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ABSTRACT. $A$ matrix form is used to exhibit a useful property of a general-
ized outer invertible bounded linear operator: there is a subspace such that
the reduction of the operator to that subspace is invertible. Starting with
a linear equation as motivation, inner inverses and outer inverses are intro-
duced. Finally, a class of outer inverses with prescribed range and null space
is discussed.

1. INTRODUCTION

Let $X$ and $Y$ be (complex) Banach spaces and let $\mathcal{B}(X, Y)$ be the set of bounded
linear operators from $X$ to $Y$ . If $X=Y$ , then we just write $\mathcal{B}(X)$ . We will write
$I_{X}\in \mathcal{B}(X)$ for the identity operator $I_{X}x=x$ , dropping the subscript when the
context is clear, and $O\in \mathcal{B}(X, Y)$ for the null operator $Ox=0$ . Let $A\in \mathcal{B}(X, Y)$ ,
if there is an operator $B\in \mathcal{B}(Y, X)$ such that $AB=I_{Y}$ and $BA=I_{X}$ , then we say
that $A$ is invertible with inverse $A^{-1}$ $:=B.$

We are interested in the following problem: given $A\in B(X)$ and $y\in X$ , find
$x\in X$ such that

(1) $Ax=y.$

Of course, if $A$ is invertible, we have $x=A^{-1}y$ . Thus, we are interested in solving
equation (1) for the case where $A$ is not invertible. For the remainder of this paper,
we will suppose $A\in \mathcal{B}(X)$ is not invertible.

Let us denote $\mathcal{N}(A)$ $:=\{x:Ax=O\}$ the null space of $A$ and $\mathcal{R}(A)$ $:=\{Ax:x\in$

$X\}$ the range of $A$ . We say $A$ is 1-1 if $\mathcal{N}(A)=\{0\}$ and $A$ is onto if $\mathcal{R}(A)=X$ . It
is a consequence of the closed graph theorem that an operator is invertible if and
only if it is 1-1 and onto.

In order to give a condition for being able to find a solution to (1), we introduce
complemented subspaces. Let $M$ be a closed subspace of $X$ . If there exists a closed
subspace $N$ such that $X=M\oplus N$ , then we say that $M$ is complemented with
complement $N$ . Here, $X=M\oplus N$ means that $M\cap N=\{0\}$ and for every $x\in X,$

there exists (unique) $u\in M$ and $v\in N$ such that $x=u+v.$
It is clear that an invertible operator has closed and complemented range and

null space. We are working with a non-invertibe operator $A$ , and in a sort of
“generalization”, we will require $\mathcal{R}(A)$ to be closed and complemented and $\mathcal{N}(A)$

to be complemented. Thus, suppose $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are closed and complemented
with complements $M$ and $N$ respectively. We can represent $A$ in the following
form:

(2) $A:[Matrix]arrow[^{R(A)}M].$
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Notice that for the reduction $A_{1};=A|_{N}$ : $Narrow \mathcal{R}(A)$ (defined by $A_{1}x=Ax$

for every $x\in N$) we have $A_{1}\in B(N, \mathcal{R}(A)),$ $\mathcal{N}(A_{1})=\mathcal{N}(A)\cap N=\{0\}$ and
$\mathcal{R}(A_{1})=\mathcal{R}(A)$ , and thus, $A_{1}$ is invertible.

Recall $P$ is a projection if $P=P^{2}$ , and in this case we have $Px=x$ for every
$x\in \mathcal{R}(P)$ .

Let $P$ be a projection onto $\mathcal{R}(A)$ , and let $B$ $:=A_{1}^{-1}P\in B(X)$ . Then,

(3) $ABA=AA^{-1}PA=A.$

It follows that $AB$ is a projection onto $\mathcal{R}(A)$ :
$(AB)^{2}=ABAB=AB,$

$\mathcal{R}(A)=\mathcal{R}(ABA)\subseteq \mathcal{R}(AB)\subseteq \mathcal{R}(A)$ .
Thus, if $y\in \mathcal{R}(A)$ , then $ABy=y$. Hence, taking $x=By$ we have

$Ax=ABy=y,$

that is, $x=By$ is a solution for equation (1). Using (3) it is also easily verified
that, for $z\in X$ arbitrary,

$By+(I-BA)z$
is also a solution for equation (1).

