
THE COMMUNICATION THEORY AND THE EQUATION OF HEAT MOTION IN
FLUID DYNAMICS BY FOURIER

-A COMMUNICATION POINT FROM CLASSICAL MECHANICS TO QUANTUM MECHANICS

京都大学数理解析研究所長期研究員増田茂
SHIGERU MASUDA

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES,
KYOTO UNIVERSITY

ABSTRACT.
We discuss Fourier’s the heat communication theory and the heat equations of motion in

fluid, explaining the theoretical background produced in the rivalry with Lagrange and Poisson.
We pick up Poisson’s direct method for definite integral in regarding to the problems between
real and imaginary, that is the life-work theme Euler and Laplace also struggled to solve. We
point out this problem based on the then continuum concept, which is the bridge point over
classical mechanics into classical quantum mechanics like Boltzmann, and moreover into new
quantum mechanics like Schr\"odinger. Through this wide range as possible, we like to attention
to mathematical aspect of Fourier and his surrondings.

1. INTRODICTION
1,2,3,4 Fourier’s works are summerized by Dirichlet, a disciple of Fourier, as follows :. a sort of singularity of passage from the finite to the infinite. to offer a new example of the prolificity of the analytic process

The first is our topics which Fourier and Poisson point this problem in life and the other is, in
other words, the sowing seeds to be solved from then on. Dirichlet says in the following contents,
Fourier (1768-1830) couldn’t solve in life the question in relation to the mathematical theory of
heat, in Solution d’une question relative a le th\’eorie math\’ematiques de la chaleur (The solution
of a question relative to the mathematical theory of heat) [5].

1.1. The outline of the situations surrounding Fourier. About the situations around
Fourier, we can summarize as follows :

1. Fourier’s manuscript 1807, which had been unknown for us unti11972, I. Grattan-Guinness
[15] discovered it. Fourier’s paper 1812 based on the manuscript was prized by the academy of
France. We consider that Fourier, in his life work of the heat theory, begins with the communi-
cation theory, and he devoted in establishing this theme as the priority.

2. Owing to the arrival of continuum theory, many mathematical physical works are intro-
duced, such as that Fourier and Poisson struggle to deduce the trigonometric series in the heat
theory and heat diffusion equations. In the curent of formularizing process of the fluid dynamics,
Navier, Poisson, Cauchy and Stokes struggle to deduce the wave equations and the Navier-Stokes

Date: 2014/01/25.
lBasically, we treat the exponential/trigonometric/logarithmic $/\pi/$ et al. /functions as the transcendental

functions.
$2_{Translation}$ from Latin$/Rench/$German into English mine, except for Boltzmann.
$3_{To}$ establish a time line of these contributor, we list for easy reference the year of their birth

and death: Euler(1707-83), d’Alembert(1717-83), Lagrange(1736-1813), Laplace(1749-1827), Fourier(1768-
1830), Poisson(1781-1840), Cauchy(1789-1857), Dirichlet(1805-59), Riemann(1826-66), Boltzmann(1844-1906),
Schr\"odinger (1887-1961).

$4_{The}$ symbol $(\Downarrow)$ means our remark not original, when we want to avoid the confusions between our opinion
and sic.
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equations. Of cource, there are many proceding researches before these topics, however, for lack
of space, we must pick up at least, the essentials such as following contents :

3. We introduce the heat theory and heat diffusion equations based on the oscillating equa-
tions of cords, namely wave equations. We treate the theoretical contrarieties between Fourier
and Lagrange, and next, between Fourier and Poisson, and then, the microscopically descriptive
fluid equations, however, we omit the theoretical contrariety between Navier and Poisson, and
the collaboration on the proof of describabihty of the trigonometric series of an arbitrary func-
tion up to the 20th Centuries.

4. Fourier [13] combines heat theory with the Euler’s equation of incompressible fluid dynam-
ics and proposes the equation of heat motion in fluid in 1820, however, this paper was published
in 1833 after 13 years, it was after 3 years since Fourier passed away. Fourier seems to have
been doutful to publish it in life.

5. After Fourier’s commnunication theory, the gas theorists like Maxwell, Kirchhoff, Boltz-
mann [1] study the transport equations with the concept of collision and transport of the
molecules in mass. In both principles, we see almost same relation between the Fourier’s com-
munication and transport of heat molecules and the Boltzmann’s collision and transport of gas
molecules.

6. Since 1811, Poisson issued many papers on the definite integral, containing transcendental,
and remarked on the necessity of careful handling to the diversion from real to imaginary, espe-
cially, to Fourier explicitly. To Euler and Laplace, Poisson owes many knowledge, and builds up
his principle of integral, consulting Lagrange, Lacroix, Legendre, etc. On the other hand, Pois-
son feels incompatibility with Laplace’s ‘passage’, on which Laplace had issued a paper in 1809,
entitled : On the ‘reciprocal’ passage of results between real and imaginary, after presenting the
sequential papers on the occurring of’one-way’ passage in 1782-3.

