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1 Introduction
Flows in water delivery systems, such as open channel networks, pipe networks and pore structures are

described with the cross-sectionally averaged 1-$D$ models. Water wave propagations in open channels in
particular have been modeled using the shallow water theory that assumes the incompressibility of fluids and
hydrostatic pressure distribution (Szymkiewicz, 2010). In this theory, an open channel network is identified with
a connected graph that consists ofa finite number of reaches attached via junctions (Bapat, 2010; Yoshioka et al.,
2012). The 1-$D$ shallow water equations (1-D SWEs), a system of non-linear hyperbolic partial differential
equations (PDEs) describing the balance laws ofmass and momentum in the stream direction (Unami and Alam,
2012), have served as one of the most successful models for water flows in open channel networks. As well as
the 1-D SWEs, several reduced mathematical models have also been applied to both in theoretical and practical
analysis. Major examples are the diffusion wave models and kinematic wave models (Singh, 1996; Yen and Tsai,
2001; Tsai, 2002; Santillana and Dawson, 2010), both of which are derived with neglecting the temporal $and/or$

momentum flux terms in the 1-D SWEs while maintaining the complete mass conservation property. Although
the reduced models are not capable of reproducing some important transient phenomena involving discontinues
water surface profiles, they are recognized as useful altematives to the 1-D SWEs because of the simplicity.

This paper focuses on one of the diffusion wave models, the Burgers type equation model (BTE model). The
BTE model is a non-degenerate parabolic PDE having a nonlinear advection term. The model is considered as
one of the useful minimal models to characterize water wave propagations. Typical dependent variable of the
model is water depth or its fluctuation. Motikawa (1957) analyzed propagations of small traveling waves on
water surface using a BTE model derived on the basis of the asymptotic expansion of the 1-D SWEs. Yu and
Kevorkian (1992) analyzed a BTE model for the dynamics of roll waves in open channels, followed up on by
Noble (2007) and Baker et al. (2010). Oey (2005) developed a BTE model for water flows in narrow and
shallow areas of coastal zones and applied it to numerical analysis of flows involving wet and dry interfaces.
Odai et al. (2006) and Odai and Kubo (2007) developed an analytical solution method for the BTE models of
water depth in inclined channels with uniform rectangular cross-sections utilizing the Cole-Hopf transformation
(Hopf, 1950; Cole, 1951). Application of the Cole-Hopf transformation to a BTE model leads to the heat
equation whose analytical solution is available for simplified cases (Salsa, 2009). Nasseri and Attarnejad, (2010)
developed a variational method to solve a class of nonlinear PDEs including a BTE model.

Many researches have been carried out for the BTE models in single open channels based on the
well-established 1-$D$ framework. However, no approach has been made for those in open channel networks due
to the difficulties in handling singularities encountered at junctions. Nevertheless, some researches discussed
similar BTE models on connected graphs. Bressloff et al. (1997) developed a nonlinear parabolic PDE of road
traffic dynamics whose resolution is reduced to solving a BTE model on a connected graph. They transformed
the model to an easily solved integro-differential equation. The authors numerically solved the BTE models on
connected graphs using FEMs (Yoshioka et al., 2013a-b). Since typical water delivery system consists of a
number of reaches presenting a network structure, to reveal mathematical properties of the BTE models on
connected graphs contributes to improving understandings of the water wave propagations in the domains.

The objective of this paper is to carry out mathematical and numerical analyses of a BTE model on
connected graphs. The mathematical analysis focuses on the model on a star-shaped connected graph defined
later. $A$ weak formulation of the model that consistently and implicitly takes an internal boundary condition
(IBC) into its formulation is introduced. Unique solvability of steady and unsteady problems of the model is
proven under certain constraints. An energy estimate and a maximum principle are presented for unsteady
problems. The numerical analysis is carried out to further investigate behaviour of solutions to the model.
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(Von Below, 1986). $A$ node is a point that represents an intersection ofreaches or an end point: here the former is
referred to as ajunction and the latter as a boundary. This paper focuses on a connected graph that consists of a
finite number of straight reaches meeting at ajunction $J$ (Figure 1), which is hereafter referred to as a star graph

$\Omega$ . The juncti\‘on attaches $m$ inflowing reaches ( $R_{1}$ through $R_{m}$ ) and $n$ outflowing reaches $(R_{m+1}$ through
$R_{m+n})$ . The $i$ th reach of $\Omega$ is denoted by $R_{i}$ . The length of $R_{i}$ is $L_{i}<\infty.$ $A$ 1-$D$ abscissa is defined in a
reach and that in $R_{j}$ is denoted by $x_{i}$ . The reach $R_{i}$ is thus identified with the 1-$D$ interval $(0,L_{i})$ . The
junction $J$ can be regarded as the downstream-ends of the inflowing reaches $(x_{i}arrow L_{l}-0$ for $1\leq i\leq m)$ as well
as the upstream-ends (origins) of the outflowing reaches $(x_{i}arrow+0$ for $m+1\leq i\leq m+n)$ . The union set of the

reaches of $\Omega$ is denoted by $\Omega_{R}=\bigcup_{i\lrcorner-}^{m+n}R_{i}$ . The union set ofthe upstream boundaries ofthe inflowing reaches of
$\Omega$ is denoted by $\Gamma_{I}$ and that of the downstream boundaries of the outflowing reaches by $\Gamma_{o}$ . The boundary
$\Gamma$ of $\Omega$ is therefore decomposed as $\Gamma=\Gamma_{I}\cup\Gamma_{o}.$