2. INNER INVERSES

The operator $B$ constructed in the previous section satisfies $A=ABA$. This
was one of the keys for finding a solution to (1), and it deserves a name:

Definition 2.1. Let $A\in \mathcal{B}(X)$ , if there exists some $B\in \mathcal{B}(X)$ such that $A=ABA$
holds, then $B$ is called an inner inverse for $A$ , and we say that $A$ is inner invertible.

We have shown in previous section that if $A\in \mathcal{B}(X)$ has closed and comple-
mented range and null space, then there exists an inner inverse $B\in \mathcal{B}(X)$ for $A.$

Now we are interested in matrix forms for $A$ and $B.$

Recalling representation (2), we write the following matrix form:

$A=\{\begin{array}{ll}A_{11} A_{12}A_{21} A_{22}\end{array}\}:\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}arrow[^{\mathcal{R}(A)}M]$

We have shown above that $A_{11}$ : $Narrow \mathcal{R}(A)$ is invertible. Now, since $Ax=0$ for
every $x\in \mathcal{N}(A)$ , it follows that for $A_{12}$ : $\mathcal{N}(A)arrow \mathcal{R}(A)$ we have $A_{12}=O$ , and
for $A_{22}$ : $\mathcal{N}(A)arrow M$ we have $A_{22}=O$ . Also, for $A_{21}$ : $Narrow M$, since $M$ is a
complement of $\mathcal{R}(A)$ , and $Ax\in \mathcal{R}(A)$ for every $x\in N$ , then $Ax=0$ for every
$x\in N$ , hence $A_{21}=O$ . So, we get

(4) $A=\{\begin{array}{ll}A_{11} OO O\end{array}\}:\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}arrow[^{\mathcal{R}(A)}M]$

With respect to the same decomposition,

$B=\{\begin{array}{ll}B_{l1} B_{12}B_{21} B_{22}\end{array}\}:[^{\mathcal{R}(A)}M]arrow\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}.$

Now, since $ABA=A$, from

$\{\begin{array}{ll}A_{11} OO O\end{array}\}\{\begin{array}{ll}B_{11} B_{12}B_{21} B_{22}\end{array}\}\{\begin{array}{ll}A_{11} OO O\end{array}\}=\{\begin{array}{ll}A_{11}B_{11}A_{11} OO O\end{array}\}$

we have $A_{11}B_{11}A_{11}=A_{11}$ , and recalling $A_{11}$ is invertible, we see that $B_{11}=A_{11}^{-1}.$
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Since $(BA)^{2}=BABA$ $=BA$ and $\mathcal{N}(A)=\mathcal{N}(ABA)\supseteq \mathcal{N}(BA)\supseteq \mathcal{N}(A)$ , it
follows $BA$ is a projection onto $N$ , thus

$BA=\{\begin{array}{ll}I OO O\end{array}\}:\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}arrow\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}.$

But
$BA=\{\begin{array}{ll}A_{11}^{-1} B_{12}B_{21} B_{22}\end{array}\}\{\begin{array}{ll}A_{11} OO O\end{array}\}=\{\begin{array}{ll}A_{11}^{-1}A_{11} OB_{21}A_{11} O\end{array}\},$

so $B_{21}A_{11}=O$ , and since $A_{11}$ is invertible, it follows $B_{21}=O.$

In a similar way, we saw above that $AB$ is a projection onto $\mathcal{R}(A)$ , thus

$AB=\{\begin{array}{ll}I OO O\end{array}\}:[^{\mathcal{R}(A)}M]arrow[^{\mathcal{R}(A)}M].$

But
$AB=\{\begin{array}{ll}A_{11} OO O\end{array}\}\{\begin{array}{ll}A_{11}^{-1} B_{12}B_{21} B_{22}\end{array}\}=\{\begin{array}{ll}A_{11}A_{11}^{-1} A_{11}B_{12}O O\end{array}\},$

so $A_{11}B_{12}=O$ , and since $A_{11}$ is invertible, it follows $B_{12}=O.$

Therefore, we arrive to the following matrix form for $B$ :

$B=[^{A_{11}^{-1}}0 B_{22}O]$

where $B_{22}$ : $Marrow \mathcal{N}(A)$ is arbitrary. Thus, we have proved the following:

Theorem 2.2 ([2]). Let $A\in \mathcal{B}(X)$ and suppose that $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are closed and
complemented with complements $M$ and $N$ respectively. Then $A$ is inner invertible
and for any inner inverse $B\in \mathcal{B}(X)$ we have the following matrix forms:

$A=\{\begin{array}{ll}A_{1} OO O\end{array}\}:\{\begin{array}{l}N\mathcal{N}(A)\end{array}\}arrow[^{\mathcal{R}(A)}M],$

where $A_{1}$ is invertible, and

$B=\{\begin{array}{ll}A_{1}^{-1} OO B_{2}\end{array}\}[^{\mathcal{R}(A)}M]arrow\{\begin{array}{l}N\mathcal{N}(A)\end{array}\},$

with $B_{2}$ arbitrary.

Notice that the theorem above shows that we don’t have uniqueness for the inner
inverse. Indeed, given an inner inverse for an operator, in the next section we con-
struct another inner inverse, although not necessarily distinct, with an interesting
property.

3. OUTER INVERSE

Suppose $A=ABA$ . Now let $C;=BAB$ , then $ACA=$ ABABA $=ABA=A$
and $CAC=$ BABABAB $=$ BABAB $=BAB=C$. Thus, $C$ is an inner inverse for
$A$ which also satisfies $C=CAC$ . We will give this $C$ a name:
Definition 3.1. Let $A\in \mathcal{B}(X)$ , if there exists $C\in \mathcal{B}(X),$ $C\neq O$ , such that
$C=CAC$, then $C$ is called an outer inverse for $A$ , and we say that $A$ is outer
invertible.

In previous section, we constructed an inner inverse for $A$ provided its range and
null space were closed and complemented. Now we show that we can construct an
outer inverse for every nonzero operator.
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Theorem 3.2 ([2]). Let $A\in \mathcal{B}(X)$ be a nonzero operator, then there exists $C\in$

$\mathcal{B}(X),$ $C\neq O$ , such that $C=CAC.$

Proof. Since $A\neq O$ , there exists $x_{0}\in X$ such that $Ax_{0}\neq 0$ . Let $y_{0}=Ax_{0}$ . Since
span$\{x_{0}\}$ and span$\{y_{0}\}$ are finite dimensional, they are complemented. Thus, there
exist subspaces $M,$ $N$ such that

$X=$ span$\{x_{0}\}\oplus N=$ span$\{y_{0}\}\oplus M.$

We have the following matrix form for $A$ with respect to these decompositions:

$A=\{\begin{array}{ll}A_{11} A_{12}A_{21} A_{22}\end{array}\}:[^{span\{x_{0}\}}N]arrow[^{span\{y_{0}\}}M].$

It is clear that $A_{11}$ : span$\{x_{0}\}arrow$ span$\{y_{0}\}$ is invertible. Now, taking

$C:=\{\begin{array}{ll}A_{11}^{-1} OO O\end{array}\}:[^{span\{y_{0}\}}M]arrow[^{span\{x_{0}\}}N]$

we get $CAC=C.$ $\square$

The opening paragraph of this section says that inner invertibility implies outer
invertibility. The theorem above says that outer invertibility is more general than
inner invertibility.

For the remainder of this section suppose, with no other restrictions on $A\in \mathcal{B}(X)$

or $C\in \mathcal{B}(X)$ , that $C=CAC$ holds and $C\neq O$ . We are interested in matrix forms
for $A$ and $C.$

As for inner inverses, we have
$(CA)^{2}=CACA=CA,$

$(AC)^{2}=ACAC=AC.$

Also, from $\mathcal{R}(C)=\mathcal{R}(CAC)\subseteq \mathcal{R}(CA)\subseteq \mathcal{R}(C)$ we have
$\mathcal{R}(C)=\mathcal{R}(CA)$ ;

and from $\mathcal{N}(C)=\mathcal{N}(CAC)\supseteq \mathcal{N}(AC)\supseteq \mathcal{N}(C)$ we have
$\mathcal{N}(C)=\mathcal{N}(AC)$ .