7. To these passages, Poisson proposed the direct, double integral in 1811,13,15,20 and 23.
The one analytic method of Poisson 1811 is using the round braket, contrary to the Euler’s
integra11781. The multipl integral itself was discussed and practical by Laplace in 1782, about
20 years before, when Poisson applied it to his analysis in 1806.

8. As a contemporary, Fourier is made a victim by Poisson. To Fourier’s main work: The
analytical theory of heat in 1822, and to the relating papers, Poisson points the diversion apply-
ing the what-Poisson-called-it ‘algebraic’ theorem of De Gua or the method of cascades by Roll,
to transcendental equation. Moreover, about their contrarieties, Darboux, the editor of $(E$uvres
de Fourier, evaluates on the correctness of Poisson’s reasonings in 1888. Drichlet also mentions
about Fourier’s method as a sort of singularity of passage from the finite to the infinite.

9. About the describability of the trigonometric series of an arbitrary function, nobody
succeeds in it including Fourier, himself. According to Dirichlet, Cauchy is the only person
challenges it in vain. Poisson tries it from another angle. Dirichlet and Riemann step into the
kernel of the question. Up to the middle of or after the 20th Centuries, these collaborations are
continued, finally in 1966, by Carleson proved in $L^{2}$ , and in 1968, by Hunt in $L^{p}.$

1.2. The preliminary discources on Fourier from the Nota to I.Grattan-Guinness.
To see the Fourier’s motivation for works, now, we pay attention to the historical changes : from

(1) the Nota of Prize paper, Part 21826
to the each narratives in the prehminary discourses on Fourier’s works

(2) English translated edition of Fourier 1822 by A. Freeman 1878, [14, pp.1-12]
(3) edition of Fourier’s Oeuvres by G. Darboux 1888, pp. XV-XXVIII. Foreword (Avant-propos) by Darboux ($V$ .1) 1887,. Preliminary discourse by Fourier ( $V$ .1) 1822,. Afterword (Avertissement) by Darboux ($V$ .2) 1890, p.VII
(4) the book by I. Grattan-Guinness 1972 [15]
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1.2.1. The Nota of Prize paper 1826 (Part 2). The first analytic studies by the author were
aimed at the communication between the disjoint masses: the paper is the first part. The
problems on the continuum were solved by the author several years ago. He submitted at first
this theory with the manuscript belongs to the Institute de France at the last part of 1807,
and pubhshed a extract on the BSP 1808, page 11 $2^{}$ He added afterward to the first version
(manuscript) (1) conversion of series, (2) the heat diffusion in the infinite prism, (3) its emission
in the space of vacuum, (4) the constructive methods useful to work the principal theories ; and
finally, (5) the notes on the then epoch-making solution of a question, (6) periodic motion of
heat on the surface on earth.

The second paper (namely, the prize paper 1812) : sur la propagation de la chaleur was
submitted to the archive of the Institute de France on 28, Sept., in 1811 : it was composed
of the preceding papers and the then collected notes. The author deleted only the geometric
structure and the detail of analysis unrelated to the physical problem, and added the general
equation which explains the state of the surface. It is this work which he rewarded in the early
part of 1812, and the paper was jointed in the collection of the Memoires. It was permitted by
Mr. Delambre to print the paper in 1821. Namely, the first part was issued from MAS in 1819,
the second in the following issue. (trans. mine.) 6

1.2.2. The Fourier’s Oeuvres edited by G. Darboux. The preliminary discource by Fourier,
edited by G. Barboux, says in 1820 : Our first analytic studies of the communication of heat
were aimed at the distribution between the disjoint masses; we have kept the paper in the
Section 2 of the chapter 4. The problems on the continuum were solved several years ago ; his
theory have been submitted at the first time with the manuscript belongs to the Institute de
France at the last part of 1807, and published a extract on the BSP (in year 1808, pp. 112-116.
$)^{7}$ We have added affterward to the first version (manuscript) and succeeded the Notes by the
full version in relation to (1) conversion of series, (2) the diffusion of the heat in the infinite
prism, (3) its emission in the space of vacuum, (4) the constructive methods useful to work
the principal theories, (5) the analysis of the periodic motion (of heat) on the surface of the
earth. (trans. mine.), where, item (5) (the then-ep$0$ch-making solution of a question) is deleted
from the manuscript by Fourier. G. Darboux says in his first edition in 1888 : The works
relating to the heat theory by Fourier appear in the late 18C. It has been submitted to the
Academy of Science, in Dec. 21, 1807. his first publication is unknown for us : we don’t know
except for an extract of 4 pages of BSP in 1808 ; It was read by the Committee, however, may
be withdrawn by Fourier during 1810. The Committee of Academy, held in 1811, decided the
following judgment : “ Make clear the mathematical theory on the propagation of heat, and
compare this theory with the exact result of experiments.” (trans. mine.) 8

