S 1] $)$ : Let us denote by $V^{\vee}$ the dual space of $V$ , i.e. $V^{\vee}$ is
the vector space consisted of all $\mathbb{C}$-linear maps from $V$ to $\mathbb{C}$ . We write

$(V^{\vee})^{K}$ $:=\{\varphi\in V^{\vee}|\varphi o(\rho(k))=\varphi$ : $Varrow \mathbb{C}$ for any $k\in K\},$

and define a $\mathbb{C}$-linear map $\Phi$ : $V\otimes(V^{\vee})^{K}arrow C^{0}(G/K)$ by

$\Phi(v\otimes\psi)(gK):=\langle\rho(g^{-1})v,$ $\psi\rangle$ for $v\in V,$ $\psi\in(V^{\vee})^{K}$ and $g\in G.$
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One can observe that $\Phi(v\otimes\psi)$ is well-defined as a $C^{\infty}$ -function on
$G/K$ . Thus we define the functional space $\mathcal{H}_{\Omega}^{\rho}$ by

(2.1) $\mathcal{H}_{\Omega}^{\rho} :=\Phi(V\otimes(V^{\vee})^{K})$ .

We give two easy observations for $\mathcal{H}_{\Omega}^{\rho}$ as follows:

Observation 2.1. $\bullet$ For two finite-dimensional representations
$(\rho_{1}, V_{1})$ and $(\rho_{2}, V_{2})$ of $G$ , we have $\mathcal{H}_{\Omega}^{\rho_{1}\oplus\rho_{2}}=\mathcal{H}_{\Omega}^{\rho_{1}}+\mathcal{H}_{\Omega}^{\rho_{2}}$ for
$\Omega=G/K.$

$\bullet$ If representations $(\rho_{1}, V_{1})$ and $(\rho_{2}, V_{2})$ of $G$ are isomorphic
from each other, then $\mathcal{H}_{\Omega}^{\rho_{1}}=\mathcal{H}_{\Omega}^{\rho_{2}}$ for $\Omega=G/K$ . In partic-
ular, $\mathcal{H}_{\Omega}^{\rho_{1}\oplus\rho_{2}}=\mathcal{H}_{\Omega}^{\rho_{1}}.$

For a finite-dimensional complex representation $(\rho, V)$ of $G$ , we define
(weighted) $\rho$-designs on $\Omega=G/K$ as follows:

Definition 2.2. Let $X$ be a finite subset of $\Omega$ and $\lambda$ : $Xarrow \mathbb{R}_{>0}$ be a
positive function on X. We say that $(X, \lambda)$ is an weighted $\rho$-design on
$(\Omega, \mu)$ if

$\sum_{x\in X}\lambda(x)f(x)=\int_{\Omega}fd\mu$

for any $\mathcal{H}_{\Omega}^{\rho}$ . Furthermore, if $\lambda$ is constant on $X$ , then $X$ is said to be
an $\rho$ -design on $(\Omega, \mu)$ with respect to the constant $\lambda.$

Let us consider the cases where any constant function on $\Omega$ is in $\rho.$

Then for any weighted $\rho$-design $(X, \lambda)$ on $(\Omega, \mu)$ , we have $\sum_{x\in X}\lambda(x)=$

$1$ . In particular, if $X$ is an $\rho-$-design on $(\Omega, \mu)$ with respect to a positive
constant $\lambda$ , then $\lambda=\frac{1}{|X|}.$

Remark 2.3. The concept of $\rho$ -designs on $(\Omega, \mu)$ is a $\mathcal{S}$pecial cases of
averaging sets on a topological finite measure space $(\Omega, \mu)$ (see [6] for
the definition of averaging sets). In particular, by [6, Main Theorem],
if $\Omega=G/K$ is connected, then $\rho$-designa on $(\Omega, \mu)$ exists for any $\rho.$