2.2 Functional settings
This section defines the functional settings used in in this paper. Let $C^{0}(\Omega)$ be the set of continuous

function in the star graph $\Omega$ as

$C^{0}(\Omega)=\{$$u|_{i=1}^{m+n}u\in\Gamma I^{c^{0}}(R_{i}),$ $u_{x_{1}arrow l_{t_{1}}-0}=u_{x_{1}arrow+0}=u_{J}(1\leq i\leq m, m+1\leq i_{2}\leq m+n)\}$ (1)

where the subscript $J$ represents the value at the junction. Denote the usual Sobolev space in $\Omega_{R}$ by $L^{p}(\Omega_{R})$

$(1\leq p<\infty)$ equipped with the nonn

$\Vert u\Vert_{L^{p}}=(\sum_{i=1}^{m+n}\int_{R_{}}u^{p}dx_{i})^{\frac{1}{p}}$ (2)

The space $L^{\infty}(\Omega_{R})$ is accordingly defined with the norm
$\Vert u\Vert_{L^{\infty}}=$ ess $sup\{|u|u\in L^{\infty}(\Omega_{R}),$ $x\in\Omega_{R}|\}$ , (3)

and for a continuous function $u\in C^{0}(\Omega)$ which can be replaced by
$\Vert u\Vert_{L^{\infty}}=$ esssup $\{|u|u\in L^{\infty}(\Omega),$ $x\in\Omega|\}$ . (4)

Let the usual $H^{1}$ Hilbert space in $\Omega_{R}$ be $H^{1}(\Omega_{R})$ equipped with the norm

$\Vert u\Vert_{H^{1}}=\sqrt{\sum_{t\overline{-}1}^{m+n}\int_{R}u^{2}dx_{l}+\sum_{i--1}^{m+n}\int_{R}(\frac{\partial u}{\partial x_{j}})^{2}dx_{i}}=\sqrt{\langleu,u\rangle+\langle\frac{\partial u}{\partial x},\frac{\partial u}{\partial x}\}}$

(5)

where $\langle\cdot,\cdot\rangle$ is the inner product in $L^{2}(\Omega_{R})$ . Let $X(\Omega)$ be the intersection space $C^{0}(\Omega)\cap H(\Omega_{R})$ . Closure
of $X(\Omega)$ in the space of infinitely differentiable functions $C_{0}^{\infty}(\Omega_{R})$ is defmed as

$X_{0}(\Omega)=\{u|u\in X(\Omega),$ $u_{\Gamma}=0\}$ . (6)

The space of the functions of $X(\Omega)$ that vanishes
on $\Gamma_{I}$ is denoted by $X_{1}(\Omega)$ . The spaces $X(\Omega)$ ,

Reach –

$X_{0}(\Omega)$ and $X_{1}(\Omega)$ are Hlbert spaces equipped Junction $0$

with the norm (5) (Mugnolo, 2007). The space Boundary $0$

$X_{0}(\Omega)$ is identified with its dual $X_{0}^{-1}(\Omega)$ in this
paper. The trace theorem for functions in finite 1-$D$

intervals shows that the value $u_{J}$ at the junction for
$u\in X(\Omega)$ is justified as a trace in an $L^{2}$ sense.
There exists a positive coefficient $C_{G}$ that satisfies
the Gagliardo-Nirenberg inequality (Mugnolo, 2007;

Figure 1. Schematic sketch ofthe star graph $\Omega.$
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Berkolaiko and Kuchment, 2012)
$\Vert u\Vert_{L^{\Phi}}\leq\sqrt{C_{o}}\Vert u\Vert_{H^{1}}$ (7)

with $C_{G}>0$ . Let $L^{p}(0,T;H)$ with a finite $T>0$ denote the space of temporally $L^{p}$ class functions from

$(0,T)$ into a Hilbert space $H$ . The space $L^{p}(0,T;H)$ $(1\leq p<\infty)$ is equipped with the norm

$\Vert u\Vert_{L^{p}(0,T.H)}=(\int_{0}^{T}\Vert u\Vert_{H}^{p}dt)^{\frac{1}{p}}$ (8)

Similarly, the space $L^{\infty}(0,T;H)$ is equipped with the norm
$\Vert u\Vert_{L^{\infty}(0,T.H)}=$ ess $sup\{\Vert u\Vert_{H}|t\in(0,t)\}$ . (9)

3 Burgers type equation (BTE) model
3.1 Model description

Water wave propagations in open channels are reasonably characterized with a BTE model, a parabolic PDE
having a nonlinear advection term. Typical form of the model is

$\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(\frac{1}{M+1}m^{M+1}-D\frac{\partial h}{\partial x})=\frac{\partial h}{\partial t}+\frac{\partial q}{\partial\kappa}=0$ (10)

with the unit width discharge of water $q$ defined as

$q=q(h)= \frac{1}{M+1}m^{M+1}-D\frac{\partial h}{\partial x}$ (11)

where the dependent variable $h=h(t,x)$ represents the water depth its fluctuation, $V>0$ and $D>0$ are the
model parameters assumed as reach-distributed constant and $M\geq 0$ is another model parameter related with
friction laws (Sing, 1996). For example, $M=1$ in Onizuka and Odai (1998), and $M=0.666$ in Mizumura
(2010). In this paper, these parameters are assumed to be bounded as in the literatures. The BTE model (10) with
the particular choice of $M=0$ loses the nonlinearity and is regarded as a solute transport equation of a
contaminant in which $h,$ $V$ and $D$ are understood as the concentration ofthe contaminant, the fluid velocity
and the dispersion coefficient, respectively (Yoshioka et al., in press).