After two years of editing work, G. Darboux, however, says in his Avertissment of second
edition in 1890 as follows :

As Navier has been charged, after Fourier’s death, to publish the uncompleted works entitled
$5(\Downarrow)$ BSP : Bulletin des Sciences par la Soci\’et\’e philomatique. There are some expressions: Bulletin de la

Soci\’et\’e philomatique, Bulletin des Sciences, Soci\’et\’e Philomatique. etc.. The extract 1808 was put not by Fourier
but by Poisson. However, Grattan-Ginness mentions another existent Fourier’s extract of 10 pages. [15, p.26,
p.497], $[19, p.25]$ . We don’t know about it except for Poisson 1808.

$6(\Downarrow)$ This Nota uses the third personal style with ‘Fourier’ or ‘he’, however, although it is almost same contents
with Nota, Fourier’s Preliminary discourse 1822 uses ‘we’. The Nota 1826 was put earlier than Fourier’s book
1822. We don’t know the name of the then secretary of the Academy, the writer of Nota 1826, who is Delambre
$($ ? $)$ who was the predecesor to Fourier. Fourier succeeded the permanent secretary to him after his death in
1822. The first part was published in 1824 ag the MAS issue 1819-20 and the second in 1826 as the MAS issue
1821-22. In 1822, Fourier published by himself (not by MAS) his changed paper from the prized paper 1811. This
publication was scheduled later than MAS issue, however, performed earlier.

$7(\Downarrow)$ The writer’s problem is same as above footnote.
$8(\Downarrow)$ About the extract, same as above footnote. Lagrange was a member of the Committee of judgement and

poses against Fourier’s paper 1807. cf [25]. G.Darboux lists as follows : Lagrange, Laplace, Malus, Ha\"ue and
Legendre. [3, p.vii].
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“ Analysis of the determined equations, ” we had thought that the manuscript of Fourier, must
be charged him and could be consigned to the library of National School of Civil Engineering
after this eminent engineer’s death. (trans. mine.) 9

1.2.3. The Fourier 1822 by A. Freeman and The Fourier 1807 edited by I. Grauan-Guinness.
In 1878, A. Freeman published the first English translated Fourier’s second version, of which
the preliminary is completely the same as G. Darboux 1888, ten years later than A. Freeman.
In 1972, I. Grattan-Guinness discovered the manuscript 1807. He pays attentions to the Aver-
tissment in the second edition by G. Darboux as above we mention.

2. THE THEORETICAL CONTRARIETIES TO FOURIER

2.1. Lagrange and Fourier on the trigonometric series. Riemann studies the history
of research on Fourier series up to then (Geschichte der Frage \"uber die Darstellbarkeit einer
willk\"uhrlich gegebenen Function durch eine trigonometrische Reihe, [25, pp.4-17]. $)$ We cite one
paragraph of his interesting description from the view of mathematical history as follows :

Als Fourier in einer seiner ersten Arbeiten \"uber die W\"arme, welche er der
franz\"osischen Akademie vorlegtet 10, (21. Dec. 1807) zuerst den Satz aussprach,
$daB$ eine ganz willk\"uhrlich (graphisch) gegebene Function sich durch eine trigonometrische
Reihe ausdr\"ucken $laJ3e$ , war diese Behauptung dem greisen Lagrange’s unerwartet,
da6 er ihr auf das Entschiedenste entgegentrat. Es soll 11 sich hier\"uber noch ein
Schriftstr\"uck in Archiv der Pariser Akademie befinden. Dessenungeachtet ver-
weist 12 Poisson \"uberall, wo er sich der trigonometrischen Reihen zur Darstellung
willk\"urlicher Functionen bedient, auf eine Stelle in Lagrange’s Arbeiten \"uber die
schwingenden Saiten, wo sich diese Darstellungensweise finden soll. Um diese Ba-
hauptung, die sich nur aus der bekannten Rivalit\"at zwischen Fourier und Poisson
erkl\"aren $1\theta t13$ , zuwiderlegen, sehen wir uns gen\"othigt, noch einmal auf die Ab-
handlung Lagrange’s zur\"uchzukommen; denn \"uber jeden \"uber jenen Vorgang in
der Akademie findet sich nichts ver\"offentlicht. [25, p.10]

Man findet inder That an der von Poisson citirten Stelle die Formel:

$y=2 \int Y\sin X\pi dX\sin x\pi+2\int Y\sin 2X\pi dX\sin 2x\pi+\cdots+2\int Y\sin nX\pi dX\sin nx\pi$, (1)

de sort que, lorsque $x=X$ , on aura $y=Y,$ $Y$ \’etant l’ordonn\’e qui r\’epond \‘a

l’abscisse $X$ . Diese Formel sieht nun allerdinga ganz so aus wie die Fourier’sche
Reihe ; so daBbei fl\"uchtigerAnsicht eine Verwerwechselung leicht m\"oghch ist ;
aber dieser Schein r\"uhrt bloss daher, weil Lagrange das Zeichen $\int dX$ anwendte,
wo er heute das Zeichen $\sum\Delta X$ angewandt haben w\"urde. Wenn man
aber seine Abhandlung durchliest, so sieht man, daBer weit davon entfernt ist zu
glauben, eine ganz willk\"uhrliche Function $1\theta e$ sich wirklich durch eine unendhche
Sinusreihe darstellen. [25, pp.10-11]

Lagrange had stated (1) in his paper of the motion of sound in 1762-65. [17, p.553]

$9(\Downarrow)$ Navier edited and published the first part of this Fourier’s algebraic book 1831 [12] after Fourier’s death
in 1830. We see G. Darboux had discover Fourier’s manuscript 1807, and regarded it had been passed to Navier,
for the above process, when G. Doubroux edited the second volume of Fourier’s Oeuvres in 1890.

$10_{sic}$ . Bulletin des sciences $p$ . la soc. philomatique Tome I. p.112
$11_{sic}$ . Nach einer m\"undlichen Mittheilung des Herr Professor Dirichlet.
$12_{sic}$ . Unter Andem in den verbreiteten Trait\’e de m\’ecanique Nro. 323. p. 638.
$13_{sic}$ . Der Bericht in bulletin des sciences \"uber die von Fourier der Akademie vorgelegte Abhandlung ist von

Poisson.
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2.2. Fourier and Poisson on the heat theory. Poisson [22] traces Fourier’s work of heat
theory, from the another point of view. Poisson emphasizes, in the head paragraph of his
paper, that although he totally takes the different approaches to formulate the heat differential
equations or to solove the various problems or to deduce the solutions from them, the results by
Poisson are coincident with Fourier’s. Poisson [22] considers the proving on the convergence
of series of periodic quantities by Lagrange and Fourier as the manner lacking the exactitude
and vigorousness, and wants to make up to it.

Dans le m\’emoire cit\’e dans ce $n^{o},$ $j’ ai$ consid\’er\’e directment les formules de
cette esp\‘ece qui ont pour objet d’exprimer des portions de fonctions, en s\’eries
de quantit\’es p\’eriodiques, dont tous les termes satisfont \‘a des conditions donn\’ees,
relatives aux hmites de ces fonctions. Lagrange, dans les anciens M\’emoires de
Turin, et M. Fourier, dans ses Recherches sur la th\’eorie de la chaleur, avaient
d\’ej\‘a fait usage de sembles expressions; mais il $m’ a$ semb$k’$ qu’elles n’avaient point
encore \’et\’e &’monstr\’ees d’une $manoere\backslash$ prv6 cise et rigoureuse; et c’est \‘a quoi $j’ ai$
tach\’e de suppker dans ce M\’emoire, par rapport \‘a celles de ces formules qui se
pr\’esentent le plus souvent dans les applications. $[22, \S 2, 1\lceil 28, p.46]$ (Italics
mine.)

Poisson proposes the different and complex type of heat equation with Fourier’s $(a)_{P}$ . For
example, we assume that interior ray extends to sensible distance, which forces of heat may
affect the phenomina, the terms of series between before and after should be differente.

3. POISSON’S PARADIGM OF UNIVERSAL TRUTH ON THE DEFINITE INTEGRAL

Poisson mentions the universality of the method to solve the differential equations a.s follows:
A d\’efaut de m\’ethodes g\’en\’erales, dont nous manquerons peut-\^etre encore long-

temps, il $m’ a$ sembl\’e que ce qu’il $y$ avait de mieux \‘a faire, c’\’etat de chercher \‘a
int\’egrer isol\’ement les \’equations aux diff\’erences partiellles les plus importantes
par la nature des questions de m\’ecanique et de physique qui $y$ conduisent. $C$ ’est
la l’objet que je me suis propos\’e dans ce nouveau m\’emoire. [21, p.123]

Poisson attacks the definite integral by Euler and Laplace, and Fourier’s analytical theory of
heat, and manages to construct universal truth in the paradigms.

One of the paradigms is made by Euler and Laplace. The formulae deduced by Euler, are the
target of criticism by Poisson. Laplace succeeds to Euler and states the passage from real to
imaginary or reciprocal passage between two, which we mention in below.

The other is Fourier’s application of De Gua. The diversion is Fourier’s essential tool for the
analytical theory of heat.

