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MATRIX REPRESENTATIONS OF INNER AND OUTER
INVERSES

GABRIEL KANTUN-MONTIEL

ABSTRACT. A matrix form is used to exhibit a useful property of a general-
ized outer invertible bounded linear operator: there is a subspace such that
the reduction of the operator to that subspace is invertible. Starting with
a linear equation as motivation, inner inverses and outer inverses are intro-
duced. Finally, a class of outer inverses with prescribed range and null space
is discussed.

1. INTRODUCTION

Let X and Y be (complex) Banach spaces and let B(X,Y") be the set of bounded
linear operators from X to Y. If X =Y, then we just write B(X). We will write
Ix € B(X) for the identity operator Ixz = z, dropping the subscript when the
context is clear, and O € B(X,Y') for the null operator Oz = 0. Let A € B(X,Y),
if there is an operator B € B(Y, X) such that AB = Iy and BA = Ix, then we say
that A is invertible with inverse A~1 := B.

We are interested in the following problem: given A € B(X) and y € X, find
z € X such that

(1) Az =y.

Of course, if A is invertible, we have z = A~'y. Thus, we are interested in solving
equation (1) for the case where A is not invertible. For the remainder of this paper,
we will suppose A € B(X) is not invertible.

Let us denote N'(A) := {z : Az = O} the null space of A and R(4) :={Az:z €
X} the range of A. We say A is 1-1 if N(A) = {0} and A isonto if R(A) = X. It
is a consequence of the closed graph theorem that an operator is invertible if and
only if it is 1-1 and onto.

In order to give a condition for being able to find a solution to (1), we introduce
complemented subspaces. Let M be a closed subspace of X. If there exists a closed
subspace N such that X = M & N, then we say that M is complemented with
complement N. Here, X = M & N means that M NN = {0} and for every z € X,
there exists (unique) v € M and v € N such that z = u + v.

It is clear that an invertible operator has closed and complemented range and
null space. We are working with a non-invertibe operator A, and in a sort of
“generalization”, we will require R(A) to be closed and complemented and N (A)
to be complemented. Thus, suppose R(A) and N (A) are closed and complemented
with complements M and N respectively. We can represent A in the following
form:

(2) A { N A)] S {R](\f)] .
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Notice that for the reduction A; := A|y : N — R(A) (defined by A1z = Az
for every z € N) we have A; € B(N,R(A)), N(A1) = N(A)N N = {0} and
R(A;) = R(A), and thus, A; is invertible.

Recall P is a projection if P = P?, and in this case we have Pz = z for every
z € R(P).

Let P be a projection onto R(A), and let B := AP € B(X). Then,

(3) ABA = AA"'PA = A.
It follows that AB is a projection onto R(A):
(AB)? = ABAB = AB,
R(A) = R(ABA) C R(AB) C R(A).
Thus, if y € R(A), then ABy = y. Hence, taking z = By we have
Ax = ABy =y,
that is, z = By is a solution for equation (1). Using (3) it is also easily verified

that, for z € X arbitrary,
By+ (I — BA)z

is also a solution for equation (1).

2. INNER INVERSES

The operator B constructed in the previous section satisfies A = ABA. This
was one of the keys for finding a solution to (1), and it deserves a name:

Definition 2.1. Let A € B(X), if there ezists some B € B(X) such that A= ABA
holds, then B is called an inner inverse for A, and we say that A is inner invertible.

We have shown in previous section that if A € B(X) has closed and comple-
mented range and null space, then there exists an inner inverse B € B(X) for A.
Now we are interested in matrix forms for A and B.

Recalling representation (2), we write the following matrix form:

_ [An Awz| | N R(A)
A=l Gl i)~ 57
We have shown above that A;; : N — R(A) is invertible. Now, since Az = 0 for
every ¢ € N(A), it follows that for A;s : N(A) - R(A) we have 413 = O, and
for Ags : N(A) - M we have Ags = O. Also, for Ap; : N — M, since M is a
complement of R(A), and Az € R(A) for every x € N, then Az = 0 for every
z € N, hence Az; = O. So, we get

_|Au1 O] | N R(A)
© SRR A
With respect to the same decomposition,
_[Bu Byl ’R(A)} [ N ]
B = [321 B |’ [ M|~ N |-
Now, since ABA = A, from

Ay O] [Byy B2l [Au O AinBndnn O
O O||Bx Ba/|O O 0o 0

we have A;1B11A11 = A11, and recalling A is invertible, we see that By = Al_ll.
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Since (BA)? = BABA = BA and N(4) = N(ABA) D N(BA) D N(4), it
follows BA is a projection onto N, thus

24=15 o ] = it

BA = [Al_ll Blgjl ’:All OJ _ [Al_llAll O}
By; Byn| | O O Bo1Ann O]’
so Ba1A11 = O, and since Aj; is invertible, it follows By; = O.
In a similar way, we saw above that AB is a projection onto R(A), thus

o-ls 531 )

But

O O
But

O O] |Ba1 B 0 O

so A11B12 = O, and since A;; is invertible, it follows By = O.
Therefore, we arrive to the following matrix form for B:

=[5 2]

AB = [An 0} [Aﬁl B12] _ {AllAﬂl AuBmJ ,

O By
where By : M — N(A) is arbitrary. Thus, we have proved the following:

Theorem 2.2 ([2]). Let A € B(X) and suppose that R(A) and N'(A) are closed and
complemented with complements M and N respectively. Then A is inner invertible
and for any inner inverse B € B(X) we have the following matriz forms:

<[5 9[- (]

where A, is invertible, and

o= 5[50~ L)

with B arbitrary.