3.2 Internal boundary condition (IBC)
A major mathematical and numerical difficulty in solving the BTE model (10) on a connected graph is the

existence ofjunctions, which require the use of appropriate BCs so that the problem is well-posed. The IBCs are
also referred to as the Kirchhoffs conditions or the transmissive conditions in the literatures (Lumer, 1980;
Pokomyi and Borovskikh, 2004). Influences of the IBCs on properties of solutions to PDEs on connected graphs
have extensively been studied, in particular for the spectral theory (Carlson, 2009), solvability and multiplicity
theory (Von Below, 1986; Lubary, 1998), semi-group theory (Mugnolo, 2007) and relations with stochastic
processes (Friedlin and Sheu, 2000). The authors used an analytical approach for parabolic PDEs on connected
graphs based on the weak forms that implicitly incorporate the IBCs to investigate mathematical properties of
the PDEs and to develop efficient numerical methods for solving them (Yoshioka et al., 2012).

In this paper, a similar analytical method is presented to deal with the BTE model (10) consistently on the
star graph $\Omega$ . The model (10) on $\Omega$ shall be understood as a weak form so that the junction $J$ in $\Omega$ is
consistently dealt with. The weak form of (10) is given by

$\sum_{i=1}^{m+n}\int_{R_{J}}[w\frac{\partial h}{\partial t}-\frac{\partial\eta\nu}{a_{i}}(\frac{1}{M+1}V_{f}h^{M+1}-D_{i}\frac{\partial h}{\partial x_{l}})]dr_{i}=t\int_{R_{l}}i=1(w\frac{\partial h}{\partial t}-\frac{\partial w}{\partial x_{i}}q_{t}(h))$ dr, $=0$ (12)

where the value of $h$ is directly specified on $\Gamma_{I}$ ($D$chlet boundary condition) and the free outflow condition
$D=0\underline{\partial h}$

(13)
$/\partial x_{t}$

is assumed on $\Gamma_{o}$ (Neumann boundary condition). No boundary term is embodied in (12). Hereafter, the weak
form (12) is regarded as the BTE model. According to Cecchi et al. (1996) and Clark et al. (2011), the 1-$D$

counterpart of (12) is well-posed and has a unique weak solution with $H^{1}$ regularity. The parameters $V_{t}>0$

and $D_{i}>0$ are constant in each reach, and $M$ is a constant in the entire $\Omega$ . It is assumed that $V_{i}$ satisfies
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the constraint

$\Delta V=\sum_{j=m+1}^{m+n}V_{;}-\sum_{j=1}^{m}V_{i}=0$ , (14)

which is understood as a balance law of $V_{i}$ around the junction J. The constraint (14) for the linear case of
contaminant transport $(M=0)$ means physically that mass conservation of water in terms of the discharges is
satisfied at $J$ (Oppenheimer, 2000; Yoshioka et al., in press). The constraint (14) is essential in order to guaranteethe energy estimate and the maximum principle of the BTE model as shown in the later sections.

The BTE model (12) implicitly assumes an IBC at the junction J. The IBC is not embodied in (12) and isreferred to as the implicit IBC (Yoshioka et al., 2013), which is equivalent to the conventional ones for the
solution $h$ ifits sufficient regularity is guaranteed. By (14), a representation formula for the IBC is obtained as

$\sum_{i=1}^{m}q_{i}(h)|_{\chi_{}arrow L_{l}-0}-\sum_{i=m+1}^{m+n}q_{i}(h)|_{\chi,arrow+0}=\sum_{;=1}^{m}D_{i}\frac{\partial h}{\ _{i}}|_{x,arrow L_{l}-0}- \sum_{i=m+1}^{m+n}D_{i}\frac{\partial h}{\ _{\dot{z}}}|_{x_{t}arrow*\mathfrak{v}}=0$ . (15)

The IBC (15) describes a mass conservation law ofwater at the junction $J$ for a nonlinear case $(M\geq 1)$ and that
ofa contaminant for the linear case $(M=0)$ . Each partial derivatives in (15) is understood in the sense of a trace
because the space of differentiable functions $C^{1}(\overline{R_{i}})$ is dense in $H^{1}(R_{i})$ (Salsa, 2009). The IBC (15) is
satisfied in a strong sense for the solution $h$ in $H^{2}(\Omega_{R})$ .

4 Solvability of BTE $m$ odel on connected graph
The objective of this section is to prove unique existence of the weak solution $h$ under the homogenous

$D$ chlet boundary conditions. The parameter $M$ is assumed to equal to or larger than 1. The proofs presented
in this section can also be applied to the problems with other boundary conditions, such as the homogenous
Neumann boundary condition (13). Here, (12) is rewritten in the abstract fom

$\langle w,\frac{\partial}{\partial t}h\}+a(w,h)+b(w,h,h)=0$ (16)

with the bi-linear form

$a(w,h)= \sum_{\}=1}^{m+n}\int_{R_{1}}D_{i}\frac{\partial w\partial h}{\partial x_{l}\partial\kappa_{l}}dx_{i}$ (17)

and the (non-linear) operator form

$b(w,u,v)=- \sum_{i=1}^{m+n}\int_{R_{1}}\frac{1}{M+1}V_{i}\frac{\partial w}{\partial x_{i}}u^{M}vdx_{i}$ . (18)