Dirichlet calls these passages a sort of singularity of passage from the finite to the infinite. cf.
Chapter 1. We think that Poisson’s strategy is to destruct both paradigms and make his own
paradigm to establish the univarsal truth between mathematics and physics. We would like to
show it from this point of view in our paper.

4. ARGUMENT BETWEEN FOURIER AND POISSON ON APPLYlNG THE THEOREM OF DE GUA
14 There were the strifes between Poisson and Fourier to struggle for the truth on mathemat-

ics or mathematical physics for the 23 years since 1807, when Fourier submitted his manuscript
paper. Poisson [24, p.367] asserts that :. It is not able to apply the rules served the algebra to assure that an equation hasn’t

imaginary, to the transcendental equation.. Algebraic theorems are unsuitable to apply to transcendental equations.. Generally speaking, it is not allowed to divert the theorems or methods from real to
transcendental, without careful and strict handling.

$14_{We}$ have submitted [20], in which we cites more bibliographies about this topics.
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On the other hand, Fourier [10, p.617] refutes Poisson:. Algebraic equations place no restriction on analytic theorems of determinant ; It is
applicable to all transcendental, what we are considering, in above all, heat theory.

$\bullet$ It is sufficient to consider the convergence of the series, or the figure of curve, which the
limits of these series represent them in order.. Generally speaking, it is able to apply the algebraic theorems or methods to the tran-
scendental or all the determined equations.

4.1. Is the method of De Gua avairable for applying real or/and imaginary? Pois-
son explains the m\’ethode des cascades, which means the method of De Gua, as follows:

Soit $X=0$ un \’equation quelconque dont l’inconnue est $x$ ; d\’esignons, pour
abr\’eger, par $X’,$ $X”,$ $\cdots$ , les coefficients diff\’erentiels successifs de $X$ , parrapport
\‘a $x$ : si le produit $X\cdot X"$ est n\’egatif en m\^eme temps que $X’=0$ , que le produit
$X’\cdot X"’$ soit n\’egatif en m\^eme temps que $X”=0$, que $X”\cdot X^{(4)}$ soit n\’egatif en
m\^eme temps que $X”’=0$, et ainsi de suite jusqu’\‘a ce qu’on parvienne \‘a une
\’equation $X^{(i)}=0$ , dont on soit a.ssur\’e que toutes les racines sont r\’eelles, et qui
soit telle que la condition $X^{(i-1)}\cdot X^{(i+1)}$ n\’egatif pour toutes ses racines soit aussi
remplie, il sera certain que l’\’equation propos\’ee $X=0$ n’a de m\^eme que des
racines r\’eelles ; et r\’eciproquement, si l’on parvenient \‘a une \’equation $X^{(i)}=0,$

qui ait des racines imaginaires, ou pour laquelle le produit $X^{(i-1)}\cdot X^{(i+1)}$ soit
positif, l’\’equation $X=0$ aura aussi des racines imaginaires. [23, pp.382-3]

Here, Poisson puts a very simple example of transcendental equation and iterates the differential
:

$X=e^{x}+be^{ax}=0$ (2)

where, we assume $a>0$ and $b$ : an arbitrary, given quantities. The equation of an arbitrary
degree with respect to $i$ is ako $X^{(i)}=e^{x}+be^{ax}=0,$ $X^{(i-1)}=ba^{i-1}\cdot e^{ax}(1-a)=0,$ $X^{(i+1)}=$

$ba^{i}\cdot e^{ax}(a-1)=0$ , then $X^{(i-1)}\cdot X^{(i+1)}=-b^{2}a^{2i-1}\cdot e^{2ax}(1-a)^{2}=0$ . Finally, Poisson concludes
: the transcendental equation of example (2) has numberless imaginaries: if $b<0,$ (2) has only
real root, and if $b>0$ no root. [23, p.383]. G.Darboux comments if $b\leq 0,$ (2) has only real
root, it is true, however, Poisson doesn’t put the case of $b=0$ . cf. Chapter??.

5. Fourier’s heat equation of motion in fluid

Fourier esteems Euler’s fluid dynamic equations, saying in the preface of “The analysis of
the heat motion in the fluid.” We cite Fourier’s English translated paper as follows :

We have become to explain the conditions of fluid motion, by the general, partial differential
equations. The discoveries of one of the most beautiful works by the modern mathematicians
are due to d’Alembert and Euler. The former is proposed in titled: “ The Essay on fluid resis-
tance. ” Euler, in 1755, Memoires et l’Academie de Berhn, proposes it under the same theme.
He gives this equations under the simple and clear formation including the all possible cases,
and he proves it by the praiseworthy clearance, which is the principle characteristic through all
his works.