Thus, $\mathcal{R}(C)$ and $\mathcal{N}(C)$ are closed and complemented. Let $M;=\mathcal{R}(C),$ $M_{1};=$

$\mathcal{N}(CA)$ , and $N:=\mathcal{N}(C)$ , then $\mathcal{R}(AC)=A(\mathcal{R}(C))=A(M)$ and
$X=M\oplus M_{1}=A(M)\oplus N.$

Let us consider the following matrix form with respect to these decompositions:

$A=\{\begin{array}{ll}A_{11} A_{12}A_{21} A_{22}\end{array}\}:\{\begin{array}{l}MM_{1}\end{array}\}arrow[^{A(M)}N].$

It is clear that $A_{11}$ is onto; to see that it is also 1-1, let $x\in M$ such that $Ax=0,$
since $M=\mathcal{R}(CA)$ , there is some $y$ such that $x=CAy$ , then $0=CAx=$ CACAy $=$

$CAy=x$ . For $A_{12}$ : $M_{1}arrow A(M)$ , if $x\in M_{1}=\mathcal{N}(CA)$ , then $CAx=0$, it follows
that $Ax\in \mathcal{N}(C)$ , and since $\mathcal{N}(C)\cap A(M)=\mathcal{N}(AC)\cap \mathcal{R}(AC)=\{0\}$ , we have
that $Ax=0$ and $A_{12}=O$ . Finally, for $A_{21}$ : $Marrow N$ , if $x\in M=\mathcal{R}(C)$ ,
then there exists $y$ such that $x=Cy$, hence $Ax=ACy\in \mathcal{R}(AC)$ , and since
$N\cap \mathcal{R}(AC)=\mathcal{N}(AC)\cap \mathcal{R}(AC)=\{0\}$, we have $Ax=0$ and $A_{21}=O$ . Thus,

$A=\{\begin{array}{ll}A_{11} OO A_{22}\end{array}\}$
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with $A_{11}$ invertible and $A_{22}$ arbitrary.
Now consider the following matrix form of $C$ with respect to the same (fixed)

decompositions:

$C=\{\begin{array}{ll}C_{11} C_{12}C_{21} C_{22}\end{array}\}:[_{\mathcal{N}(C)}^{A(M)}]arrow\{\begin{array}{l}\mathcal{R}(C)M_{1}\end{array}\}.$

From $C=CAC$ we have that $A$ is an inner inverse for $C$ , and from the results for
inner inverses we have

$C=\{\begin{array}{ll}A_{11}^{-1} OO O\end{array}\}.$

The outer inverse is not unique, in general. However, the matrix form of $C$ above
shows that the outer inverse is unique when we fix its range and null space. Thus,
we have proved:

Theorem 3.3 ([2]). Let $A\in \mathcal{B}(X)$ be a nonzero operator and $M,$ $N$ subspaces of
X. If $C\in \mathcal{B}(X)$ is an outer inverse for $A$ such that $\mathcal{R}(C)=M$ and $\mathcal{N}(C)=N,$

then we have the following matrix forms:
$A=\{\begin{array}{ll}A_{1} OO A_{2}\end{array}\}:\{\begin{array}{l}M\mathcal{N}(CA)\end{array}\}arrow[^{A(M)}N],$

with $A_{1}$ invertible and $A_{2}$ arbitrary, and

$C=\{\begin{array}{ll}A_{1}^{-1} OO O\end{array}\}:[^{A(M)}N]arrow\{\begin{array}{l}M\mathcal{N}(CA)\end{array}\}.$

4. A CLASS OF OUTER INVERSES

We saw above that an outer invere is unique if we fix its range and null space.
In this section, we will fix these subspaces by means of another operator.

Definition 4.1. Let $A,$ $T\in \mathcal{B}(X)$ be nonzero operators. If there exists an outer
inverse $C$ for $A$ such that $\mathcal{R}(C)=\mathcal{R}(T)$ and $\mathcal{N}(C)=\mathcal{N}(T)$ , then we say that $A$ is
invertible along $T$ , and we write $C=A^{-T}.$

Notice that $A$ is invertible if and only if it is invertible along $I$ , and the inverse
is $A^{-I}$ . Since we are fixing the range and null space of an outer inverse, the inverse
along an operator is unique if it exists.

We can give a characterization of the set of operators along which an operator
$A$ is invertible:

Theorem 4.2 ([3]). Let $A,$ $T\in \mathcal{B}(X)$ be nonzero operators. The following state-
ments are equivalent.