Here also considers the steady counterpart
$a(w,h)+b(w,h,h)= \int_{\Omega}$ $wfdx=\langle w,f\rangle$ (19)

with a source $f$ , which is independent ofthe solution $h.$

4.1 Steady problem
This section proves unique solvability of the steady problem (19) for $h\in X_{0}(\Omega)$ with $w\in X_{0}(\Omega)$ . The

proofs presented in this section are inspired by Boules (1990) who presented unique solvability of a BTE model
$(M=1)$ in a 1-$D$ interval. Define the upper and lower bounds of $V_{i}$ as

$\overline{V}=\max_{1\leq i\leq m+n}V_{i}$ and $\underline{V}=\min_{1\leq i\leq m+n}V_{i}$ , (20)

respectively Similarly, define the upper and lower bounds of $D_{j}$ as
$\overline{D}=\max_{1\leq i\leq m+n}D_{i}$ and $\underline{D}=\min_{\lrcorner 1<\leq m+n}D_{i}$ , (21)

respectively Several important properties ofthe bi-linear form $a$ and the operator form $b$ are presented. The
bi-linear form $a$ satisfies

$|a(w,h)|=| \sum_{i=1}^{m+n}\int_{R},$ $D_{i} \frac{\partial w\partial h}{\partial x_{i}\partial_{X_{;}}}dx_{i}|\leq\overline{D}\Vert\frac{\partial w}{\partial x}\Vert_{L^{2}}\Vert\frac{\partial h}{\partial x}\Vert_{L^{2}}\leq\overline{D}\Vert w\Vert_{H^{1}}\Vert h\Vert_{H^{1}}$ (22)

and
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$a(u,u)= \sum_{i=1}^{m+n}\int_{R_{J}}D_{i}(\frac{\partial u}{\ })^{2} dx_{l}\geq\underline{D}\Vert\frac{\partial u}{\ } \Vert_{L^{2}}^{2}\geq a\Vert u\Vert_{H^{1}}^{2}$ (23)

for $u\in X(\Omega)$ with a some positive constant $a$ , showing that it is bounded and coercive (Mugnoro, 2007).

The operator form $b$ is also bounded for $u\in X_{0}(\Omega)$ . In fact according to the Sobolev embedding theorem
(Tartar, 2000), the inequality

$|b(w,u,v)|=| \sum_{i=1}^{m+n}\int_{R_{1}}V_{i}\frac{\partial w}{\partial x}u^{M}vdx_{l}|\leq\beta\Vert w\Vert_{H^{1}}\Vert u\Vert_{H^{1}}^{M}\Vert v\Vert_{H^{1}}$ (24)

with $\beta=\overline{V}(C_{G})^{\frac{M}{2}}>0$ holds. Define the operator $\lambda(u,v)\in X_{0}(\Omega)$ via the inner product

$b(w,u,\nu)=\langle\lambda(u,v),w\rangle$ , (25)

and denote $\lambda(u,u)$ by $\lambda(u)$ . The norm of $\lambda(u)$ is given by

$\Vert\lambda(u)\Vert=\sup\{\frac{\langle\lambda(u),w\rangle}{\Vert w\Vert_{H^{1}}}w\in X_{0}(\Omega),$ $w\neq 0\}\leq\overline{V}(C_{G})^{\frac{M}{2}}\Vert u|\ovalbox{\tt\small REJECT}_{l}=\beta\Vert u|\kappa_{1}$ , (26)

showing that $\lambda(u)$ is bounded for $u\in X_{0}(\Omega)$ Furthemore, $\lambda(u)$ is continuous. In fact, for

$u_{1},u_{2}\in X_{0}(\Omega)$ the inequality

$\Vert\lambda(u_{1})-\lambda(u_{2})\Vert=\sup\{\frac{\langle\lambda(u_{1})-\lambda(u_{2}),w\rangle}{\Vert w\Vert_{H^{I}}}w\in X_{0}(\Omega),$ $w \neq 0\}\leq\overline{V}\sum_{j=1}^{M-1}\Vert u_{1}\Vert_{\Gamma}^{j}\Vert u_{2}|\beta_{\Phi}^{-1-1}\Vert u_{1}-u_{2}\Vert_{L^{\infty}}$ (27)

is satisfied because $\overline{V}\sum_{j=1}^{M-1}\Vert u_{1}\Vert_{L^{\infty}}^{J}\Vert u_{2}|\psi_{L^{Q}}-j-1$ is bounded.

Before stalting the main proof, a uni-variate function $g=g(r)$ with $r\geq 0$ and $M$ , defined by

$g(r)=r(a-\beta r^{M})$ (28)

is introduced. The function $g$ satisfies

$g(O)=g(r_{0})=0$ with $r_{0}=( \frac{\alpha}{\beta})^{\frac{1}{M}}$ (29)

$\frac{d}{dr}g(r_{1})=0$ with $r_{1}=( \frac{a}{\beta(M+1)})^{\frac{1}{M}}$ and $g(r_{1})= \frac{M}{\beta^{\frac{1}{M}}}(\frac{\alpha}{M+1})^{\frac{M+1}{M}}$ (30)

The function $g$ is strictly positive in $(0,r_{0})$ and attains its maximal at $r=r_{1}<r_{0}.$ $g$ monotonically

increases and decreases in $(0,r_{1})$ and in $(r_{1},r_{0})$ , respectively It follows that the equation
$r(\alpha-\beta\mu)=\overline{g}$ (31)

with the constant $g$ satisfying
$0<\overline{g}<g(r_{1})$ . (32)

has two positive solutions $r_{m}$ and $r_{M}$ such that
$0<r_{m}<r_{1}<r_{M}<r_{0}$ . (33)

Here firstly proves the following theorem.