The general equations include four expressions, in which the top three explain the motion of
accelerators and the last, mass conservation law. To see the motion of fluid, at the each instants,
we must determine in each time the actual velocity of an arbitrary molecule and the pressure
acting on the point of fluid ma.ss. Therefore, in this analysis, as the unknown quality, of the
direction of three orthogonal axes, we observe the three quantities of the partial velocity of the
molecule itself of only one of their directions, and the pressure measuring forth quahty. $\alpha,$

$\beta$

and $\gamma$ are the orthogonal velocities of a molecule on the each coordinates : $x,$ $y,$ $z.$ , and $\epsilon$ :
the density variable of this molecule, $\theta$ : temperature, $t$ : elapsed time.

In the first part of our explanation, we stated the equations of motion of heat expressing
inside and on the surface of the solid as follows: If we examine these questions with the careful
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attention, as we mentioned it, we will be able to understand the following: the mathematical
principles become clear, even in respect to the strictness of proof, it is not inferior to that of the
dynamical theory;

To solve this, we must consider, a given space interior of mass, for example, by the volume
of a rectangular prism composed of six sides, of which the position is given. We investigate all
the successive alterations which the quality of heat contained in the space of prism obeys. This
quantity alternates instantly and constantly, and becomes very different by the two things. One
is the property, the molecules of fluid have, to communicate their heat with sufficiently near
molecules, when the temperatures are not equal.

The question is reduced into to calculate separately : the heat receiving from the space of
prism due to the communication and the heat receiving from the space due to the motion of
molecules.

We know the analytic expression of communicated heat, and the first point of the question is
plainly cleared. The rest is the calculation of transported heat : it depend on only the velocity
of molecules and the direction which they take in their motion.
We calculate, at first, how much heat enters through one of the faces of prism by the communi-
cation, or by the reason of fluid flow ; next, how much heat goes out through the opposite face.
[13, pp.507-514.].

Fourier combines heat theory with the Euler’s equation of incompressible fluid dynamics and
proposes the equation of heat motion in fluid in 1820, however, this paper was published in
1833 after 13 years, it was after 3 years since Fourier passed away. Fourier seems to have been
doutful to pubhsh it in life. Here, $\epsilon$ is the variable density and $\theta$ is the variable temperature of
the molecule respectively. $K$ : proper conductance of mass, $C$ : the constant of specific heat, $h$

: the constant determining dilatation, $e$ : density at $\theta=0.$

$\{\begin{array}{l}\frac{1}{\frac{}{},\epsilon\epsilon 1}\frac{\ovalbox{\tt\small REJECT} dp}{dy}dI_{\frac{}{}+\alpha\frac{}{}+\beta\frac{}{}+\gamma\frac{}{}-Y=0}^{\frac{d\alpha}{d\beta dtdt}+\alpha\frac{d\alpha}{d\beta dxdx}+\beta\frac{d\alpha}{dd_{\oint_{dy}}}+\gamma\frac{d\alpha}{d\beta dzdz}-X=0},’\frac{1}{\epsilon}\frac{d}{d}R-1\Delta\Delta\Delta.\frac{\ }{dt}+\frac{d}{dx}(\epsilon\alpha)+\frac{d}{dy}(\epsilon\beta)+\frac{d}{dz}(\epsilon\gamma)=0, \epsilon=e(1+h\theta) .\frac{d\theta}{dt}=\frac{K}{c}(2xdy\theta\pi^{\theta d^{2}\theta}[\frac{d}{dx}(\alpha\theta)+\frac{d}{dy}(\beta\theta)+\frac{d}{dz}(\gamma\theta)].\end{array}$

where, $\alpha,$ $\beta,$
$\gamma,$ $p,$ $\epsilon,$

$\theta$ are the function of $x,$ $y,$ $z,$ $t.$ $X,$ $Y,$ $Z$ are the outer forces.
We think, Fourier seems to feel an inferiority complex to the fluid dynamics by Euler and he

divers the Euler equation as the transport equation from Euler 1755 [7, p.65].

6. From Fourier to Boltzmann

In 1878, ten years earher than G. Darboux, A. $\mathbb{R}$eeman [$14]$ published the first English
translated Fourier’s second version 1822. To this work, Lord Kelvin (William Thomson) con-
tributes to import the Fourier’s theory into the England academic society.15 The microscopically-
description of hydromechanics equations are followed by the description of equations of gas
theory by Maxwell, Kirchhoff and Boltzmann. Above all, in 1872, Boltzmann formulated the
Boltzmann equations, expressed by the following today’s formulation :

After Stokes’ hnear equations, the equations of gas theories were deduced by Maxwell
in 1865, Kirchhoff in 1868 and Boltzmann in 1872. They contributed to formulate the fluid
equations and to fix the Navier-Stokes equations, when Prandtl stated the today’s formulation
in using the nomenclature as the “so-called Navier-Stokes equations” in 1934, in which Prandtl
included the three terms of nonlinear and two linear terms with the ratio of two coefficients
as 3 : 1, which arose from Poisson in 1831, Saint-Venant in 1843, and Stokes in 1845. From
Fourier’s equation of heat, Boltzmann’s gas transport equation is deduced. We summarize the