We also define multi-p-designs on $(\Omega, \mu)$ as follows. Let us denote by
$\Omega^{N}$ the direct product of $N$-times copies of $\Omega$ as a set. For a sequence
$X=(x_{1}, \ldots, x_{N})\in\Omega^{N}$ , we say that $X$ is a $multi-\rho$-design on $(\Omega, \mu)$

with respect to a positive constant $\lambda$ if

$\lambda\sum_{i=1}^{N}f(x_{i})=\int_{\Omega}fd\mu$ for any $f\in \mathcal{H}.$

We shall explain that multi-designs can be regard as weighted designs
as follows. Let us denote by $\overline{X}=\{x_{1}, \ldots, x_{N}\}\subset\Omega$ . Note that
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$|\overline{X}|<N$ if $x_{1},$ $\ldots x_{N}$ are not distinct. For each element $\overline{x}\in\overline{X}$ , we put
$m(\overline{x}):=|\{i|x_{i}=\overline{x}\}|.$

For any positive constant $\lambda>0$ , we deflne a positive function $\lambda_{\overline{X}}$ on
$\overline{X}$ by

$\lambda_{\overline{X}}:\overline{X}arrow \mathbb{R}_{>0}, \overline{x}\mapsto\lambda\cdot m(\overline{x})$ .
Then by the definition of multi-designs and weighted designs on $(\Omega, \mu)$ ,
we have the next proposition:

Proposition 2.4. Let us fix $X\in\Omega^{N}$ , a finite-dimensional $G$ -representation
$\rho_{f}$ and a positive constant $\lambda$ as above. Then the following conditions
on $(X, \rho, \lambda)$ are equivalent:

(i) $X$ is a $multi-\rho$-design on $(\Omega, \mu)$ with respect to the constant $\lambda.$

(ii) $(\overline{X}, \lambda_{\overline{X}})$ is an weighted $\rho$-design on $(\Omega, \mu)$ .

Let us denote the normalizer of $K$ in $G$ by
$N_{G}(K):=\{g\in G|g^{-1}Kg=K\}\subset G.$

Then $N_{G}(K)$ is a closed subgroup of $G$ . We consider the right $N_{G}(K)-$

action on $\Omega=G/K$ defined by:
$\omega h:=ghK$ for any $h\in N_{G}(K)$ and $\omega=gK\in G/K.$

Then the following fundamental propoaition holds:
Proposition 2.5. Let $(\rho, V)$ be a finite-dimensional unitary repre-
sentation of G. If $Y$ is a $\rho$-design on $\Omega$ , then for any $g\in G$ and
$h\in N_{G}(K)$ , the subset

$gYh :=\{gyh|y\in Y\}\subset G/K=\Omega$

is also a $\rho$ -design on $\Omega.$

2.2. Results for designs on compact homogeneous spaces. Through-
out this subsection, let us fix a finite-dimensional complex representa-
tion $(\rho, V)$ of $G$ . Recall that we defined a functional spaces $\mathcal{H}_{\Omega}^{\rho}$ and
pdesigns on $G/K.$

We also consider $G$ and $K$ as homogeneous spaces of $G$ and $K$ by the
trivial subgroup of these, respectively. Then $\rhorightarrow$-designs on $G$ and $\rho|_{K^{-}}$

designs on $K$ are defined in the sense of Definition 2.2. For simplicity,
we use the terminology of “pdesigns on $K$” for $\rho|_{K}$-designs on $K.$

The first main theorem of this section is the following:
Theorem 2.6. Let $Y$ be an $\rho$-design on $G/K$, and $\Gamma$ an $\rho$-design on
K. We fix a map $s:Yarrow G$ such that $\pi os=id_{Y}$ . Let us put

$X(Y, s, \Gamma):=\{s(y)\gamma|y\in Y, \gamma\in\Gamma\}\subset G.$

Then $X(Y, s, \Gamma)$ is an $\rho$-design on $G.$
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Remark 2.7. Let $G$ be a finite group, $K$ a subgroup of $G$, and $(\rho, V)$

a finite-dimensional complex representation of G. Then $K$ itself is an
$\rho$ -design on K. Thus, by Theorem 2.6, for any $\rho$-design $Y$ on $G/K,$

the finite subset $X$ $:=\pi^{-1}(Y)$ of $G$ is an $\rho$-design on G. This fact was
already proved by $T.$ $Ito[5].$

The next corollary followed from Theorem 2.6 immediately:

Corollary 2.8. For a fixed finite-dimensional complex representation
$(\rho, V)$ of $G,$

$N_{G}(\rho)\leq N_{K}(\rho)\cdot N_{G/K}(\rho)$ ,
where $N_{\Omega}(\rho)$ denotes the $\mathcal{S}$mallest cardinality of an $\rho$ -design on $\Omega.$