Theorem 1. There exists a unique solution $u\in X_{0}(\Omega)$ to the linearproblem

$a(w,v)+b(w,h,\nu)=(w,f\rangle (34)$
with afixed $h\in X_{0}(\Omega)$ such that the inequality
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$\Vert h\Vert_{H^{1}}<r_{m}$ (35)
holds where $w\in X_{0}(\Omega)$ is the weight, $f\in X(\Omega)$ is a sufficiently regular source term such that

$\Vert f\Vert=\overline{g}=\sup\{\frac{\langle f,w\rangle}{\Vert w\Vert_{L^{2}}}w\in X_{0}(\Omega),$ $w\neq 0\}\leq g(r_{m})$ (36)

with

$K= \frac{\beta Mr_{m}^{M-1}\Vert f\Vert}{(\alpha-\beta r_{m}^{M})^{2}}<1$ . (37)

Note that $r_{m}$ depends only on $f,$ $\alpha,$ $\beta$ and $M.$

Proof of Theorem 1. The set
$D(r_{m})=\{h|h\in X_{0}(\Omega),$ $\Vert h\Vert_{H^{1}}<r_{m}\}$ (38)

is a compact, convex subset of $X_{0}(\Omega)$ . By (23) and (24), the left hand side of (34) is bounded from zero as
$a(v,v)+b(v,h,v)\geq\alpha\Vert v\Vert_{H^{1}}^{2}-\beta\Vert v\Vert_{H^{1}}^{2}|h\Vert_{H^{1}}^{M}=(\alpha-\beta\Vert h\Vert_{H^{1}}^{M})\Vert v\Vert_{H^{1}}^{2}\geq(\alpha-\beta r_{m}^{M})\Vert v\Vert_{H^{1}}^{2}$ , (39)

showing that it is coercive. Application of the Lax-Milgram Theorem (Atkinson and Han, 2009) to (34) leads to
that the solution $v\in X_{0}(\Omega)$ exists and is uniquely determined.

Here secondly proves unique solvability of (19) under the stated conditions.

Theorem 2. (19) has a unique solution $h\in X_{0}(\Omega)$ under the stated conditions.

Proof of Theorem 2. Denote $\Phi(h)$ by the map identified with the inverse of the operator $A_{h}$ , which is
defined via the inner product as

$\langle A_{h}v,w\rangle=a(w,v)+b(w,h,v)$ , (40)
namely,

$\Phi(h)=(A_{h})^{-1}f$ . (41)
The operator norm of $A_{h}$ satisfies

$\Vert A_{h}v\Vert=\sup\{\frac{|a(w,v)+b(w,h,v)|}{\Vert w||_{H^{1}}}w\in X(\Omega),$ $w \neq 0\}\geq\frac{a(v,v)-|b(v,h,v)|}{\Vert v||_{H^{1}}}\geq(\alpha-\beta r_{m}^{M})\Vert v\Vert_{H^{1}}$ . (42)

Since $A_{h}$ is bijective by the defmition, it is an open map. Application of the open-mapping theorem (Okamoto
and Nakamura, $1997a$) to $A_{h}$ yields the estimate

$\Vert(A_{h})^{-1}\Vert\leq\frac{1}{\alpha-\beta r_{m}^{M}}$ , (43)

which further leads to

$\Vert(A_{h_{1}})^{-1}-(A_{h_{2}})^{-1}\Vert\leq\frac{1}{(\alpha-\beta r_{m}^{M})^{2}}\Vert A_{h_{1}}-A_{h_{2}}\Vert$ . (44)

Application ofa differential formula to $A_{h}$ yields

$\Vert A_{I}-A_{h_{2}}\Vert=\sup\{$

$\leq\overline{V}C_{G}$

$\frac{|a(w,v)+b(w,h_{7},v)-a(w,v)-b(w,h_{\eta},v)|}{||v||_{H^{1}}\Vert w||_{H^{1}}}v,w\in X(\Omega),$ $v,w\neq 0\}$

. (45)
$\frac{1}{2}\sum_{j=0}^{M-1}\Vert h^{j}\Psi^{-j-1}\Vert_{L^{\infty}}\Vert h-h_{2}\Vert_{H^{1}}$

By (35), (45) results in
$\Vert A_{h_{1}}-A_{b}\Vert\leq\beta Mr_{m}^{M-1}\Vert h_{\eta}-h\Vert_{H^{1}}$ , (46)
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showing that $A_{h}$ is continuous. Consequently, $\Phi$ is a contraction map that maps $X(\Omega)$ onto $X(\Omega)$ . This
is because, by (36) and (39), $\Vert\nu\Vert_{H^{1}}$ is bounded from away as

$\Vert v\Vert_{H^{1}}\leq\frac{\Vert f\Vert}{\alpha-\beta r_{m}^{M}}\leq\frac{g(r_{m})}{\alpha-\beta r_{m}^{M}}=r_{m}$ (47)

and by (37), (44) and (45), $\Phi$ satisfies the inequality
$\Vert\Phi(h_{r})-\Phi(h_{\eta})\Vert<\Vert h-h_{2}\Vert_{H^{1}}$ . (48)

According to the Leray-Schauder fixed point theorem $($Okamoto $and$ Nakamura, $1997b)$, the solution
$h\in X_{0}(\Omega)$ to (19) exists and is uniquely determined under the stated conditions.