$15_{A.FYeeman}$ puts the name of W. Thomson in his acknoledgement. cf. [14, errata].
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geist of the equations.
In general, according to Ukai [28], we can state the Boltzmann equations as follows: 16

$\partial_{t}f+v\cdot\nabla_{x}f=Q(f,g)$ , $t>0,$ $x,$ $v\in \mathbb{R}^{n}(n\geq 3)$ , $x=(x, y, z)$ , $v=(\xi, \eta, \zeta)$ , (3)

$Q(f,g)(t, x, v)= \int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}B(v-v_{*}, \sigma)\{g(v_{*}’)f(v’)-g(v_{*})f(v)\}d\sigma dv_{*},$
$g(v_{*}’)=g(t, x, v_{*}’)$ , (4)

$v’= \frac{v+v}{2}*+\frac{|v+v_{*}|}{2}\sigma, v’=\frac{v+v}{2}*+\frac{|v-v_{*}|}{2}\sigma, \sigma\in \mathbb{S}^{n-1}$ (5)

where, $f=f(t, x, v)$ is interpretable as several meanings such as density distribution of a
molecule, /number density of a molecule, /probabihty density of a molecule, at time : $t$ , place :
$x$ and velocity: $v.$ $f(v)$ means $f(t, x, v)$ as abbreviating $t$ and $x$ in the same time and place with
$f(v’)$ . $Q(f, g)$ of the right-hand-side of (3) is the Boltzmann bihnear collision operator. $v\cdot\nabla_{x}f$

is the transport operator. $B(z, \sigma)$ of the right-hand-side in (4) is the non-negative function of
collision cross-section. $Q(f,g)(t, x, v)$ is expressed in brief as $Q(f)$ . $(v, v_{*})$ and $(v’, v_{*}’)$ are the
velocities of a molecule before and after collision. According to Ukai [29], the transport operators
are expressed with two sort of terms like Boltzmann’s descriptions : including the colhsion term
$\nabla_{v}\cdot(Ff)$ by exterior force F. Boltzmann defines the model of the collision between the molecule
$m_{1}$ calhng the point of it and the molecule $m$ wich we call the point $m$ . The instant when the
molecule $m$ passes vertically throught the disc of $m_{1}$ molecule, is defined as collision. According
to Boltzmann[2, pp.110-115], 17 his equations (so-called transport equations) are the following:

Since now $V_{1}+V_{2}+V_{3}+V_{4}$ is equal to the increment $dn’-dn$ of $dn$ : number of
molecules during time $dt$ , and this according to Equation $(101)_{B}$ must be equal

to $\neq^{\partial_{t}}$ dodxdt, one obtains on substituting all the appropriate value and deviding
by $dod\omega dt$ the following partial differential equation for the function $f.$

$(Here,$ Equation $(101)_{B}$ : $dn’-dn=\neq^{\partial_{t}}$do $d\omega dt.$ ) Boltzmann explains an increase of $dn$ as
a result of the following four different causes of $V_{1}$ : increment by transport through do, $V_{2}$ :
increment by transport of external force, $V_{3}$ : increment as a result of collisions of $m$-molecules
with $m_{1}$-molecules, and $V_{4}$ : increment by collision of molecules with each other. The top two
correspond to Fourier’s transport of heat, which are owing to Euler, and the last two correspond
to Fourier’s comunication of heat.

7. FROM KEPLER TO THE QUANTUM MECHANICS

Kepler (1571-1630) 1634 [16] proposes laws on the motions of planets in reserving many
analytical open problems. Huygens (1625-95) 1678 observes the wave propagation and Fhresnel
(1788-1827) corrects its wave principles. Euler (1707-1783) 1748 proposes the wave motion
of string. Navier (1785-1836) and Poisson (1781-1840) propose wave equations in elasticity

respectively. Fourier (1768-1830) 1820 [8] combines his communication theory with the Euler
equation 1755 and puts the heat equation of motion in fluid, in which he expresses the molecular
motion with communication and transportation of molecules before Boltzmann’s modehng with

colhsion and transportation. Navier, Poisson, Cauchy, Stokes, et al. struggle to configurate
the microscopically-descriptive fluid equations with mathematical and practical adaptation, to
which Plandt11934 uses the nomenclature as the Navier-Stokes equations. Sturm (1803-55)
and Liouville (1809-82) propose the differential equation of Sturm-Liouville $1836-7[18,27],$

solving the boundary value problem. Boltzmann (1844-1904) 1895 proposes the gas theory,
ending the microscopically descriptive equations such as the original Navier-Stokes equations.
However, Boltzmann’s motion theories aren’t satisfied with the law of Newton (1643-1727) and
are ‘thrown into oblibion.’