(1) $A$ is invertible along $T.$

(2) $\mathcal{R}(T)$ is closed and complemented subspace of $X,$ $A(\mathcal{R}(T))=\mathcal{R}(AT)$ is
closed such that $\mathcal{R}(AT)\oplus \mathcal{N}(T)=X$ and the reduction $A|_{\mathcal{R}(T)}$ : $\mathcal{R}(T)arrow$

$\mathcal{R}(AT)$ is invertible.

Proof. Suppose $A$ is invertible along $T$ with $C=A^{-T}\in \mathcal{B}(X)$ . Then, $C$ is an
outer inverse for $A$ such that $\mathcal{R}(C)=\mathcal{R}(T)$ and $\mathcal{N}(C)=\mathcal{N}(T)$ . Since $A$ is
an inner inverse for $C,$ $\mathcal{R}(C)$ and $\mathcal{N}(C)$ (and thus $\mathcal{R}(T)$ and $\mathcal{N}(T)$ ) are closed
and complemented subspaces of $X$ . Furthermore, $I-AC$ is a projection from $X$

on $\mathcal{N}(C)=\mathcal{N}(T)$ , thus $X=\mathcal{R}(AC)\oplus \mathcal{N}(T)$ , and since $\mathcal{R}(AC)=A(\mathcal{R}(C))=$

$A(\mathcal{R}(T))=\mathcal{R}(AT)$ we have that $\mathcal{R}(AT)$ is closed and $X=\mathcal{R}(AT)\oplus \mathcal{N}(T)$ . Now,
for the invertibility of $A|_{\mathcal{R}(T)}$ : $\mathcal{R}(T)arrow \mathcal{R}(AT)$ it is clear that it is ont$0$ . To see
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that $A|_{\mathcal{R}(T)}$ is also 1–1 on $\mathcal{R}(T)$ , suppose that there exists $x\in \mathcal{R}(T)$ such that
$Ax=0$ . Since $x\in \mathcal{R}(T)=\mathcal{R}(C)$ , there exists $y\in X$ such that $Cy=x$ . Then
$0=Ax$ implies $0=CAx=CACy=Cy$ and thus $x=0$ . Therefore $A|_{\mathcal{R}(T)}$ is 1-1
and onto, and hence invertible.

Conversely, suppose that $\mathcal{R}(T)$ and $\mathcal{N}(T)$ are closed and complemented sub-
spaces of $X,$ $X=\mathcal{R}(AT)\oplus \mathcal{N}(T)$ , and the reduction $A|_{\mathcal{R}(T)}$ : $\mathcal{R}(T)arrow \mathcal{R}(AT)$ is
invertible. Let $M$ be the complement of $\mathcal{R}(T)$ , so $X=\mathcal{R}(T)\oplus M$ . Then $A$ has the
following matrix form with respect to these decompositions of spaces:

$A=\{\begin{array}{ll}A_{1} A_{3}A_{4} A_{2}\end{array}\}:[^{\mathcal{R}(T)}M]arrow[_{\mathcal{N}(T)}^{\mathcal{R}(AT)}].$

Since $A$ maps $\mathcal{R}(T)$ onto $\mathcal{R}(AT)$ (with $A_{1}=A|_{\mathcal{R}(T)}$ is invertible), it follows that
$A_{4}=0$ . Now, let $C$ be the operator defined by

$C=\{\begin{array}{ll}A_{1}^{-1} 00 0\end{array}\}:[_{\mathcal{N}(T)}^{\mathcal{R}(AT)}]arrow[^{\mathcal{R}(T)}M]$

A direct verification shows that $CAC=C,$ $\mathcal{R}(C)=\mathcal{R}(T)$ and $\mathcal{N}(C)=\mathcal{N}(T)$ .
Thus, $C$ is the inverse of $A$ along $T$ . Therefore, $A$ is invertible along $T.$ $\square$

We are interested in refining the matrix forms used in the above theorem. If $A$

is invertible along $T$ with $C=A^{-T}$ , then $A$ is outer invertible and from Theorem
3.3, $A$ has the following matrix form:

$A=\{\begin{array}{ll}A_{l} 00 A_{2}\end{array}\}:[_{\mathcal{N}(CA)}\mathcal{R}(T)]arrow[_{\mathcal{N}(T)}^{\mathcal{R}(AC)}],$

with $A_{1}$ invertible.
Notice that, since $\mathcal{R}(T)$ and $\mathcal{N}(T)$ are closed and complemented (because $C$ is

inner invertible), $T$ is inner invertible, and from Theorem 2.2,

$T=\{\begin{array}{ll}T_{1} OO O\end{array}\}:[_{\mathcal{N}(T)}^{\mathcal{R}(AC)}]arrow[_{\mathcal{N}(CA)}\mathcal{R}(T)],$

with $T_{1}$ invertible.
Now, we would like to have the matrix forms in terms of $A$ an $T$ only. From the

matrix forms
$TA=\{\begin{array}{ll}T_{1}A_{1} OO O\end{array}\}:[_{\mathcal{N}(CA)}\mathcal{R}(T)]arrow[_{\mathcal{N}(CA)}\mathcal{R}(T)],$

$AT=\{\begin{array}{ll}A_{1}T_{1} OO O\end{array}\}:[_{\mathcal{N}(T)}^{\mathcal{R}(AC)}]arrow[_{\mathcal{N}(T)}^{\mathcal{R}(AC)}],$

since $T_{1}$ and $A_{1}$ are invertible, it follows that $\mathcal{N}(TA)=\mathcal{N}(CA)$ and $\mathcal{R}(AT)=$

$\mathcal{R}(AC)$ . Thus, we have arrived to the following:

Theorem 4.3 ([3]). Let $A,$ $T\in \mathcal{B}(X)$ . If $A$ is invertible along $T$ , then we have
the following matrix forms for $A,$ $T$ and $A^{-T}$ with respect to the decomposition
$X=\mathcal{R}(T)\oplus \mathcal{N}(TA)=\mathcal{R}(AT)\oplus \mathcal{N}(T)$ :

$A=\{\begin{array}{ll}A_{1} 00 A_{2}\end{array}\}$ : $[_{\mathcal{N}(TA)}\mathcal{R}(T)]arrow[_{\mathcal{N}(T)}^{\mathcal{R}(AT)}]$ ( $A_{1}$ invertible),

$T=\{\begin{array}{ll}T_{1} 00 0\end{array}\}$ : $[_{\mathcal{N}(T)}^{\mathcal{R}(AT)}]arrow[_{\mathcal{N}(TA)}\mathcal{R}(T)]$ ( $T_{1}$ invertible),
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and
$A^{-T}=\{\begin{array}{ll}A_{1}^{-1} 00 0\end{array}\}:[_{\mathcal{N}(T)}^{\mathcal{R}(AT)}]arrow[_{\mathcal{N}(TA)}\mathcal{R}(T)].$

5. CONCLUSION AND FINAL REMARKS

In a Hilbert space, every closed subspace is complemented (by its orthogonal
complement), so every closed range operator on a Hilbert space is inner invertible.

If we require the operator $A\in \mathcal{B}(X)$ to be inner and outer invertible, we still
cannot guarantee uniqueness. However, if there exists $B\in \mathcal{B}(X)$ such that $A=$

$ABA$ and $AB=BA$, then taking $C=BAB$ we have $A=ACA,$ $C=CAC$ and
$CA=AC$, and this $C$ is unique. This $C$ is called the “group inverse”

Since inner invertibility implies outer invertibility, it is natural to weaken inner
invertibility while requiring outer invertibility. If $A$ is outer invertible with outer
inverse $B$ such that $BA=AB$ and there exists $n$ such that $A=A^{n}BA$ , then $A$ is
said to be “Drazin invertible”, and the least $n$ such that $A=A^{n}BA$ holds is called
the Drazin index of $A.$

The inverse along an operator was introduced by X. Mary, in a different but
equivalent way, in the general context of rings and semigroups ([4]).

Let $P_{\Lambda}$ be the spectral projection associated with the operator $A\in \mathcal{B}(X)$ and a
spectral set $\Lambda$ . If $0\in\Lambda$ , then $A$ is invertible along $I-P_{\Lambda}$ [ $1$ , Corollary 14]. Suppose
$\Lambda=\{0\}$ is a spectral set, if $0$ is a simple pole of the resolvent function, $A^{-(I-P_{\Lambda})}$

is the group inverse; if $0$ is a pole of order $n$ , then $A^{-(I-P_{\Lambda})}$ is the Drazin inverse
of index $n$ ; if $0$ is an isolated point of the spectrum, $A^{-(I-P_{\Lambda})}$ is the Koliha-Drazin
inverse.
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