Notice that the theorem above shows that we don’t have uniqueness for the inner
inverse. Indeed, given an inner inverse for an operator, in the next section we con-
struct another inner inverse, although not necessarily distinct, with an interesting
property.

3. OUTER INVERSE

Suppose A = ABA. Now let C := BAB, then ACA = ABABA = ABA=A
and CAC = BABABAB = BABAB = BAB = C. Thus, C is an inner inverse for
A which also satisfies C = CAC. We will give this C' a name:

Definition 3.1. Let A € B(X), if there exists C € B(X), C # O, such that
C = CAC, then C is called an outer inverse for A, and we say that A is outer
invertible. '

In previous section, we constructed an inner inverse for A provided its range and
null space were closed and complemented. Now we show that we can construct an
outer inverse for every nonzero operator.
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Theorem 3.2 ([2]). Let A € B(X) be a nonzero operator, then there exists C' €
B(X), C # O, such that C = CAC.

Proof. Since A # O, there exists £ € X such that Azy # 0. Let yo = Azo. Since
span{zo} and span{yo} are finite dimensional, they are complemented. Thus, there
exist subspaces M, N such that

X =span{zo} ® N = span{yo} & M.
We have the following matrix form for A with respect to these decompositions:
Ao [An Am] : [span{:co}' _, [span{wo}]
Az Az N . M
It is clear that Ay : span{zo} — span{yo} is invertible. Now, taking

_[A7Y O] . [span{yo}] [span{zo}
C"[él OJ'{ M |7 N

we get CAC = C. a

The opening paragraph of this section says that inner invertibility implies outer
invertibility. The theorem above says that outer invertibility is more general than
inner invertibility.

For the remainder of this section suppose, with no other restrictions on A € B(X)
or C € B(X), that C = CAC holds and C # O. We are interested in matrix forms
for A and C.

As for inner inverses, we have

(CA)? = CACA = CA,
(AC)? = ACAC = AC.
Also, from R(C) = R(CAC) C R(CA) C R(C) we have

R(C) = R(CA);
and from N(C) = N(CAC) 2 N(AC) 2 N(C) we have
N(C) = N(AC).

Thus, R(C) and N(C) are closed and complemented. Let M := R(C), M; :=
N(CA), and N := N(C), then R(AC) = A(R(C)) = A(M) and

X=MeM =AM)®N.

Let us consider the following matrix form with respect to these decompositions:

Al Ap M A(M)

A= : .

[Azl Azz] {MJ - [ N
It is clear that A;; is onto; to see that it is also 1-1, let £ € M such that Az = 0,
since M = R(CA), there is some y such that z = CAy, then 0 = CAz = CACAy =
CAy = z. For A1 : My — A(M), if x € My = N(CA), then CAz = 0, it follows
that Az € N(C), and since N(C) N A(M) = N(AC) N R(AC) = {0}, we have
that Az = 0 and A;; = O. Finally, for A3; : M = N, ifz € M = R(C),
then there exists y such that z = Cy, hence Az = ACy € R(AC), and since
NNR(AC) = N(AC)NR(AC) = {0}, we have Az =0 and As; = O. Thus,

_ Al O
A‘[o Azz]
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with A;; invertible and Ass arbitrary.
Now consider the following matrix form of C' with respect to the same (fixed)

decompositions:
O [011 012:' , [A(M )J R [R(C)}
021 022 ' N(C) M1 )
From C = CAC we have that A is an inner inverse for C, and from the results for
inner inverses we have

c= [Al—ll O] .

0O O

The outer inverse is not unique, in general. However, the matrix form of C above
shows that the outer inverse is unique when we fix its range and null space. Thus,
we have proved:

Theorem 3.3 ([2]). Let A € B(X) be a nonzero operator and M, N subspaces of
X. If C € B(X) is an outer inverse for A such that R(C) = M and N(C) = N,
then we have the following matriz forms:

<[5 3] L] (4]

with A; invertible and Ay arbitrary, and
_ A7 O] [AWM) M
C‘{o OJ'[N T NCA)|

4. A CLASS OF OUTER INVERSES

We saw above that an outer invere is unique if we fix its range and null space.
In this section, we will fix these subspaces by means of another operator.

Definition 4.1. Let A,T € B(X) be nonzero operators. If there exists an outer
inverse C for A such that R(C) = R(T) and N(C) = N(T), then we say that A is
invertible along T, and we write C = AT,

Notice that A is invertible if and only if it is invertible along I, and the inverse
is A~1. Since we are fixing the range and null space of an outer inverse, the inverse
along an operator is unique if it exists.