In the rest of this section, let us suppose $\dim K>1$ . Then the
following theorem holds:

Theorem 2.9. Let $X=(x_{1}, \ldots, x_{N})\in G^{N}$ be a $multi-\rho$ -design on $G.$

Then $Y$ $:=(\pi(x_{1}), \ldots, \pi(x_{N}))\in(G/K)^{N}$ is a $multi-\rho$ -design on $G/K.$

Hence, we obtain the following corollary, which gives an algorithm
to make a $\rho$-design on $G/K$ from an $\rho$-design on $G$ with a certain
condition:

Corollary 2.10. Let $X$ be an $\rho$-design on $G$ and fix $p\in \mathbb{N}$ . If $|X\cap$

$\pi^{-1}(\pi(x))|=p$ for any $x\in X$ , then $\pi(X)$ is an $\rho$-design on $G/K$ with
$| \pi(X)|=\frac{1}{p}|X|.$

2.3. Results for designs on a compact symmetric space. When
the assumption for $X$ in Corollary 2.10? We give a reasonable sufficient
condition for $X$ and $(G, K)$ in Theorem 2.14.

Throughout this subsection, we consider the following setting:

Setting 2.11. $G$ is a connected compact semisimple Lie group. $\tau$ :
$Garrow G$ is an involutive homeomorphism on $G$ such that Lie $G^{\tau}$ contains
no simple factor of Lie $G$ , where $G^{\tau}$ $:=\{g\in G|\tau(g)=g\}.$ $K$ is a
closed subgroup of $G^{\tau}$ with Lie$(K)=$ Lie $(G^{\tau})$ .

Then $G/K$ becomes a compact symmetric space with respect to the
canonical affine connection on $G/K$ . Note that a connected compact
Lie group $G$ is semisimple if and only if the center of Lie $G$ is trivial.

We denote the center of $G$ by
$Z_{G}:=\{g_{0}\in G|g_{0}gg_{0}^{-1}=g$ for any $g\in G\}.$

Let us put
$Z_{K}(G):=K\cap Z_{G}.$

Since $G$ is semisimple, $Z_{G}$ and is finite, and hence $Z_{K}(G)$ too.
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Definition 2.12. Let $X$ be a subset of G. For $p\in \mathbb{N}$ , we say that $X$

has $p$ -multiplicity for $Z_{K}(G)$ if
$|X\cap xZ_{K}(G)|=p$ for any $x\in X.$

Since $x\in xZ_{K}(G)$ for any $x\in G$ , we have $1\leq|X\cap xZ_{K}(G)|\leq$

$|Z_{K}(G)|$ for any subset $X$ of G. Hence, if $X$ has a $p$-multiplicity for
$Z_{K}(G)$ then $1\leq p\leq|Z_{K}(G)|.$

Proposition2.13. We consider a symmetric pair $(G, K)$ in Setting
2.11. Let $X$ be a finite subset of $G$ with $p$ -multiplicity for $Z_{K}(G).$ Then
for any open neighberhood $U$ of the unit of $G,$ there exists $g\in U$ such
that $|Xg\cap\pi^{-1}(y)|=p$ for any $y\in\pi(Xg)$ .

Recall that by Proposition 2.5, for any $\rho$-design $X$ on $G$ and any
element $g$ of $G$ , the finite subset $Xg$ is also an $\rho$-design on G. Therefore,
by combining Corollary 2.10 with Proposition 2.13, we obtain the next
theorem:
Theorem 2.14. We consider a symmetric pair $(G, K)$ in Setting 2.11
and fix a finite-dimensional complex representation $\rho$ of G. Then for
any $\rho$-design $X$ on $G$ with $p$ -multiplicity for $Z_{K}(G)$ and any open neigh-
borhood $U$ of the unit of $G,$ there exists $g\in U$ such that $Y:=\pi(Xg)$

is an $\rho$-design on $G/K$ with $|Y|= \frac{1}{p}|X|.$

By applying Theorem 2. $6$ for $(G, K)=(SO(d), SO(d-1))(d=$
$2,$

$\ldots,$
$n)$ and Theorem 2.14 for $(SO(n), S(O(m)\cross O(n-m)))$ with

suitable $\rho$ , we obtain our construction of designs on $\mathcal{G}_{m,n}^{\mathbb{R}}$ in Section 1.
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