goooboooobgon
0 18920 20140 29-36

Report on the chemotaxis-fluid systems
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Abstract. This report deals with the chemotaxis-fluid system (P) with porous-medium
diffusion and considers the uniform-in-time LP-estimate to solutions (n,c,u,p) to (P),
where components of the solution denotes the bacteria density, the chemical concentration,
the velocity field of the fluid and the pressure in the order of inputting. The analysis of
this system is very difficult, however there are few results on the global existence: As to
the two dimensional case, the global existence in (P) with the linear diffusion (An) on R?
and with quasilinear degenerate diffusion (An™, m > 1) on bounded convex domains was
proved. Moreover in the three dimensional case, there are results on global solvability of
(P) with An3 on R3 and with An™ (m > 8) on bounded convex domains. As can be
seen from these, there are many open interesting problems. This report discusses these
problems and gives the observational result.

1. Introduction

The main purpose of our work is to prove the global existence and uniform in time
boundedness in the following chemotaxis-fluid system (KSS) on the 3D bounded domain:
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where ) has a smooth boundary 8Q, v is outward normal derivative on 9Q, ¢ € Wh*(Q),
m > 1 and the initial data are positive functions.

The system (KSS) describes the motion of the swimming bacteria with oxgentaxis
which lives in thin fluid. The bacteria moves toward higher concentration of oxygen and
oxygen is consumed by bacteria, and moreover, they are transported by the fluid (cf. Tuval,
et al. [9], Dombrowski, et al. [1]). Here, (n,c,u,p) in (KSS) denotes the bacteria density,
the chemical concentration, the velocity field of the fluid and the pressure, respectively.

The analysis of this system is difficult because of u- V¢ in the second equation. When
we consider the LP-estimate of n, getting V- (nVc) in the first equation under control has
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a key role. However, in order to estimate this term, we run against the term u - Vc in the
second equation which term is associated directly with the third equation. The second
equation looks simple but the estimate of V¢ is hard (at least for the author). In spite
of the difficulty such as this, there are few successful results on the global existence. We
know the following cases have the global solvability:

e 2D case
(a) Q = R?, m = 1, the small initial data (Duan-Lorz-Markowich [2]);
(b) Q is the bounded domain, m € (3, 2] (Francesco-Lorz-Markowich (3]);
(¢) Q is the convex bounded domain, m > 1 (Tao-Winkler [7]);

e 3D case
(a)) @ =R% m =2 ([3]);
(b’) @ =R3, m = § (Liu-Lorz [6]);
(c’) Q is the bounded domain, m € [7141@, 2] ([3));
(d’) Q is the convex bounded domain, m > £ (Tao-Winkler [8]).

As can be seen from these, there are many open interesting problems.
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2. Observation and its proof
This report especially considers functions fulfilling the following Cauchy problem

( On

EzA(n+E)m—V-(nVc)—u-Vn, reR3 t>0,
%=Ac—nc—u-VC, reR3 t>0,
(P) <%=A“‘V”“"v¢’ zeR? t>0,
V-u=0, z€eR3 t>0,
| n(z, 0) = no(z), c(x,0) = co(z), u(z,0) = up(z), z€R3 t>0

in the classical sense, where ¢ > 0 and the initial data ng, cy, ug € C$°(R3) are positive

function.
The definition of the classical solution (n,c,u,p) to (P) is as follows:

Definition 2.1 (classical solutions). Let T' € (0,00). A quadruple (n,c,u,p) is called a
classical solution to (P) on [0, T) if the following conditions are satisfied:

n>0 and ¢>0
and
n € C°(R® x [0, Tmax)) N C**(R? x (0, Tmax)),
c € C°(R3 x [0, Tnax)) N C**(R? x (0, Tmax)),
u € CO(R? x [0, Tmax)) N C*'(R® x (0, Tmax))

and (n,c,u,p) fulfills the system (P).
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Now we present the result.

Proposition 2.1. Let T > 0 and let (n,c,u,p) be a classical solution to (P) on [0,T).
Assume that 4
m e [1, —).