We can give a characterization of the set of operators along which an operator
A is invertible:

Theorem 4.2 ([3]). Let A,T € B(X) be nonzero operators. The following state-
ments are equivalent.

(1) A is invertible along T

(2) R(T) is closed and complemented subspace of X, A(R(T)) = R(AT) is
closed such that R(AT) ® N(T) = X and the reduction Alg(r) : R(T) —
R(AT) is invertible.

Proof. Suppose A is invertible along T with C = A~T € B(X). Then, C is an
outer inverse for A such that R(C) = R(T) and N(C) = N(T). Since A is
an inner inverse for C, R(C) and N(C) (and thus R(T) and N(T)) are closed
and complemented subspaces of X. Furthermore, I — AC is a projection from X
on N(C) = N(T), thus X = R(AC) & N(T), and since R(AC) = A(R(C)) =
A(R(T)) = R(AT) we have that R(AT) is closed and X = R(AT) & N(T). Now,
for the invertibility of A|g) : R(T) — R(AT) it is clear that it is onto. To see
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that A|g(r) is also 1 — 1 on R(T), suppose that there exists z € R(T’) such that
Az = 0. Since z € R(T) = R(C), there exists y € X such that Cy = z. Then
0 = Az implies 0 = CAz = CACy = Cy and thus z = 0. Therefore A|g(r)is 1 -1
and onto, and hence invertible.

Conversely, suppose that R(T") and N(T') are closed and complemented sub-
spaces of X, X = R(AT) & N(T), and the reduction A|g(r) : R(T) = R(AT) is
invertible. Let M be the complement of R(T'), so X = R(T) ® M. Then A has the
following matrix form with respect to these decompositions of spaces:

A= [Al Aa} ) [’R(T)] IR [’R(AT)]
T Ay A | M NT) |
Since A maps R(T') onto R(AT) (with A; = A|r(r) is invertible), it follows that
Ay = 0. Now, let C be the operator defined by

o-[% (]~

0 0| | N M
A direct verification shows that CAC = C, R(C) = R(T) and N(C) = N(T).
Thus, C is the inverse of A along T'. Therefore, A is invertible along T'. O

We are interested in refining the matrix forms used in the above theorem. If A
is invertible along T with C = A~T, then A is outer invertible and from Theorem
3.3, A has the following matrix form:

A= A 0] [ R(T) N R(AC)
T |0 Az T |N(CA) NT) |’
with A; invertible.

Notice that, since R(T) and N (T) are closed and complemented (because C is
inner invertible), T is inner invertible, and from Theorem 2.2,

T = T, O| [R(AC) N R(T)
|0 O | N N(CA)|’

with T3 invertible.
Now, we would like to have the matrix forms in terms of A an T only. From the

matrix forms a [Tl A, O} | [ R(T) ] . { R(T) J ,

0 0| |Ne4a)| T INCA)
=[5 8] [3][4).

since T; and A, are invertible, it follows that N(TA) = N(CA) and R(AT) =
R(AC). Thus, we have arrived to the following:

Theorem 4.3 ([3]). Let A,T € B(X). If A is invertible along T, then we have
the following matriz forms for A, T and A~T with respect to the decomposition
X =R(T)®N(TA) = R(AT) & N(T):

A= {/(1)1 22] : [ ./\Z'z(gf)l)] - [75\;1(41:,’;)] (A; invertible),

T = [:'(;1 g] : [7}\%%)] N [ ﬁgg)} (T} invertible),
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and
-4 [ )

5. CONCLUSION AND FINAL REMARKS

In a Hilbert space, every closed subspace is complemented (by its orthogonal
complement), so every closed range operator on a Hilbert space is inner invertible.

If we require the operator A € B(X) to be inner and outer invertible, we still
cannot guarantee uniqueness. However, if there exists B € B(X) such that A =
ABA and AB = BA, then taking C = BAB we have A = ACA, C = CAC and
CA = AC, and this C is unique. This C is called the “group inverse”.

Since inner invertibility implies outer invertibility, it is natural to weaken inner
invertibility while requiring outer invertibility. If A is outer invertible with outer
inverse B such that BA = AB and there exists n such that A = A"BA, then A is
said to be “Drazin invertible”, and the least n such that A = A" BA holds is called
the Drazin index of A.

The inverse along an operator was introduced by X. Mary, in a different but
equivalent way, in the general context of rings and semigroups ([4]).

Let Py be the spectral projection associated with the operator A € B(X) and a
spectral set A. If 0 € A, then A is invertible along I — P, [1, Corollary 14]. Suppose
A = {0} is a spectral set, if 0 is a simple pole of the resolvent function, A~(Z=F»)
is the group inverse; if 0 is a pole of order n, then A~(!=P4) is the Drazin inverse
of index n; if 0 is an isolated point of the spectrum, A~(/=FA) is the Koliha-Drazin
inverse.
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