Here finally proves the following theorem.

Theorem 3. (19) does not have any solutions such that
$r_{m}<\Vert h\Vert_{H^{1}}<r_{M}$ . (49)

Proof of Theorem 3. Substituting $w=h$ into (19) yields
$a(h,h)+b(h,h,h)=\langle w,f\rangle$ , (50)

leading to the inequality
$(\alpha-\beta\Vert h|\beta_{1})\Vert h\Vert_{H^{1}}\leq\Vert f\Vert$

.
(51)

Substituting (36) into (51) yields
$(\alpha-\beta\Vert h\Vert_{H^{1}}^{M})\Vert h\Vert_{H^{1}}\leq g(r_{m})$ . (52)

Since $r_{m}$ and $r_{M}$ are the solutions to (31), the assumption (49) contradicts with the inequality (52) showing
that the statement is true.

It can be shown in an essentially similar way that the solution $h\in X_{0}(\Omega)$ to the weak form
$a(w,h)+b’(w,h,h)+c(w,h)+d\langle w,h\rangle=\langle w,f\rangle$ (53)

with a positive constant $d$ and the operator form

$b’(w,u,v)=- \sum_{t=1}^{m+n}\int_{R_{J}}\frac{\partial w}{\partial\kappa_{t}}(\frac{1}{j+1}\sum_{/\overline{-}1}^{M}V_{l.j}u^{j})vdx_{l}$ (54)

with a positive and bounded sequence $V_{i.j}$ , has a unique solution $h\in X_{0}(\Omega)$ such that $\Vert h\Vert_{H^{1}}^{2}<M^{-1}r_{m}^{M}$ . Note
that the analysis camied out in this section does not assume the constraint (14), which on the other hand serves as
a crucial condition that determines properties of solutions to the unsteady BTE model.

4.2 Unsteady problem
4.2.1 Energy estimate

Energy estimate of the problem (16) is obtained using the Faedo-Galerkin method, which ensures the global
unique existence ofthe solution $h.$

Theorem 4. The energy estimate of (16) is derived as
$\frac{1d}{2dt}\Vert h\Vert_{L^{2}}^{2}+\alpha\Vert h\Vert_{H^{1}}^{2}\leq 0$ . (55)

Proof of Theorem 4. Denote $W$ by a separable base of linearly independent elements of $X_{0}(\Omega)$ . Consider

linearly independent elements $h_{k}$ $(k=1,2,3\ldots)$ in $L^{2}(0,T;X_{0}(\Omega))$ defined as

$h_{k}= \sum_{j=1}^{k}p_{/}w_{jk}(t)$ (56)

with an orthogonal sequence $p_{j}(j\geq 1)$ of elements of $W$ and $\omega_{J^{k}}\in C^{1}(0,T)$ . Each $\omega_{jk}$ is deternuined
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from the ordinary differential equations (ODEs)

$\{p_{j_{1}},\frac{\partial}{\partial t}h_{k}\}+a(p_{j_{1}},h_{k})+b(p_{j_{1}},h_{k},h_{k})=0,1\leq j_{1}\leq k$ (57)

with the initial condition
$h_{\eta}(t=0)=h_{k,0}$ (58)

where $h_{k,0}$ is a orthogonal projection of $h\in L^{2}(0,T;X(\Omega))$ to $W$ . The square matrix constructed from the
coefficients of the first term of the left hand side of (57) is a Gram matrix. The Peano’s existence theorem
(Hartman, 2002) shows that the approximate solution $h_{k}$ exists and is uniquely determined at least locally in
$(0,T)$ . Multiplying (57) by $\omega_{jk}$ and assembling it for $1\leq j\leq k$ yields

$\langle h_{k},\frac{\partial}{\partial t}h_{k}\rangle+a(h_{k},h_{k})+b(h_{k},h_{k},h_{k})=0$ . (59)

By (14), the third term ofthe left hand side of (59) vanishes as

$b(h_{k},h_{k},h_{k})=- \frac{1}{M+1}\sum_{i=1}^{m+n}V_{i}\int_{R_{l}}\frac{\partial h_{k}}{\partial x_{i}}W_{k}^{+1}dx_{i}=-\frac{1}{(M+1)(M+2)}\Delta Vh_{k,J}^{M+2}=0$ , (60)

leading to the energy inequality

$\frac{1}{2}\frac{d}{dt}\Vert h_{k}\Vert_{L^{2}}^{2}\leq-\alpha\Vert h_{k}\Vert_{H^{1}}^{2}$ . (61)

Integrating (61) from $t=0$ to $t=T>0$ yields the energy estimate of $h_{k}$ as
$\frac{1}{2}\Vert h_{k}(T)\Vert_{L^{2}}^{2}+\int_{0}^{T}\alpha\Vert h_{k}\Vert_{H^{1}}^{2}dt\leq\frac{1}{2}\Vert h_{k,0}\Vert_{L^{2}}^{2}$ , (62)

showing that $h_{k}$ remains in a bounded set of $L^{\infty}(0,T;L^{2}(\Omega))$ . Since (62) leads to