3
Then there exists a constant § = §(m) > 0 such that if the initial data satisfy the smallness:

Imollz1, lImoll 23, lIno log moll 1, flcoll zoe, [ Vcoll 22, [ Acol| 24, |uoll D(a,y < 6

where A, is the Stokes operator with dense domain D(A,) and vy := (Z‘(%% + %)—1 for
some p € (3,1) close to 3 and moreover if the additional smallness

(A1) sup (—/ nlognda:) <9,
o<t<T R3
T
(A2) / |u|* dzds < 6,
0o JR?
T 4(p+1)
(A3) lull 37 ds <6

0

are satisfied, then

sup ||n(t)||r@sy < C  (Vp € [1,3))
o<t<T

holds, where C does not depend on € and T.

Remark 2.1. We denote the Stokes operator by A, = —P,A, where P, is the continuous
projection from (L?(R3))3 onto LI(R3), with the domain

D(A,) = {w € LL(R3); 8;,0;w € (LYR*)* (1<1i,5<n)}.

The space LZ(R?) is regarded as the closure of C3% (R?) := {w € (C§°(R?))3, V- w =0}
in (L(R%))3,

2.1. Preliminaries

The first and second lemmas are the maximal Sobolev regularity for Laplace operator
(see e.g., Ladyzenskaja-Solonnikov-Ural’ceva [5, Chapter IV, Section 3]) and it for Stokes
operator (see e.g., Giga-Sohr [4]).

Lemma 2.2 (Maximal Sobolev regularity for Laplace operator). Let 1 <p < oo, N € N
and T > 0. Then for every w € LP(0,T; LP(R®)) and 2o € W%P(R3) there ezists a solution
z to

z=Az+w @mRx(0,T), 2(z,0) = z(z) inR®
which satisfies z € LP(0,T; W2P(R3)). Moreover, there ezists a positive constant Cip) =
Cu) (p,N) such that

|Az|| Lo o,1Le @) < 1A%l e + Copy Wl Lo 0,110 ®3Y) -
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Lemma 2.3 (Maximal Sobolev regularity for Stokes operator). Let 1 < p,q < oo, N €
N, T > 0 and let A, be a Stokes operator. Then for every w € L9(0,T; L(R®)) and
29 € D(A,) there ezists a solution z to

n=—Apz+w nRx(0,T), 2(z,0)=2(z) inR3

satisfying z € L1(0,T; D(A,)). Moreover z satisfies the following estimate:

T —~
/0 14p2(0) 4 my < Copp (0l + / (O 25 a8,

where 5(1,,(,) = 5(,,,,,) (p,q, N) > 0 is a constant.

The next proposition is the mass conservation law for n(t) and the L™ bound for
c(t). These are proved by integration of the first equation and by the parabolic maximum
principle applied to the second equation, respectively.

Proposition 2.4 (L!-conservation law for n and L*-estimate for c). Let T > 0 and let
(n,c,u,p) be a classical solution to (P) on [0,T). Then n satisfies

In()llr®e) = lInollzr ~ for alit € (0,T)

and c satisfies
lc| < |lcollze  for all (z,t) € R® x (0,T).

Lemma 2.5 is the energy estimate for (P). The proof is came from [8, Lemma 2.3].

Lemma 2.5 (Energy estimate). Let T > 0 and let (n,c,u,p) be a classical solution to
(P) on [0,T). Then there ezists a positive constant ky such that for any t € (0,T)

2
i{/ nlogn+2/ IV\/E|2}+/ |VnZ |2+ /c|D2logc|2 / [Vel <k / |ul®.
dt R3 R3 R3

The following estimate is the estimate to Vc. The proof is also came from [8, Lemmas
2.3, 2.5] and the above energy estimate.

Lemma 2.6 (L*-estimate to Vc). Let T > 0 and let (n,c,u,p) be a classical solution to
(P) on [0,T). Then there ezists a positive constant K, such that

¢
/0 o |Vc|*dzds < Ky, (Vt € (0,T))

where K, depends on the initial data and sup ( — [psnlogndz), fot Jgs |ul* dzds.
0<s<t

Remark 2.2. As to Lemma 2.6, the assumption of smallness means that fot Jgs |Vc|* can
be to be small.
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2.2. Proof of main proposition

In this subsection, we compute the L? estimate to n(t) (Vp € [1,3)). For simplicity,
we discuss (P) with € = 0 throughout the following. Let us start computing.