$16(\Downarrow)$ We refer the Lecture Note by S.Ukai: Boltzmann equations: New evolution of theory, Lecture Note of the
Winter School in Kyushu of Non-linear Partial Differential Equations, Kyushu University, 6-7, November, 2009.

$17(\Downarrow)$ Boltzmann(1844-1906) had put the date in the foreword to part I as September in 1895, part II as August

in 1898.
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7.1. The modeling of Schr\"odinger equation. Schr\"odinger (1887-1961) [26] bases his orig-
inal quantum theory on the classic mechanics of Kepler motion, showing some examples to apply
the eigenvalue problem on the differential equations of Sturm-Liouvill type : 18

(1) $s$ $L[y]=py”+p’y’-qy$, (2) $L[y]+E\rho y=0$

where, $L$ is the differential operator, $E$ is an eigenvalue of constant to find, $y=y(x)$ . $p,$ $p’,$ $q$ are
unrelated functions with the variable $x.$ $\rho=\rho(x)$ is a wide-ranging-continuous function. The
solutions $y(x)$ relate to the equation (2) , namely, the eigen function. Here, all the eigenvalues
are real and positive. [26, (2), pp.514-5].
Schr\"odinger is necessary the new quantum mechanics based on the analogical ground from
classical mechanics or the mathematics such as:. the motion theory of planets by Kepler in classic principle for modehng the modern

theory of atomic structure,. colhsion of electron with nucleus like Fourier’s or gas-theorists’ molecular collision,. entropy concept like energy conversion in gas theory unsatisfied with Newton theory
since Clausius 1865,. hght wave theory unsatisfied with Newton theory since Huygens’ wave principle,. application of the Sturm-Liouville theory and its differential equation to the boundary
value problem in atomic mechanics, etc.

8. CONCLUSIONS

1. Fourier’s theoretical works in hfe are : theorem on the discriminant of number and range
of real root, heat and diffusion theory and equations, practical use of transcendental
series, theoretical reasons to the wave and fluid equations and many seeds to be done in
the future a hke Dirichlet’s expression : to offer a new example of the prolificity of the
analytic process.

2. Poisson’s objections are very useful for Fourier to prove the series theory, however, in
vain for Fourier’s passing away. It is toword a sort of singularity of passage from the
finite to the infinitem hke Dirichlet’s expression.

3. Poisson’s method of definite integral is a mere one, widely, univarsally applicable to the
integral problems. Euler’s and Laplace’s are some deductive reasonings to discover it,
and these are also important.

4. Boltzmann’s concept of colhsion and transport with entropy and probabihty are treated
as the classical quantum mechanics. In this sense, Fourier’s communication theory and
the equation of motion in the fluid stand on the communication point between the
classical mechanics and new quantum mechanics by Schr\"odinger.

REFERENCES
[1] Ludwig Boltzmann, Vorlesungen $\ddot{u}ber$ Gastheorie, von Dr. Ludwig Boltzmann Professor der Theoretischen

Physik an der $Universitt$ Wien. Verlag von Johann Ambrosius Barth, Leipzig, 1895, 1923. Lectures on gas
theory, 1895, translated by Stephen G.Brush, Dover, 1964.

[2] Ludwig Boltzmann, Vorlesungen $\ddot{u}ber$ Gastheorie, von Dr. Ludwig Boltzmann Professor der Theoretischen
Physik an der Universit\"at Wien. Verlag von Johann Ambrosius Barth, Leipzig, 1895, 1923.

[3] G.Darboux, (Euvres de Fourier. Publzees par les soins de M. Gaston Darbous, Tome Premier, Paris, 1888,
Tome Second, Paris, 1890.

[4] G.Darboux, $CB$uvres de Foureer. $Publoees$’ par les soins de M. Gaston Darboux, Tome Second, Paris, 1890. $arrow$

http://gallica.bnf. $fr/ark:/12148/bpt6k33707$
[5] M.G.Lejeune Dirichlet, Solution d’une question relative \‘a le th\’eorie math\’ematiques de la chaleur, Crelle $J.$

f\"ur die reine und angewandte Mathematik, 5(1830), 287-295. $\Rightarrow$ Lejeune Dirichlet,G Werke Tome 1, heraus-
gegeben auf Veranlassung der k\"oniglich preussischen Akademie der Wissenscaften von Kronecker ; forgesetzt
von L.Fuchs, Berlin, 1889-1897, 161-172. $arrow$ http://gallica.bnf.fr/ark:$/12148/bpt6k99435r/fl32$

$18(\Downarrow)$ Schr\"odinger gets this problem from Courant-Hilbert. V.\S 5, 1, p.238 $f.$ $[26,$ (3) $, p.440.]$ , not from French
Sturm-Liouvill’s bibliographies, or like Euler’s French papers on the wave equation.

245



246