$\max_{0\leq t\leq T}\{\Vert h_{k}(T)\Vert_{L^{2}}^{2}+\int_{0}^{t}\alpha\Vert h_{k}\Vert_{H^{1}}^{2}dt\}<\infty$ , (63)

$h_{k}$ remains in a bounded set of $L^{2}(0,T;X_{0}(\Omega_{R}))$ . Ascoli-Arzela theorem shows that there exists a
subsequence $h_{k}$ , that converses to $h$ weakly in $X_{0}(\Omega)$ and thus there exists a unique solution
$h\in L^{2}(0,T;X_{0}(\Omega))\cap L^{\infty}(0,T;L^{2}(\Omega_{R}))$ by (7). The classical compactness theorem (Temam, 1997) ensures that
the convergence of $h_{k}$ to $h$ is also achieved in the space $L^{2}(0,T;L^{2}(\Omega_{R}))$ in a strong sense because the
operator form $b$ defines a continuous and bounded fimction $\lambda(h)$ for $h\in X_{0}(\Omega)$ . The resultin$g$ solution $h$

to (16) satisfies (55), which finishes the proof Note also that the inequality
$\frac{1d}{2dt}\Vert h\Vert_{L^{2}}^{2}+\alpha\Vert h\Vert_{L^{2}}^{2}\leq 0$ (64)

follows from the energy estimate (55), showing that $h$ approaches $0$ in the entire $\Omega$ in the $L^{2}$ sense.

4.2.2 Maximum principle
Here a maximum principle ofthe BTE model (16) is presented.

Theorem 5. (16) satisfies thefollowing maximumprinciplefor any $T>0,\cdot$

$\Vert h\Vert_{L^{\infty}(\Omega_{R}x(0,T))}<H$ if $\Vert h\Vert_{L^{\infty}(\Omega_{R})}<H<\infty$ (65)

Proof of Theorem 5. Define a non-negative functions $f^{+}$ and $f^{-}$ for a generic function $f$ as
$f^{+}= \max\{f,0\}$ and $f^{-}=- \min\{f,0\}$ , (66)

respectively Substituting $w=(h-H)^{+}\in X_{0}(\Omega)$ and $u=v=h$ into $b$ yields

$b((h-H)^{+},h,h)=- \sum_{i=1}^{m+n}\int_{R_{l}}\frac{1}{M+1}V_{i}\frac{\partial(h-H)^{+}}{\partial x_{t}}h^{M+1}dx_{1}$ . (67)

Application ofthe binomial theorem to $h^{M+i}$ yields the polynomial expansion in terms of $h-H$ as
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$\Psi^{+1}=(h-H+H)^{M+1}=\sum_{j=0}^{M+1}(\begin{array}{l}M+1j\end{array})(h-H)^{1}H^{M+1-j}$ . (68)

Substituting (68) into (67) leads to

$b((h-H)^{+},h,h)=- \frac{1}{M+1}\sum_{\dot{j}=0}^{M+1}H^{M+1-j}(\begin{array}{l}+lMj\end{array})\sum_{t=1}^{m+n}V,\int_{R_{J}}\frac{\partial(h-H)^{+}}{\partial \mathfrak{r}_{i}}(h-H)^{j}dx,$ . (69)

By (66), the equality

$\int_{R_{J}}\frac{\partial(h-H)^{+}}{\partial x_{i}}(h-H)^{j}dx_{i}=\int_{R_{l}}\frac{1\partial}{j+1a_{i}}[(h-H)^{+}]^{J+1}dx_{1}=[\frac{1}{j+1}[(h-H)^{+}]^{j+1}]_{\eta=0}^{\eta=A}$ (70)

holds. Substituting (70) into (69) results in

$b((h-H)^{+},h,h)= \frac{\Delta\nabla}{M+1}\sum_{j=0}^{M+1}H^{M+1-j}(\begin{array}{l}M+1j\end{array})\frac{1}{j+1}[(h_{J}-H)^{+}]^{J+1}=0$ . (71)

In addition, since

$a((h-H)^{+},h)= \sum_{j=1}^{m+n}\int_{R_{l}}D_{l}\frac{\partial}{\partial x_{l}}(h-H)^{+}\frac{\partial h}{\partial x_{1}}$dx, $= \sum_{j=l}^{m+n}\int_{R_{t}}D_{i}[\frac{\partial}{\partial x_{l}}(h-H)^{+}]^{2}dx_{l}\geq 0$ (72)

holds, substituting (71) and $\langle$72) into (16) obtains the estimate

$\langle(h-H)^{+},\frac{\partial}{\partial t}h\}=\frac{1}{2}\frac{d}{dt}\Vert(h-H)^{+}\Vert_{L^{2}}^{2}=-a((h-H)^{+},h)\leq 0$ , (73)

which leads to
$\Vert(h-H)^{+}\Vert_{L^{2}}^{2}\leq\Vert(h_{0}-H)^{+}\Vert_{L^{2}}^{2}=0$ , (74)

showing that $h<H$ in $\Omega x(0,T)$ . Similarly, taking $w=-(h-H)^{-}$ in (16) yields $h>-H$ in $\Omega x(0,T)$

and thus the statement is proven. An important consequence ofthe maximum principle is that the solution with a
non-negative initial condition $h_{\tau}\in X_{0}(\Omega)$ remains non-negative for arbitrary $t>0.$

5. Numerical analysis on the BTE model
5.1 Conforming Petrov-Galerkin finite element method

Numerical analysis on the BTE model is carnied out to further investigate behaviour of its solutions. Dhawan
et al. (2012) reviewed numerical methods for BTE models. Although they extensively surveyed the numerical
methods, the models on connected graphs were not focused on. Some authors developed practical numerical
methods to solve PDEs on connected graphs; however, their methods do necessarily not guarantee regularity of
the solutions at junctions (Islam and Chaudhry, 1998; Basha and Malaeb, 2007; Tumanova, N., and \v{C}iegis,
2012). The authors developed a conforming Petrov-Galerkm finite element method (CPGFEM) that solves the

BTE model (12) using weight and interpolation functions in $X(\Omega)$ and $X_{0}(\Omega)$ (Yoshioka et al., 2013).