Let p > 1. From the straightforward argument we have

dt”n oy = /Vn - VnPt 4 /nVc Va4 /ﬂannp’l

m+
— _ P
m+p_1)2/|v p /QVcVn

2m(p — mip-t (p—1)
el [y + 22 [ Jadh

Integrating the above estimate over (O,t), we obtain from the Young inequality with

(%1, 747) and Lemma 2.2 that

“n(t)”ip(g) = lImollZs

2mp mip=1
A P

Y DV

2mp
) i

¢
+cl(p—1){||Aco||Lp+1+/0 /ﬂ|—nc—u-Vc|p+1}+(p—1)/0 /SZInP’“

with some positive constant ¢;. Hence the estimate ||c(t)||z~ < |lcollze (2 > 0) from
Proposition 2.4 ensures that

(2'1) ”n(t)llzl)m(u) - ”nonip(gz)

2mp(p—1) mip=1
= [ gy + e - DlAcals

+ (- Dlerlicollz= +1) / [Pt +am-1 / t [ v,

Firstly, we consider the third term in the right hand side of (2.1). The Gagliardo-Nirenberg
inequality yields for any p > 2 4-1

/ / Infr+ = / 5 Pt;n;l
p ™

— — 2(p+1)
m— m +m—1
Sc?/ (”;n HL2” “1 “ 3(p-1 )p

0 =T
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with some constant c; > 0 and

:p—H;L—l( 2 1 )(p+m—1_1).
3p—-1) p+1/\62-m) 6
Note that a € (0,1) when m < 2. Because of %7;&112 = 2, we have

t t
(2.2) /0 /Q [nfP* dads < o, /0 VR 5, s

Next, we’'d like to estimate the last term in the right hand side of (2.1). The Young
inequality with (252, £=@*1) gives for any p < 3

t ¢ t ot
(2.3) / / - Vet < / / Ve[* + / / |
0 JQ 0 JN 0 JQ

In order to estimate the second term in the right hand side of (2.3), we use the embedding

W27 L3555 (v:= (Zp+4 +2)~!) and Lemma 2.3. Then we see that

4pt4
/ / ) 55 < o, f lulla

4dp+4 t 4p+4
< ¢ / Il +cs [ Au]zr
0

55 s
<c ||U|| + C4{”“0”D(A.,) + I|nV¢|| }

t 4p+d Aptd
<o [ NullZ™ + calluollpiay +C4||V¢|Imo Iln(s)ll e
0

due to ¢ € W, where c3, ¢4 are positive constants. In light of the Gagliardo-Nirenberg
inequality we can find a positive constant cs such that

(2.4) / / | 55 < Ky + calluoll pgay + sl V1 / V25 () 2 lIn(8)153

L dped
where Kj := c3 f |Jul| ;3*° ds, 1 : 3{4p+4 (p+m—-1)}{1+ 2(p+1)} and some oz > 0.
Hence connecting (2.4) into (2.3), we see that for any p € [T + 1, 3)

t
(2.5) / / |u- VcPt?
< Ky + Kz + |luollp(a,) + “V¢||L°°/ IVn™5= (5) 2. lIn(t) 152 ds,

where K; > 0 is the same constant as in Lemma 2.6. Then the estimates (2.1), (2.2) and

(2.5) provide



In@O1Zo@y — InollZoi
2mp(p — mip-1
R [ 19+ e Dl

+ (0 - D(afleollz= + 1) / g A T v

+ (o= D{ Ky + Ky + caluolloiay + 5[V / IVn™%= (5) Zalln(e) I35 ds

Then the smallness of the initial data gives uniform-in-time LP-estimate on [0, ¢;) for small
t1 > 0 and for any p € [2+1,3). The mass conservation law with this boundedness entails
uniform-in-time LP-estimate on [0,¢;) for any p € [1,3). Moreover, repeating the same
argument for the sake of a priori estimate and the assumption (Al), (A2), (A3) finally
ensures LP-estimate on [0,T), and therefore this completes the proof.

Remark 2.3. Our main purpose of this work is to find the global solvability in (KSS)
especially with m € [1, %) Since this report could not achieve it the author would like to
research it in the future.
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