5.2 Test problems
Test problems are firstly considered to show that the condition (14) is essential for the maximum principle.

Here the parameter $M$ is set as 2. Alocally 1-$D$ open channel network $\Omega$ as shown in Figure 2 is set as the
computational domain. The key nodes defining the boundaries of the reaches are labeled from A through $E,$

which are the upstream-end (A), downstream-ends ($C$ and D) and ajunction (B). Length of each reach equals to
1. The reaches A-B, B-$C$ and B-$D$ are labeled as $R_{i},$ $R_{2}$ and $R_{3}$ , respectively. $D$ is set as 0.001 in the entire
$\Omega$ . Here the following two cases of $V_{i}$ are considered.

(a) $V_{1}=3.0,$ $V_{2}=2.0$ and $V_{3}=1.0$ (The condition (14) is satisfied)

(b) $V_{1}=3.0,$ $V_{2}=1.0$ and $V_{3}=0.5$ (The condition (14) is not satisfied: $\Delta V<0$ )

(c) $V_{1}=3.0,$ $V_{2}=4.0$ and $V_{3}=2.0$ (The condition (14) is not satisfied: $\Delta V>0$ )

The initial condition is $h=1$ in the entire $\Omega$ . The homogenous Dirichlet boundary condition $h=0$ is
specified at $AC$ and D. The time increment $\Delta t$ is set as 0.001, which is sufficiently to ensure that errors in the
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temporal integration procedure are negligible small.
Figures $2(a)-(c)$ plot the computational results of $h$ for each case at $t=500i\Delta t$ with $i$ the integer,

clearly showing that the maximum principle is violated in the case (b) ( $h$ exceeds 1 in $\Omega$ ). In the case (c), the
maximum pninciple is not violated but the solution has an abrupt change at $B$ , which is not observed in the case
(a). In all the cases a rarefaction wave propagates from $\eta$ to $R_{2}$ and to $R_{3}$ , and shocks resulting from the
homogenous $D$chlet boundary condition are created near $C$ and D.

5.2 Real problem
The BTE model as a goveming equation of the water depth fluctuation is applied to simulate water wave

propagations in an agricultural drainage system in Japan. The computational domain is same with that of in
Yoshioka et al. (2014). Figures 3 shows a sketch of the domain $\Omega$ , which is identified with a connected graph
having five reaches and two junctions. An underlying water flow to determine the coefficients of the BTE model
is computed on the basis of a uniform depth formula at the boundaries $AB$ and $C$ , respectively The boundary
conditions are the Dirichlet one $h=0.1$ (m) at $AB$ and $C$ and a Ree-outflow one at D. Here, $V$ is set as

$V= \frac{2}{3}\sqrt{g}[(h+h)^{\frac{3}{2}}-h^{\frac{3}{2}}]$ (75)

where $g$ is the gravitational acceleration and ig is the water depth of the underlying equilibrium flow field.
The coefficient $V$ in (75) is determined so that the celerity of the inviscid counterpart of the BTE model
reduces to that of the non-dispersive gravitational wave $\sqrt{g(h+h_{0})}$ . The coefficient $D$ is set as 0.1 $(m^{2}/s)$ in
the entire $\Omega.$ $\Delta t$ is 0.004 (s). Figure 4 plots water wave propagations in the domain at $t=500i\Delta t.$

6 Conclusions
This paper analytically and numerically studied the BTE model. The homogenous $D$chlet boundary

condition was assumed in this paper for the simplicity, but linear non-homogenous conditions can also be
implemented without any technical difficulties. The mathematical analysis revealed that the BTE model is
well-posed ifthe coefficient $V$ satisfies the balance law (14). The constraint was essential in order to obtain the
energy estimate and the maximum pninciple for the model. Another theoretical analysis focusing on a steady
BTE model with a source terms revealed that its solution is uniquely determined if the source is sufficiently
regular. Numerical simulation camied out with the CPGFEM showed that the solutions to the BTE model have
singular behaviour around the unction $J$ if (14) is not satisfied.

The analyses carried out in this paper revealed a $paIt$ of the basic properties of the BTE model. This paper a
priori assumed the constraint (14) as a sufficient condition in order to obtain the energy estimate and the
Maximum principle. However, it is not sure at the present whether it also serves as a necessary condition or not.
In addition, this paper does not cover the models with nonlinear source terms as discussed in the researches
(Tersenov, 2010; 2012). Furthermore, there exists a BTE model having a degenerate diffusion term (Mizumura,
2010) whose solutions are expected to behave more irregularly than the non-degenerate counterparts, which also
serves as an effective reduced mathematical model of the 1-D SWEs. Future research will focus on
investigations of the well-posedness and mathematical properties of the extended BTE models on connected
graphs, such as the ones with a degenerate diffusion term $and/or$ a non-linear source term.
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